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Everyone agrees that building a quantum computer is hard. But some people think it must be impossible
for a fundamental physical reason. Two computer scientists who think this are Leonid Levin and Oded
Goldreich.

Levin, for example, says that the exponentially small amplitudes that arise in Shor’s factoring algorithm
are absurd—that they take us far beyond quantum mechanics’ regime of demonstrated validity, into a realm
where nothing sensible can be said. (Although of course, whatever theory describes that realm must conform
to the original Extended Church-Turing Thesis, which we know a priori to be true.) Similarly, Goldreich
says that Shor states have exponential “non-degeneracy” and therefore should take exponential time to
prepare.

About a year ago, I wrote a paper called “Multilinear Formulas and Skepticism of Quantum Computing.”
The first thing I did there is point out that Levin’s and Goldreich’s arguments are extremely weak, without
specifics about where our current understanding of quantum mechanics breaks down. Take exponentially
small amplitudes. I can produce probabilities of order 2−10000 by flipping a coin 10000 times. Does that
mean that the laws of probability theory are absurd, or should break down? More concretely, we can prepare
states with exponentially small amplitudes:

( |0〉 + |1〉√
2

)⊗n

.

A skeptic would say, yeah, but that’s not entangled. But there are recent experiments (e.g. Zeilinger’s
buckyball experiments) that prepare quite large Schrödinger cat states:

|0〉⊗n
+ |1〉⊗n

√
2

.

Just by viewing these states in a different basis, we get a combination of exponentially small amplitudes and
entanglement across hundreds of particles.

So what exactly is meant by “non-degeneracy”? What criterion separates the states that have already
been demonstrated in the lab, from the states arising in Shor’s algorithm? In the paper, I called such a
criterion a Sure/Shor separator, and I challenged quantum computing skeptics to find one.

But in case the skeptics weren’t so eager to take up my challenge, I started doing their work for them. My
proposal was that we study the complexity theory, not of languages computable with the help of quantum
states, but of quantum states themselves. In other words, which pure states of n qubits have succinct
classical descriptions of various kinds? If we knew that, then we could have a dialogue between theory and
experiment: theorists would say, “I conjecture that all physically possible quantum states belong to this
class,” experimenters would then test that conjecture by trying to prepare states outside of the class, etc.

In the paper, most of my attention focused on “tree states,” which are those states representable by a
polynomial-size tree of linear combination and tensor product gates. Here’s an example:You can take a
normalized linear combination of any two states on the same set of qubits, or the tensor product of any two
states on disjoint sets of qubits. Every leaf vertex must be labeled with either |0〉 or |1〉; then the size of a
tree is the number of leaf vertices. In particular, tensor product states, Schrödinger cat states, and many
other simple quantum states on n qubits can all be shown to have tree size bounded by a polynomial in n.

My main result was the following: let C ⊆ {0, 1}n
be the set of codewords of a uniform random linear

code with (say) n/2 generators. Then with high probability over C, the state
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Figure 1: Expressing (|00〉 + |01〉 + |10〉 − |11〉) /2 by a tree of linear combination and tensor product gates,
with scalar multiplication along edges. Subscripts denote the identity of a qubit.

has tree size nΩ(log n), which of course is superpolynomial. This result used a very recent technique of Ran
Raz for lower-bounding the multilinear formula size of functions. Indeed, it’s not hard to show that proving
a lower bound on the tree size of the state |ψ〉 =

∑

x αx |x〉 is equivalent to proving a lower bound on the
multilinear formula size of the function f (x) = αx. I also showed that such states require tree size nΩ(log n)

even to approximate well in L2 norm. The upshot is that, if we ever prepared such states in the lab, then
this would provide evidence against the hypothesis that all states in Nature are tree states. (I conjectured
that the states arising in Shor’s algorithm also have tree size nΩ(log n), but was unable to prove that except
by assuming a number theory conjecture.)

After I wrote the paper, some people raised conceptual objections to it—for example, if you did prepare
a state that provably has superpolynomial tree size, how would you convince a skeptic that you succeeded?
More generally, what sort of evidence is needed to establish a state’s existence? (My answer was basically
that this is like any other empirical question.) Also: how can we go from an asymptotic statement to a
statement about physical reality? (My answer: don’t let n run off to infinity. Stop it when it reaches
10000.)

But they also raised more specific, technical objections.
First, they complained that my result applies only to a random linear code. What about explicit linear

codes?
Second, they complained that the tree size notion doesn’t seem connected to anything in physics. Are

there physical properties of a quantum state that are connected to its having large tree size?
Third, they complained that my lower bound was only nΩ(log n) as opposed to exponential. (About this

third objection, I might answer: don’t blame me, blame Ran Raz! Or rather, admire him for being able to
prove even an nΩ(log n) lower bound, since formula and circuit lower bounds are among the hardest problems
in all of mathematics!)

In the remainder of this talk, I want to report the progress that I made just a few months ago toward
answering these technical objections. I think some of the progress might even be of independent interest
for classical complexity theory.

The first thing I’ll show you is that, if you take an equal superposition over the codewords of any
sufficiently good erasure code, then that will have tree size nΩ(log n). I don’t really know anything about
coding theory. But another Berkeley grad student, Andrej Bogdanov, who does know something, showed
me how to get the erasure codes I want by concatenating the Reed-Solomon and Hadamard codes. That
yields a derandomization of my original tree size lower bound, which answers the first objection.

Second, I’ll show you how Ran Raz’s lower bound method is related to a concept in physics called
persistence of entanglement. Basically, a quantum state is persistently entangled if it still contains a lot of
entanglement after a limited amount of interaction with its environment. On the other hand, the connection
between large tree size and persistence of entanglement is not a perfect one.

Third, if there’s time, I’ll say something about a weaker notion than tree size, called “manifestly orthog-
onal tree size.” For this notion, I can prove exponential lower bounds, rather than just nΩ(log n). Indeed, I
can exactly characterize the manifestly orthogonal tree size of linear codeword states.
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1 Derandomized Lower Bound

After his main paper on multilinear formula size, Raz wrote a second paper, in which he gave functions that
have superpolynomial multilinear formula size but polynomial multilinear circuit size. More relevant for us
is that he gave a cleaner statement of his original theorem.

Theorem 1 (Raz) Let f : {0, 1}n → C. Let l = nδ for some constant δ ∈ (0, 1]; then let Rl be the following
distribution over restrictions R of f : choose 2l inputs uniformly at random, and name them y = (y1, . . . , yl)
and z = (z1, . . . , zl). Set each of the remaining n− 2l inputs to 0 or 1 uniformly and independently. This

yields a restricted function fR : {0, 1}l × {0, 1}l → C. Let Mf |R be a 2l × 2l matrix whose (y, z) entry is
fR (y, z). Suppose that

Pr
R∈Rl

[

rank
(

Mf |R

)

≥ 2l−l1/8/2
]

= Ω (1)

Then f has multilinear formula size nΩ(log n).

We can use this theorem to prove a tree size lower bound for an explicit linear code. Let

V =











10 11 · · · 1k−1

20 21 · · · 2k−1

...
...

...
n0 n1 · · · nk−1











be the n × k Vandermonde matrix, where 1, . . . , n are labels of elements in F2d for d ≥ log2 n. Any k × k
submatrix of V has full rank, because the Reed-Solomon (RS) code that V represents is a perfect erasure
code (in other words, because a degree-(k − 1) polynomial is determined by its values at any k points).

But we want a binary linear erasure code with parameters almost as good as this code’s. To get one,
we concatenate the RS and Hadamard codes. More explicitly, interpret F2d as the field of polynomials over
F2, modulo some irreducible of degree d. Then let m (a) be the d× d Boolean matrix that maps q ∈ F2d to
aq ∈ F2d , where q and aq are encoded by their d × 1 vectors of coefficients. Let H map a length-d vector
to its length-2d Hadamard encoding. Then Hm (a) is a 2d × d Boolean matrix that maps q ∈ F2d to the
Hadamard encoding of aq. We can now define an n2d × kd “binary Vandermonde matrix” as follows:

Vb =











Hm
(

10
)

Hm
(

11
)

· · · Hm
(

1k−1
)

Hm
(

20
)

Hm
(

21
)

· · · Hm
(

2k−1
)

...
...

...
Hm

(

n0
)

Hm
(

n1
)

· · · Hm
(

nk−1
)











.

Fix k = nδ for some δ < 1/2 and d = O (logn).

Lemma 2 A (kd+ c) × kd submatrix of Vbin chosen uniformly at random has rank kd (that is, full rank)
with probability at least 2/3, for c a sufficiently large constant.

Proof. We claim that |Vbu| ≥ (n− k) 2d−1 for all nonzero vectors u ∈ Fkd
2 , where | | represents the number

of ‘1’ bits. To see this, observe that for all nonzero u, the “codeword vector” V u ∈ Fn
2d must have at least

n− k nonzero entries by the Fundamental Theorem of Algebra, where here u is interpreted as an element of

F
k
2d . Furthermore, the Hadamard code maps any nonzero entry in V u to 2d−1 nonzero bits in Vbu ∈ F

n2d

2 .
Now let W be a uniformly random (kd+ c) × kd submatrix of Vb. By the above claim, for any fixed

nonzero vector u ∈ Fkd
2 ,

Pr
W

[Wu = 0] ≤
(

1 − (n− k) 2d−1

n2d

)kd+c

=

(

1

2
+

k

2n

)kd+c

.

So by the union bound, Wu is nonzero for all nonzero u (and hence W is full rank) with probability at least

1 − 2kd

(

1

2
+

k

2n

)kd+c

= 1 −
(

1 +
k

n

)kd (

1

2
+

k

2n

)c

.

Since k = n1/2−Ω(1) and d = O (logn), the above quantity is at least 2/3 for sufficiently large c.
Given an n2d × 1 Boolean vector x, let f (x) = 1 if V T

b x = 0 and f (x) = 0 otherwise. Then:
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Theorem 3 f has multilinear formula size nΩ(log n).

Proof. Let Vy and Vz be two disjoint kd× (kd+ c) submatrices of V T
b chosen uniformly at random. Then

by the above lemma together with the union bound, Vy and Vz both have full rank with probability at least
1/3. Letting l = kd+ c, it follows that

Pr
R∈Rl

[

rank
(

Mf |R

)

≥ 2l−c
]

≥ 1

3
.

The theorem now follows from Raz’s lower bound theorem.
Above, all I used about the binary Vandermonde matrix is that it corresponds in some sense to a good

erasure code. Thus, one can certainly generalize to an equal superposition over codewords of any such code.
But I still need to work out the details of how to do that, and what parameters one gets. (There’s a mistake
in how I do it in the newest version of my paper.)

2 Persistence of Entanglement

We can gain further insight by asking what physical properties a codeword state has to have. One important
property is “persistence of entanglement,” studied by Briegel, Raussendorf, etc. This is the property of
remaining highly entangled even after a limited amount of interaction with the environment. For example,

the Schrödinger cat state
(

|0〉⊗n + |1〉⊗n
)

/
√

2 is in some sense highly entangled, but it is not persistently

entangled, since measuring a single qubit in the standard basis destroys all entanglement.
Persistence of entanglement seems related to how one shows tree size lower bounds using Raz’s technique.

For to apply that technique, one basically “measures” most of a state’s qubits, then partitions the unmeasured
qubits into two subsystems of equal size, and argues that with high probability those two subsystems are
still almost maximally entangled.

The connection is not perfect, though. For one thing, setting most of the qubits to 0 or 1 uniformly at
random is not the same as measuring them. Also, that the system is almost maximally entangled under
almost any partition into two subsystems, seems at least as important as the system remaining entangled
after a subset of qubits is measured. Indeed, I can show that there exist states—the 1D cluster states—that
are persistently entangled in some sense yet that have polynomial tree size. On the other hand, I conjecture
that 2D cluster states have tree size nΩ(log n), but have been unable to prove this.

3 Manifestly Orthogonal Tree Size

Given a state |ψ〉, the manifestly orthogonal tree size of |ψ〉 is the minimum size of a tree representing |ψ〉,
in which all linear combinations are of two states |ψ1〉 , |ψ2〉 with “disjoint supports” in the computational
basis—that is, either 〈ψ1|x〉 = 0 or 〈ψ2|x〉 = 0 for every basis state |x〉. We can assume without loss of
generality that every + or ⊗ vertex has at least one child, and that every child of a + vertex is a ⊗ vertex
and vice versa. Also, given a set S ⊆ {0, 1}n

, let

|S〉 =
1

√

|S|
∑

x∈S

|x〉

be a uniform superposition over the elements of S, and letM (S) be a shorthand for the manifestly orthogonal
tree size of |S〉. I admit this isn’t a very physical notion, but it’s interesting from a complexity theory
perspective.

If C = {x : Ax ≡ b (mod 2)} is the set of codewords of a linear code, then I can give an exact characteri-
zation of M (C). Intuitively, the characterization says that there’s nothing better than the trivial approach
of decomposing C into a union of tensor products of codeword states in two subsystems I and J :

C =
⋃

h

C
(h)
I ⊗ C

(h)
J .

We can then recursively decompose each C
(h)
I and C

(h)
J in similar manner. Minimizing the resulting tree

size over all such decompositions yields the optimal result. The formal statement is as follows:
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Theorem 4 Let M (A) = M (C) (the vector b is irrelevant, so long as Ax ≡ b is solvable). Then

M (A) = min
(

2rank(AI )+rank(AJ )−rank(A) (M (AI) +M (AJ ))
)

where the minimum is over all nontrivial partitions (AI , AJ ) of the columns of A. As a base case, if A has
only one column, then M (A) = 2 if A = 0 and M (A) = 1 otherwise.

This exact characterization has several corollaries. First, it implies that there exists a deterministic
O (n3n)-time dynamic programming algorithm that computes M (A), given A as input. Second, it implies
that the language {A : M (A) ≤ s} is in NP. I do not know if this language is NP-complete but conjecture
that it is. Third, it implies the following exponential lower bound.

Corollary 5 Suppose the entries of A ∈ Z
k×n
2 are drawn uniformly and independently at random, where

k ∈
[

4 log2 n,
1
2

√
n ln 2

]

. Then M (A) =
(

n/k2
)Ω(k)

with probability Ω (1) over A.

And fourth, it implies the existence of quantum states with polynomial orthogonal tree size, but manifestly
orthogonal tree size nΩ(log n). For orthogonal tree size, we require that all linear combinations be of two
orthogonal states, but do not require the states to have disjoint supports in the computational basis.

Note that in the decomposition

C =
⋃

h

C
(h)
I ⊗ C

(h)
J ,

the C
(h)
I ’s and C

(h)
J ’s are unique up to ordering. Furthermore, the quantities

∣

∣

∣C
(h)
I

∣

∣

∣,
∣

∣

∣C
(h)
J

∣

∣

∣, M
(

C
(h)
I

)

, and

M
(

C
(h)
J

)

remain unchanged as we range over h ∈ [H ]. For this reason we suppress the dependence on h

when mentioning them.
Let’s now prove the characterization theorem. For various sets S, the strategy will be to analyze

M (S) / |S|, the ratio of tree size to cardinality. We can think of this ratio as the “price per pound” of S:
the number of vertices that we have to pay per basis state that we cover with nonzero amplitude. The
following lemma says that, under that cost measure, a coset is “as good a deal” as any of its subsets.

Lemma 6 For all cosets C,
M (C)

|C| = min

(

M (S)

|S|

)

where the minimum is over nonempty S ⊆ C.

Proof. By induction on n. The base case n = 1 is obvious, so assume the lemma true for n− 1. Choose
S∗ ⊆ C to minimize M (S∗) / |S∗|. Let T be a manifestly orthogonal tree for |S∗〉 of minimum size, and
let v be the root of T . We can assume without loss of generality that v is a ⊗ vertex, since otherwise v
has some ⊗ child representing a set R ⊂ S∗ such that M (R) / |R| ≤ M (S∗) / |S∗|. Therefore for some

nontrivial partition (I, J) of [n], and some S∗
I ⊆ {0, 1}|I| and S∗

J ⊆ {0, 1}|J|
, we have

|S∗〉 = |S∗
I 〉 ⊗ |S∗

J〉 ,
|S∗| = |S∗

I | |S∗
J | ,

M (S∗) = M (S∗
I ) +M (S∗

J ) ,

where the last equality holds because if M (S∗) < M (S∗
I )+M (S∗

J), then T was not a minimal tree for |S∗〉.
Then

M (S∗)

|S∗| =
M (S∗

I ) +M (S∗
J )

|S∗
I | |S∗

J |
= min

(

M (SI) +M (SJ)

|SI | |SJ |

)

where the minimum is over nonempty SI ⊆ {0, 1}|I| and SJ ⊆ {0, 1}|J|
such that SI ⊗ SJ ⊆ C. Now there

must be an h such that S∗
I ⊆ C

(h)
I and S∗

J ⊆ C
(h)
J , since otherwise some x /∈ C would be assigned nonzero

amplitude. By the induction hypothesis,

M (CI)

|CI |
= min

(

M (SI)

|SI |

)

,
M (CJ )

|CJ |
= min

(

M (SJ)

|SJ |

)

,
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where the minima are over nonempty SI ⊆ C
(h)
I and SJ ⊆ C

(h)
J respectively. Define β = |SI | · |SJ | /M (SJ)

and γ = |SJ | · |SI | /M (SI). Then since setting SI := C
(h)
I and SJ := C

(h)
J maximizes the four quantities

|SI |, |SJ |, |SI | /M (SI), and |SJ | /M (SJ ) simultaneously, this choice also maximizes β and γ simultaneously.
Therefore it maximizes their harmonic mean,

βγ

β + γ
=

|SI | |SJ |
M (SI) +M (SJ)

=
|S|

M (S)
.

We have proved that setting S := C
(h)
I ⊗ C

(h)
J maximizes |S| /M (S), or equivalently minimizes M (S) / |S|.

The one remaining observation is that taking the disjoint sum of C
(h)
I ⊗ C

(h)
J over all h leaves the ratio

M (S) / |S| unchanged. So setting S := C also minimizes M (S) / |S|, and we are done.
We are now ready to give a recursive characterization of M (C).

Theorem 7 If n ≥ 2, then

M (C) = |C|min

(

M (CI) +M (CJ)

|CI | |CJ |

)

where the minimum is over nontrivial partitions (I, J) of [n].

Proof. The upper bound is obvious; we prove the lower bound. Let T be a manifestly orthogonal tree for
|C〉 of minimum size, and let v(1), . . . , v(L) be the topmost ⊗ vertices in T . Then there exists a partition
(

S(1), . . . , S(L)
)

of C such that the subtree rooted at v(i) represents
∣

∣S(i)
〉

. We have

|T | = M
(

S(1)
)

+ · · · +M
(

S(L)
)

=
∣

∣

∣S(1)
∣

∣

∣

M
(

S(1)
)

∣

∣S(1)
∣

∣

+ · · · +
∣

∣

∣S(L)
∣

∣

∣

M
(

S(L)
)

∣

∣S(L)
∣

∣

.

Now let η = mini

(

M
(

S(i)
)

/
∣

∣S(i)
∣

∣

)

. We will construct a partition
(

R(1), . . . , R(H)
)

of C such that

M
(

R(h)
)

/
∣

∣R(h)
∣

∣ = η for all h, which will imply a new tree T ′ with |T ′| ≤ |T |. Choose j ∈ [L] such

that M
(

S(j)
)

/
∣

∣S(j)
∣

∣ = η, and suppose vertex v(j) of T expresses
∣

∣S(j)
〉

as |SI〉 ⊗ |SJ〉 for some nontrivial
partition (I, J). Then

η =
M

(

S(j)
)

∣

∣S(j)
∣

∣

=
M (SI) +M (SJ)

|SI | |SJ |

where M
(

S(j)
)

= M (SI) +M (SJ ) follows from the minimality of T . As in the lemma, there must be an

h such that SI ⊆ C
(h)
I and SJ ⊆ C

(h)
J . But the lemma then implies that M (CI) / |CI | ≤M (SI) / |SI | and

that M (CJ ) / |CJ | ≤ M (SJ) / |SJ |. Combining these bounds with |CI | ≥ |SI | and |CJ | ≥ |SJ |, we obtain
by a harmonic mean inequality that

M (CI ⊗ CJ )

|CI ⊗ CJ |
≤ M (CI) +M (CJ )

|CI | |CJ |
≤ M (S∗

I ) +M (S∗
J)

|S∗
I | |S∗

J |
= η.

So setting R(h) := C
(h)
I ⊗ C

(h)
J for all h yields a new tree T ′ no larger than T . Hence by the minimality of

T ,

M (C) = |T | = |T ′| = H ·M (CI ⊗ CJ ) =
|C|

|CI | |CJ |
· (M (CI) +M (CJ )) .
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