A Full Characterization of Quantum Advice

Scott Aaronson Andrew Drucker
MIT

June 6, 2010
‘Big picture’ question

What is the information content of a quantum state?

- This question has fueled a great deal of research in recent decades.
- We give a new way to concisely describe quantum states, with applications in quantum complexity theory.
Quick quantum review

- A quantum state over \(n \) qubits is a ‘superposition’

\[
|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \in \mathbb{C}^{2^n},
\]

where the values \(\{\alpha_x\} \) satisfy

\[
\sum_x |\alpha_x|^2 = 1.
\]

- If we measure \(|\psi\rangle \), it ‘collapses’ to a classical string: we see outcome \(|x\rangle \) with probability \(|\alpha_x|^2 \).

- More general measurements are allowed: may first apply a unitary linear transformation \(U \) to \(|\psi\rangle \).
Quantum states are continuous

- Even a single-qubit state $|\psi\rangle$ takes an infinite number of classical bits to specify exactly! However...

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$
Quantum states are continuous

- Most of this information is destroyed upon measurement. We receive only a single-bit outcome.
Qubits vs. bits

- To encode and reliably retrieve m classical bits from a quantum state, we need nearly m qubits [Hol73].
- Quantum states are much less ‘spacious’ than they first appear!
Qubits vs. bits

- So perhaps concise (approximate) descriptions are possible...
- But, what kind of description is ‘good enough’?
Suggestion [Aar04, Aar06]: given a state $|\psi\rangle$, try to describe a state $|\tilde{\psi}\rangle$ which is statistically close to $|\psi\rangle$ under every simple, 2-outcome measurement.

‘Simple’ \leftrightarrow ‘Performable by a small quantum circuit’.

Could reflect an assumption about nature, or about our intended uses of the state $|\psi\rangle$.
Theorem (Aar04)

Fix $c > 0$, and let $|\psi\rangle$ be an n-qubit state. Using $\text{poly}(n, 1/\varepsilon)$ bits, one can describe a state $|\tilde{\psi}\rangle$, for which $|\psi\rangle$ and $|\tilde{\psi}\rangle$ are ε-close in statistical distance under every 2-outcome measurement by quantum circuits of size $\leq n^c$.
Unfortunately, [Aar04] gave no efficient way to actually construct the approximating state $\tilde{\psi}$ from its classical description!

This problem remains open.

But we can improve substantially on the previous result.
Main Theorem

Fix \(c > 0 \), *and let* \(|\psi\rangle \) *be an n-qubit state. There exists a quantum circuit* \(C_{|\psi\rangle} \) *of size* \(\text{poly}(n, 1/\varepsilon) \) *performing a test on an input state* \(|\phi\rangle \). *Any* \(|\phi\rangle \) *that passes the test can be used to simulate* \(|\psi\rangle \) *to* \(\varepsilon \) *accuracy, under every 2-outcome measurement by quantum circuits of size* \(\leq n^c \).

- We can efficiently recognize an encoded copy of \(|\psi\rangle \), provided by an untrusted prover!
- \((|\phi\rangle \text{ is not just a copy of } |\psi\rangle) \)
- **Caveat:** the mapping \(|\psi\rangle \rightarrow C_{|\psi\rangle} \) is nonconstructive.
Simple descriptions for simple measurements

Main Theorem
Fix $c > 0$, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C|\psi\rangle$ of size $\text{poly}(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.
Any $|\phi\rangle$ that passes the test can be used to simulate $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^c$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- ($|\phi\rangle$ is not just a copy of $|\psi\rangle$.)
- Caveat: the mapping $|\psi\rangle \rightarrow C|\psi\rangle$ is nonconstructive.
Simple descriptions for simple measurements

Main Theorem
Fix $c > 0$, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C_{|\psi\rangle}$ of size $\text{poly}(n, 1/\epsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to simulate $|\psi\rangle$ to ϵ accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^c$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- ($|\phi\rangle$ is not just a copy of $|\psi\rangle$.)
- Caveat: the mapping $|\psi\rangle \rightarrow C_{|\psi\rangle}$ is nonconstructive.
Main Theorem

Fix $c > 0$, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C|\psi\rangle$ of size $\text{poly}(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to simulate $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^c$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- ($|\phi\rangle$ is not just a copy of $|\psi\rangle$.)
- Caveat: the mapping $|\psi\rangle \rightarrow C|\psi\rangle$ is nonconstructive.
Proof sketch (rough)

- Each n-qubit state $|\zeta\rangle$ defines a function

$$F_{|\zeta\rangle} : \{\text{Size-}n^c \text{ quantum circuits}\} \rightarrow [0, 1],$$

by the rule

$$F_{|\zeta\rangle}(C) := \Pr[C(|\zeta\rangle) = 1].$$

- Let S be the set of all such functions.
- Key known fact: S has low ‘fat-shattering dimension’ [Aar06], [ANTV99].
Perhaps $F_{|\psi\rangle}$ can be ‘singled out’ among functions in S, by specifying its values on a small number ($\text{poly}(n, 1/\varepsilon)$) of measurement circuits.

In this case, say $|\psi\rangle$ is isolatable in S.

Then, our test $C_{|\psi\rangle}$ could simply request many copies of $|\psi\rangle$, and measure to compare against these values!
Wishful thinking

- Alas, $|\psi\rangle$ may not be isolatable...
- But something almost as good occurs:
- $F|\psi\rangle$ can be ‘built’ out of a small number of functions in S which are isolatable!
The majority-certificate lemma

Lemma (informal)

For each $F_{|\psi\rangle} \in S$, we can express

$$
F_{|\psi\rangle} \approx \frac{1}{k} \sum_{i=1}^{k} F_{|\zeta_i\rangle},
$$

where

i) $k = O(poly(n, 1/\epsilon));$

ii) Each $|\zeta_i\rangle$ is isolatable;

iii) The equation above holds to high accuracy on every measurement circuit of size $\leq n^c$.
The majority-certificates lemma

- Then, to prove our main theorem:
- Our test circuit $C_{|\psi\rangle}$ requests copies of $|\zeta_1\rangle, \ldots, |\zeta_k\rangle$;
- It tests each according to our earlier idea.
- Having accurate copies of $|\zeta_1\rangle, \ldots, |\zeta_k\rangle$ lets us simulate $|\psi\rangle$.
The majority-certificates lemma

- The lemma’s proof is a boosting-type argument (using results in learning theory of real-valued functions).
- Our lemma is not specific to quantum, and may find other uses.
Application: Quantum complexity classes

- Our main theorem gives new bounds on the complexity class \(BQP/qpoly \) [NY03].
- This class models quantum poly-time computation aided by a non-uniform quantum advice state (on poly\((n)\) qubits), which depends only on the input length.

Theorem

\(BQP/qpoly \subseteq QMA/poly. \)

- We can replace quantum advice with classical advice, with the help of an untrusted prover.
- Improves on results from [Aar04], [Aar06].
Application: Quantum complexity classes

- In fact, we can exactly characterize BQP/qpoly in terms of a quantum class involving only classical nonuniform advice.
- Other applications, and open problems, in the paper...
Thanks!