QUANTUM POMDPs

Jenny Barry

6.845 Final Project Presentation
December 12, 2012
Robots...

- Don’t know where they are.
- Don’t know what they are doing.
- Don’t understand what they are seeing.
Partially Observable Markov Decision Process (POMDP)

- S, A, Ω: Possible states, actions, observations
PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)

- **S, A, Ω**: Possible states, actions, observations
POMDPs

States: (i, j)

Actions: (L, R, U, D, S)

Observations: No Bump, Bump

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)

- S, A, Ω: Possible states, actions, observations
POMDPs

States: \((i, j)\)

Actions: \((L, R, U, D, S)\)

Observations: No Bump, Bump

Partially Observable Markov Decision Process (POMDP)

- \(S, A, \Omega\): Possible states, actions, observations
POMDPs

States: (i, j)
Actions: (L, R, U, D, S)
Observations: No Bump, Bump
Rewards: 0 at ✺, -1 else

Partially Observable Markov Decision Process (POMDP)
- S, A, Ω: Possible states, actions, observations
- $R(s_i, a_j)$: Reward for taking action a_j in state s_i
POMDPs

Partialy Observable Markov Decision Process (POMDP)

- S, A, Ω: Possible states, actions, observations
- $R(s_i, a_j)$: Reward for taking action a_j in state s_i
- $T(s_i | a_j, s_k)$: Probability of transitioning to s_i starting in s_j taking action a_j

States: (i, j)
Actions: (L, R, U, D, S)
Observations: No Bump, Bump
Rewards: 0 at ⭐, -1 else
POMDPs

States: (i, j)

Actions: (L, R, U, D, S)

Observations: No Bump, Bump

Rewards: 0 at ★, -1 else

Partially Observable Markov Decision Process (POMDP)

- **S, A, Ω:** Possible states, actions, observations
- **R(s_i, a_j):** Reward for taking action \(a_j\) in state \(s_i\)
- **T(s_i|a_j, s_k):** Probability of transitioning to \(s_i\) starting in \(s_j\) taking action \(a_j\)
- **O(o_i|a_j, s_k):** Probability of observing \(o_i\) given that action \(a_j\) ended in \(s_k\)
Belief States

Definition: Belief State

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

- $\vec{b}_i = \Pr(s_i)$
- $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$
Belief States

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Definition: Belief State

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

- $\vec{b}_i = \text{Pr}(s_i)$
- $\sum_i b_i = |\vec{b}|_1 = 1$
Belief States

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>5</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Move Right

See No Bump

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0</td>
</tr>
</tbody>
</table>

Definition: Belief State

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

- $\vec{b}_i = \Pr(s_i)$
- $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$
Belief States

Definition: Belief State

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

- $\vec{b}_i = \text{Pr}(s_i)$
- $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$

Belief Markov Decision Process

- B: Belief space (continuous)
- A: Robot’s actions
- $\tau(\vec{b}'|a_i, \vec{b})$: Probability of \vec{b}' after taking action a_i in state \vec{b}.
- $\rho(\vec{b}, a_i) = \sum_i \vec{b}_i R(s_i, a_i)$: Reward for taking action a_i in state \vec{b}
- b_0: Starting belief state

I know that I know nothing. - Socrates
Definition: Superoperator

\[S = \{K_1, \ldots, K_m\} \]

- \[\sum_{i=1}^{m} K_i^\dagger K_i = \mathbb{I} \]
- \[\text{Pr}[\text{Observation } i] = \text{Tr}(K_i \rho K_i^\dagger) \]

\[\rho \rightarrow \frac{K_i \rho K_i^\dagger}{\text{Tr}(K_i \rho K_i^\dagger)} \]
QOMDPs

Definition: Superoperator

\[S = \{K_1, \ldots, K_m\} \]

\[\sum_{i=1}^{m} K_i^\dagger K_i = \mathbb{I} \]

\[\Pr[\text{Observation } i] = \text{Tr}(K_i \rho K_i^\dagger) \]

\[\rho \rightarrow \frac{K_i \rho K_i^\dagger}{\text{Tr}(K_i \rho K_i^\dagger)} \]

Quantum Observable Markov Decision Process (QOMDP)

- **S**: Hilbert space
- **Ω**: Set of observations
- **A**: Set of quantum superoperators
- **R**: Reward function
- **ρ₀**: Starting state
POMDPs are hard...

Strategy:

1. Localize: go right until wall, then up
2. Go to goal
POMDPs are Hard...

\[\pi(\vec{b}) = \begin{cases}
R & \text{if } \sum_{s \in \text{Right Wall}} \vec{b}(s) < 1 \\
U & \text{if } \sum_{s \in \text{Right Wall}} \vec{b}(s) = 1 \\
& \text{and } \vec{b}(\text{Upper Right}) < 1 \\
\text{Go to goal} & \text{if } ||\vec{b}||^2 = 1
\end{cases} \]

Policy: \(\pi(\vec{b}, t) = a \) specifies action to take in belief \(\vec{b} \) at time \(t \)
POMDPs are Hard...

Policy: \(\pi(\vec{b}, t) = a \) specifies action to take in belief \(\vec{b} \) at time \(t \)

Policy Existence Problem (PEP)

Given POMDP \(P = \langle S, A, \Omega, R, T, O \rangle \), decide if there is some policy \(\pi \) that has expected future reward at least \(V \) over the next \(h \) timesteps.

- If \(h = \text{poly}(S) \), PEP is in PSPACE and **PSPACE-Complete**.
- If \(h = \infty \), PEP is **Undecidable**.
...but QOMDPs are harder

\[\text{POMDPs} \subseteq \text{QOMDPs} \]

- PEP with \(h = \text{poly}(d) \) is at least PSPACE-Complete
- \(\checkmark \) PEP with \(h = \infty \) is UNDECIDABLE
...but QOMDPs are Harder

POMDPs ⊆ QOMDPs

✓ PEP with $h = \text{poly}(d)$ is **PSPACE-Complete**

✓ PEP with $h = \infty$ is **UNDECIDABLE**

Theorem

PEP for QOMDPs with $h = \text{poly}(d)$ is in PSPACE.

Proof Sketch: There are only $O((|A||\Omega|)^h)$ policies. Try them all.
...but QOMDPs are harder

POMDPs ⊆ QOMDPs

✓ PEP with $h = \text{poly}(d)$ is PSPACE-COMPLETE
✓ PEP with $h = \infty$ is UNDECIDABLE

Goal-State Reachability Problem (GRP)

Assume the Q(P)OMDP has an absorbing goal state. Decide if there is a policy that reaches this goal state with probability 1.
...BUT QOMDPs ARE HARDER

POMDPs ⊆ QOMDPs

✓ PEP with $h = \text{poly}(d)$ is **PSPACE-COMPLETE**
✓ PEP with $h = \infty$ is **UNDECIDABLE**

- GRP is **DECIDABLE** for POMDPs
- GRP is **UNDECIDABLE** for QOMDPs

GOAL-STATE REACHABILITY PROBLEM (GRP)

Assume the Q(P)OMDP has an absorbing goal state. Decide if there is a policy that reaches this goal state with probability 1.
Given a superoperator $S = \{K_1, \ldots, K_m\}$ and starting state ρ_0, decide if there is some finite sequence of measurements that can never be observed if ρ_0 is continually fed back into S.

QMOP is UNDECIDABLE [Eisert12]
Given QMOP $S = \{K_1, \ldots, K_m\}$:

- m actions. Action i either:
 - Transitions according to K_i
 - Transitions to goal state

- $m + 1$ observations:
 - At-Goal
 - Observation i from QMOP
Given QMOP $S = \{K_1, ..., K_m\}$:

- m actions. Action i either:
 - Transitions according to K_i
 - Transitions to goal state
- $m + 1$ observations:
 - 1 At-Goal
 - 2 Observation i from QMOP
Given QMOP $S = \{K_1, \ldots, K_m\}$:

- m actions. Action i either:
 - Transitions according to K_i
 - Transitions to goal state

- $m + 1$ observations:
 - At-Goal
 - Observation i from QMOP

$$\Pr(\rho_n \neq \text{goal} \mid \text{actions } j_1, \ldots, j_n) = \Pr(\text{Observing sequence } j_1, \ldots, j_n).$$

\Rightarrow Path to goal of probability 1 if and only some sequence unobservable.
Theorem

GRP for QOMDPs is undecidable.
Goal-State Reachability for POMDPs

Conversion to Plus/Zero Land

\[
\begin{bmatrix}
0.2 & 0 & 0.8 \\
0.3 & 0.1 & 0.6 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+ & 0 & + \\
+ & + & + \\
0 & 0 & +
\end{bmatrix}
\begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
\]
GOAL-STATE REACHABILITY FOR POMDPs

Conversion to Plus/Zero Land

\[
\begin{bmatrix}
0.2 & 0 & 0.8 \\
0.3 & 0.1 & 0.6 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+ & 0 & + \\
+ & + & + \\
0 & 0 & +
\end{bmatrix}
\begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
= \begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
\]

- Convert POMDP probabilities to plus/zero
- Finitely many \((2^{|S|} - 1)\) states
- Finitely many policies

\(\Rightarrow\) We find the goal state or repeat a previously seen state in finite time.
Goal-State Reachability for POMDPs

Conversion to Plus/Zero Land

\[
\begin{bmatrix}
0.2 & 0 & 0.8 \\
0.3 & 0.1 & 0.6 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
+ & 0 & + \\
+ & + & + \\
0 & 0 & +
\end{bmatrix}
\begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
=\begin{bmatrix}
+ \\
0 \\
0
\end{bmatrix}
\]

- Convert POMDP probabilities to plus/zero
- Finitely many \((2^{|S|} - 1)\) states
- Finitely many policies

⇒ We find the goal state or repeat a previously seen state in finite time.

Theorem

GRP for POMDPs is decidable.
FUTURE WORK

COMPLEXITY PROBLEMS

- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don’t know the starting state in a QOMDP?
FUTURE WORK

COMPLEXITY PROBLEMS
- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don’t know the starting state in a QOMDP?

ALGORITHMS
- Algorithms for solving QOMDPs
- Algorithms for approximating QOMDPs
FUTURE WORK

COMPLEXITY PROBLEMS

- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don’t know the starting state in a QOMDP?

ALGORITHMS

- Algorithms for solving QOMDPs
- Algorithms for approximating QOMDPs

APPLICATIONS

- Reward structure for QOMDPs
- Practical applications of QOMDPs