Outline

1. The Adiabatic Theorem
2. The Adiabatic Algorithm
3. Computational Complexity
4. Notes on Adiabatic Universality
Outline

1. The Adiabatic Theorem
2. The Adiabatic Algorithm
3. Computational Complexity
4. Notes on Adiabatic Universality
The Adiabatic Theorem

Hamiltonian: A hermitian operator with eigenvalues describing the energy eigenstates of the system.

A quantum system with a time-changing Hamiltonian will stay in the same energy level if the rate-of-change is slow enough.

\[T \gg \frac{2\pi \hbar}{\Delta} \]

(with level separation \(\Delta \)).

Consider:

\[
H_i = \begin{pmatrix} E_0 & \delta \\ \delta & E_1 \end{pmatrix}, \quad H_T = \begin{pmatrix} E_1 & \delta \\ \delta & E_0 \end{pmatrix}
\]

\[
H(s) = (1 - s)H_i + sH_T
\]
For simplicity, take $E_0 = 0$, $E_1 = 1$. Plot eigenvalues as a function of $s \in [0, 1]$

\[
\begin{align*}
\delta &= 0 \\
\text{With } s \text{ varied over time } T &\gg \frac{2\pi \hbar}{\Delta}, \text{ system will remain in the same level.}
\end{align*}
\]
Outline

1. The Adiabatic Theorem
2. The Adiabatic Algorithm
3. Computational Complexity
4. Notes on Adiabatic Universality
The Adiabatic Algorithm

- Encode problem as SAT\(^1\)
- Each clause has a local Hamiltonian \(H_c\) encoding the assignment of variables, \(H_T = \sum H_c\)
- Initialize system into simple ground state of some Hamiltonian \(H_0\).
- Adiabatically evolve Hamiltonian to \(H_T\): system will be in ground state encoding solution

The Adiabatic Algorithm

- Encode problem as SAT\(^1\)
- Each clause has a local Hamiltonian \(H_c\) encoding the assignment of variables, \(H_T = \sum H_c\)
- Initialize system into simple ground state of some Hamiltonian \(H_0\).
- Adiabatically evolve Hamiltonian to \(H_T\): system will be in ground state encoding solution

\[H(0) = H_0, \ H(T) = H_T\]
\[\rightarrow H(t/T = s) = (1 - s)H_0 + sH_T\]
- Vary \(s\) slowly enough such that system remains in ground state

Schroedinger Equation

\[i \frac{d}{dt} |\psi(t)\rangle = H(t) |\psi(t)\rangle \]

Introduce a Delay Factor \(\tau(s) \) indicating how slowly the Hamiltonian varies\(^2\).

\[\frac{d}{ds} |\psi(s)\rangle = -i \tau(s) H(s) |\psi(s)\rangle \]

Adiabatic evolution requires:

\[\tau(s) \gg \| \frac{d}{ds} H(s) \|_2 \frac{g(s)^2}{g^2} \]

Evolution time \(T \) proportional to separation \(g_{min}^{-2} \).

\(^2\)Van Dam, Mosca, Vazirani, 2008.
Outline

1. The Adiabatic Theorem
2. The Adiabatic Algorithm
3. Computational Complexity
4. Notes on Adiabatic Universality
Adiabatic Complexity

Does not in general indicate 3-SAT soluble in polynomial time: some problems have g_{min} exponentially small

- But can recover Grover Search3
- Consider

$$f(x) : \{0, 1\}^n \rightarrow \mathbb{R} = \begin{cases} 0 & \text{if } x \text{ is the solution} \\ 1 & \text{otherwise} \end{cases}$$

Final Hamiltonian $H_x = \sum_{z \in \{0, 1\}^n \setminus \{x\}} |z\rangle \langle z|$
Initial Hamiltonian with Hadamard $|+\rangle^n = |\hat{0}\rangle^n$ as ground state.

$$H_0 = \sum_{z \in \{0,1\}^n \setminus \{0^n\}} |\hat{z}\rangle \langle \hat{z}|$$

Level separation of $H(s) = (1 - s)H_0 + sH_x$

$$g(s) = \sqrt{N + 4(N - 1)(s^2 - s)}$$

Looks like $T \propto g_{\min}^{-2} = O(N)$. But if we let the delay vary in time:\(^4\)

$$T = \int_{s=0}^{1} \frac{ds}{g(s)^2} = \frac{N \cdot \text{arctan}(\sqrt{N-1})}{\sqrt{N-1}} = O(\sqrt{N})$$

\(^4\text{Van Dam, Mosca, Vazirani, 2008.}\)
Outline

1. The Adiabatic Theorem
2. The Adiabatic Algorithm
3. Computational Complexity
4. Notes on Adiabatic Universality
Can show that we can polynomially simulate a general Quantum Circuit adiabatically

- Quantum Circuit: L gates, state after gate \(\ell \) is \(|\alpha(\ell)\rangle \)
- Adiabatically, could have final Hamiltonian \(H_L \) with g.s. \(|\alpha(L)\rangle \)

Problems: Can’t always specify \(H_L \) without knowing \(|\alpha(L)\rangle \)
Kitaev’s history state

\[|\eta\rangle = \frac{1}{\sqrt{L+1}} \sum_{\ell=0}^{L} |\alpha(\ell)\rangle \otimes |1^\ell 0^{L-\ell}\rangle \]

- Define final Hamiltonian \(H_f \) to have \(|\eta\rangle \) as ground state.\(^5\)
- Initial Hamiltonian \(H_0 \) has g.s. \(|\alpha(0)\rangle \otimes |0^L\rangle \)
- Can construct \(H_0 \) and \(H_f \) without knowing \(|\alpha(L)\rangle \)
- Measure: If clock is \(|1^\ell\rangle \) then other register carries result
- Can simulate a QC using 5-local Hamiltonians in \(O(L^5) \)

Can generalize to 3-local H, or a grid with two-local H and six-state particles.

Conclusions

- Can implement quantum computations by adiabatic evolution
- Slowness of evolution related to complexity of the problem (not known in general)
- Recover $O(\sqrt{N})$ of Grover
- Can implement any quantum circuit adiabatically