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Most of my research deals with two questions: first, what are the ultimate limits on what can feasibly be
computed in the physical world? Second, how can studying those limits shed light on basic issues in physics
and cosmology? The first question involves bringing physics into computational complexity theory; the
second, bringing computational complexity theory into physics. A priori, one might wonder whether there
is any useful bridge to be built between these two subjects, one sturdy enough to carry not just metaphors
but nontrivial technical results. As it happens, such a bridge has existed for thirteen years.

Ever since I learned how to program, I had imagined that the physical world consists of “bits all the
way down.” It seemed obvious to me that, if only we could probe nature at the Planck scale, we would find
nothing but a vast array of bits getting updated by simple local rules: Conway’s Game of Life writ large.
The specific form of the rules was of no great consequence, since according to the Extended Church-Turing
Thesis, any “reasonable” set of rules can simulate any other with at most polynomial slowdown.

After Peter Shor discovered his factoring algorithm [50], I and others who thought similarly were faced
with a choice. Either

(1) the Extended Church-Turing Thesis is false,

(2) quantum mechanics as conventionally understood is false, or

(3) the factoring problem is solvable in polynomial time on a classical computer.

All three of these possibilities seem like wild, crackpot speculations, but at least one of them is correct!
As I never tire of pointing out, this is a dilemma that confronts all of us—whether we choose to work on
quantum computing or a different field, whether we think that practical quantum computers will be built in
20 years, 2000 years, or never. Personally, I follow current experimental work in quantum computing with
admiration and interest, and I try to contribute to it when I can. But the prospect of breaking the RSA
cryptosystem, or simulating quark-gluon plasmas, is not what keeps me awake at night. I chose to work
on quantum computing because I want to know what the world is like—and because a world that allows
quantum computers would be fundamentally different from a world that doesn’t.

To me, Shor’s algorithm represented a promise: that from now on, the study of the feasibly computable
was going to be inextricably linked to the central conceptual problems in physics. My work, over the last
seven years, can be seen as an attempt to make good on that promise.

1 Previous Work

The following capsules highlight eight ways in which my research has forged connections between computa-
tional complexity theory and physics. I’ve tried to provide self-contained explanations of my results, for the
benefit of readers who have only a passing familiarity with quantum computing. This is what resulted in
my research statement becoming rather long.
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1.1 The Limits of Quantum Computers

If quantum computers can factor integers in polynomial time, then what can’t they do? Contrary to
widespread misconception, today we have evidence that quantum computers would face many of the same
limitations as their classical counterparts. In particular, we strongly believe there is no quantum algorithm
to solve NP-complete problems in polynomial time. Of course we can’t prove that NP-complete problems
are hard for quantum computers, since we can’t even prove they’re hard for classical computers! But in
the early days of quantum computing, Bennett, Bernstein, Brassard, and Vazirani [31] showed the following
fundamental result. Suppose we throw away the structure of an NP-complete problem, and consider only
a “landscape” of 2n possible solutions, together with a black box that tells us whether a given solution is
correct or not. Then even if we can query the black box in quantum superposition, we still need Ω

(

2n/2
)

queries to find a solution. This bound is tight, as evidenced by Grover’s algorithm [36]. In other words, at
least for “unstructured” search problems, the quadratic speedup of Grover’s algorithm is optimal.

Bennett et al.’s result was only the beginning of a long, highly-successful quest to understand the black-
box limitations of quantum computers. Among my contributions to that quest, the most important was a
quantum lower bound for the so-called collision problem [3]. In this problem, we are given black-box access
to a two-to-one function f : [N ] → [N ]. Our goal is to find a collision—that is, a distinct x, y pair such that
f (x) = f (y)—using as few queries to f as possible. It’s not hard to see that, if we could find a collision after
O (polylogN) queries, then we could efficiently break “collision-resistant hash functions” such as MD5, and
thereby undermine much of modern cryptography. We could also efficiently solve the Graph Isomorphism
problem.

Classically, finding a collision takes Θ
(√

N
)

queries, by the famous “Birthday Paradox.” Brassard,

Høyer, and Tapp [33] gave a quantum algorithm that does slightly better, finding a collision after O
(

N1/3
)

queries. The obvious question was whether or not this was optimal. Surprisingly, this question resisted
attack for five years, with no lower bound better than constant (!) known. Finally, in 2001, I showed [3]
that any quantum algorithm for finding a collision must make Ω

(

N1/5
)

queries. Subsequently Shi [49],

Kutin [41], and Ambainis [24] improved my lower bound to the optimal Ω
(

N1/3
)

.
What made proving a lower bound so difficult was the collision problem’s “global” nature—the fact that

we’re no longer looking for a needle in a haystack, but merely for two pieces of hay of the same length!
Another way of putting the point is that a quantum computer can “almost” find a collision after just one
query to f . For we can easily prepare a state of the form 1

√

2
(|x〉 + |y〉), for some random x, y pair such

that f (x) = f (y). The only problem is that, if we measure this state, then we’ll obtain either |x〉 or |y〉
but not both of them.

The collision lower bound is one of the main pieces of evidence that secure electronic commerce will still
be possible in a world with quantum computers. Yet my own motivation for working on the problem came
not from cryptography, but rather from a desire to understand the computational power of “hidden-variable
theories” such as Bohmian mechanics. In these theories, one supplements quantum mechanics by a rule
for calculating the “actual” trajectories of particles, in such a way that the measurement probabilities agree
precisely with the standard quantum-mechanical ones. I was interested in the following question: how hard
is it to calculate the entire trajectory of a particle? Or conversely, supposing that (contrary to experience) we
could observe a particle’s entire trajectory, what computational powers would that give us? I proved in [12]
that, in any hidden-variable theory satisfying two reasonable axioms, sampling an entire trajectory would
give us the ability to solve the collision problem in a constant number of queries. Combining this result
with the collision lower bound, we obtain strong evidence that sampling trajectories is hard for quantum
computers—or in other words, that “hidden-variable quantum computers” would be strictly more powerful
than ordinary quantum computers. On the other hand, I also showed in [12] that, in the black-box or
oracle setting, observing a trajectory would still not let us solve NP-complete problems in polynomial time.
I therefore obtained the first reasonable model of computation that seems more powerful than quantum
computing, but only slightly so.

In addition to my work on the collision problem, I also proved the first “direct product theorem” for
quantum search [10], as well as quantum lower bounds for finding local minima [15], evaluating total Boolean
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functions [6], and Recursive Fourier Sampling [7]. These other limitations of quantum computers will be
discussed later in the research statement where relevant.

1.2 Addressing Skepticism of Quantum Computing

Several prominent computer scientists and physicists—including Oded Goldreich, Leonid Levin, Gerard ’t
Hooft, and Stephen Wolfram—have argued that building large-scale quantum computers will be not merely
difficult, but fundamentally impossible. The suggested reasons vary, but they often center around the idea
that describing a state of, say, 10, 000 particles by a vector of 210,000 amplitudes is “inherently extravagant”—
a sign that quantum mechanics is being pushed beyond its domain of validity.

The obvious response is twofold: first, that I certainly hope we encounter such a breakdown of quantum
mechanics, since that would be much more scientifically interesting than mere success in building a quantum
computer! And second, that if quantum computing skeptics want to advance research, then they ought to
propose specific, testable ways in which quantum mechanics might break down.

In a paper on “Multilinear Formulas and Skepticism of Quantum Computing” [8], I tried to go beyond
these generalities, and actually start the research program that I advocate for skeptics. To do so I introduced
the notion of a “Sure/Shor separator,” which is a set of quantum states that includes all states that experi-
mentalists have already demonstrated, but not the states that would arise in, say, Shor’s factoring algorithm.
I explained why the obvious ways of measuring a state’s complexity fail to produce a Sure/Shor separator.
I then proposed a new measure that I called tree size: basically, the minimum number of vertices needed to
express a state by a “tree” of linear combinations and tensor products over the basis {|0〉 , |1〉}. Most of the
states that physicists tend to discuss—such as product states, “Schrödinger cats,” and 1-dimensional spin
chains—have tree size polynomial in the number of qubits n. On the other hand, by using a spectacular
recent result of Raz [43], I was able to prove that certain states arising in quantum error-correction would
have tree size nΩ(log n). Later, I was pleased to learn that experimental work on 2- and 3-dimensional spin
lattices [35] might have already succeeded in demonstrating states with superpolynomial tree size.

1.3 The Power of Quantum Proofs and Quantum Advice

Even if they can’t propose a Sure/Shor separator, many computer scientists are profoundly uneasy about
the apparent “exponentiality” of quantum states. One way of addressing their unease is to ask: in what
settings does the exponentiality actually manifest itself? So for example, are there theorems that admit a
short quantum proof but not a short classical proof? Are there problems that can be solved with the help
of short quantum advice, but not short classical advice? Four of my results are directly relevant to these
questions.

A few years ago I studied the complexity class BQP/qpoly, which consists of all problems solvable in
polynomial time on a quantum computer, with the help of a polynomial-size “quantum advice state” |ψn〉
that depends only on the input length n but can otherwise be arbitrary [10]. A priori, it’s not obvious that
a quantum computer couldn’t solve any problem whatsoever, were it only equipped with the right advice
state! However, I showed that BQP/qpoly is contained in the classical class PP/poly. Intuitively, this
means that anything you can do with polynomial-size quantum advice, you can also do with polynomial-size
classical advice, provided you’re willing to use exponentially more computation time to extract what the
advice is telling you.

In the same paper, I gave another limitation of quantum advice, by constructing an oracle relative to
which NP 6⊂ BQP/qpoly. This provided the first evidence that NP-complete problems are still hard for
quantum computers even in the presence of quantum advice. The oracle result was actually just a corollary
of a much stronger result: my so-called direct product theorem for quantum search. The direct product
theorem states that if a quantum algorithm is searching a list of N items, K of which are marked, and if the
algorithm doesn’t have enough time to find even one marked item, then the probability that the algorithm
will find all K of the marked items decreases exponentially with K. Even though this theorem seems
intuitively obvious, proving it had been a notorious open problem for years, since one needs to rule out the
possibility of subtle correlations between finding one marked item and finding another one. Shortly after
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I obtained the direct product theorem, Klauck, Špalek, and de Wolf [39] improved it, and also applied it
to prove the first quantum time-space tradeoffs : that is, tradeoffs between the number of steps used by a
quantum algorithm and the number of qubits.

In recent work with Greg Kuperberg [20], we switched attention from quantum advice to quantum proofs.
In particular, we studied the longstanding open problem of whether there are mathematical truths that you
can prove to someone by handing them a quantum state, but not by handing them a classical string of
comparable size. More formally, the question is whether QMA = QCMA, where QMA (Quantum Merlin
Arthur) is the class of problems for which every ‘yes’ answer has a polynomial-size quantum proof that can be
verified in quantum polynomial time, and QCMA (Quantum Classical Merlin Arthur) is the same except that
now the proof has to be classical. Kuperberg and I gave a novel sort of evidence that quantum proofs really
are more powerful than classical ones, by constructing a “quantum oracle” relative to which QMA 6= QCMA.
On the other hand, we also showed that constructing a classical oracle relative to which QMA 6= QCMA is
likely to be much harder than previously supposed—since the central group-theoretic problems that were
known to be in QMA are actually in QCMA as well.

Finally, last year I studied the power of quantum proofs combined with quantum advice [17]. I showed
that, even when taken together, these resources would not make a quantum computer infinitely powerful.
This contrasts with a counterintuitive recent result of Raz [44]: that interactive proofs combined with
quantum advice would make a quantum computer infinitely powerful. More formally, I showed that the
class QMA/qpoly is contained in PSPACE/poly, whereas Raz showed that the class QIP/qpoly contains every
computational problem.

1.4 The Learnability of Quantum States

One of the most basic tasks in current experimental physics is called quantum state tomography. Here we
are given some physical process that reliably produces a quantum mixed state ρ; the goal is to learn an
approximate description of ρ by repeatedly applying the process and then measuring the result. Quantum
state tomography has been used to study chemical reactions [51] and to confirm the preparation of entangled
states [37], among other applications. But there is a fundamental problem, which has thus far prevented
tomography from being applied to states of more than about 8 qubits. This is that, if ρ is an n-qubit state,
then the number of measurements needed to reconstruct it even approximately grows exponentially with n:
in particular like 4n, the number of independent parameters in a 2n × 2n density matrix.

Recently I showed how to get around this problem, provided we are willing to relax the goal to what I
call “pretty-good tomography” [14]. More formally, suppose we can repeatedly prepare an n-qubit state ρ,
and then apply a measurement drawn from some (possibly-unknown) probability distribution D. Suppose
also that we only want to predict the approximate expectation values of most measurements drawn from
D, rather than all of them. I showed that we can do this, with high probability, using a number of sample
measurements that increases only linearly with the number of qubits n, and inverse-polynomially with the
relevant error parameters. The proof of this theorem relates quantum information theory to computational
learning theory, and in particular to sample complexity bounds for “PAC” (Probably Approximately Correct)
learning. I have already spoken to some experimental groups about doing a small-scale demonstration of
pretty-good tomography, and I hope these efforts will bear fruit. What I’ve already been able to do is to use
my learning theorem to prove several new results in quantum computing—including a classical simulation
of quantum one-way communication protocols, and an approximate verification procedure for untrusted
quantum advice.

1.5 Quantum Computing and Spacetime

A common criticism of Grover’s search algorithm is that, while it might yield a quadratic speedup for solving,
say, NP-complete optimization problems, it can’t yield a speedup for searching a “physical” database. Benioff
[30] boiled this criticism down to what I see as its essence: that since the speed of light is finite, any quantum
search algorithm will necessarily be limited by the time needed for signals to propagate from one part of
the database to another. In joint work with Andris Ambainis [18], we showed that this criticism fails for a
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nontrivial reason. By using a carefully-optimized recursive version of Grover search, Ambainis and I proved
that a “quantum robot,” moving at unit speed, could search a two-dimensional lattice of size

√
N ×

√
N

for a marked item using only O
(√

N log3/2N
)

steps. Subsequently, Ambainis, Kempe, and Rivosh [25]

showed how to get the running time down to O
(√

N logN
)

using quantum random walks. In hypercubes

of dimension 3 or higher, the running time decreases further to O
(√

N
)

, which precisely matches the time

needed for Grover search with no locality constraints at all.

Using our spatial search algorithm, Ambainis and I were able to give an O
(√

N
)

-qubit quantum com-

munication protocol for the so-called disjointness problem, thereby matching a lower bound of Razborov
[45] and solving an annoying open problem. For me, though, the real motivation for this work was that
it connected quantum computing to spacetime geometry—and in particular to the “holographic principle,”
which is a universal upper bound on the number of bits that can be stored in a given region of spacetime. As
an example of this connection, Ambainis and I were able to answer the following question: in a universe with
positive cosmological constant (like the one we seem to inhabit), and assuming only quantum mechanics and
the holographic principle, how large a database could a “quantum robot” ever search for a specific entry,
before most of the database receded past the robot’s cosmological horizon?

1.6 Beyond Quantum Computing

Even though all the ingredients were in place by the 1960’s, the field of quantum computing didn’t take off
until the mid-1990’s. This raises an obvious question: what else about physics might computer scientists
have overlooked in studying efficient computation? As an example, could quantum field theory or quantum
gravity lead to a yet-more-powerful model of computation? Two years ago I wrote a survey paper about
these issues entitled “NP-complete Problems and Physical Reality” [11]. My basic thesis was that the
intractability of NP-complete problems might eventually come to be seen as a principle of physics, analogous
to the Second Law of Thermodynamics or the impossibility of superluminal communication.

Motivated by this perspective, I’ve long been interested in the computational effects of various changes to
the known laws of physics. I already mentioned one example in Section 1.1, my work on the computational
power of hidden-variable theories [12]. Let me now mention two other examples.

In a paper on “Quantum Computing, Postselection, and Probabilistic Polynomial-Time” [13], I studied
the power of quantum computers with postselection: that is, the ability to measure a qubit and assume
the outcome will be |1〉 (or equivalently, discard all runs of the computation where the outcome is |0〉).
Postselection arises frequently in discussions about the many-worlds interpretation, the anthropic principle,
and hypothetical nonlinearities in the Schrödinger equation. Surprisingly, I showed that quantum com-
puters with postselection have exactly the power of the well-studied classical complexity class PP: that is,
PostBQP = PP.

The second example concerns some recent work with John Watrous [21]. Watrous and I studied the
power of quantum computers in the presence of closed timelike curves (CTC’s). Basically, a CTC is
a region of spacetime where we impose the condition that the initial and final states are the same, or
ρinitial = S (ρinitial) = ρfinal where S is the quantum operator acting along the CTC. Watrous and I showed
that, in the presence of CTC’s, quantum computers are no more powerful than classical computers : both of
them have exactly the power of the class PSPACE.

1.7 Classical Results from Quantum Arguments

Just as mathematicians use complex numbers to prove theorems about the real numbers, so we know today
that one can use ideas from quantum computing to prove new results about classical computing (as well as
to provide simpler proofs of known results). Two of my best-known results played a role in bringing this
phenomenon to wider attention.

The first concerns the problem of local search. Here we’re given an undirected graph G = (V,E), as well
as black-box access to a function f : V → Z. Our goal is to find a local minimum of f : that is, a vertex
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v ∈ V such that f (v) ≤ f (w) for all edges (v, w) ∈ E. Aldous [22] showed in 1983 that, if G is the Boolean
hypercube {0, 1}n

, then any randomized algorithm needs to query the black box 2n/2−o(n) times to find a
local minimum of f . Using Ambainis’s quantum adversary method [23], I showed in [15] that any quantum
algorithm needs to query the black box Ω

(

2n/4/n
)

times. The surprising part was that a small tweak to

the quantum argument yielded an improvement of Aldous’s classical lower bound: from 2n/2−o(n) to the
nearly-optimal Ω

(

2n/2/n2
)

. Using a quantum argument, I also obtained the first classical lower bounds for
local search on cubes of constant dimension. These results were subsequently improved and extended by
Santha and Szegedy [48], Zhang [55], and Sun and Yao [52].

The second example of a classical harvest from quantum techniques concerns my result (mentioned in
Section 1.6) that postselected quantum computation has exactly the power of PP. A year after proving this
result, I realized that it yields a half-page proof of the celebrated Beigel-Reingold-Spielman Theorem [29]
from classical complexity theory: that PP is closed under intersection. Proving PP closed under intersection
had been a well-known open problem since 1972, until Beigel et al. settled it using fairly heavy machinery
in 1991. My proof finally lets us pinpoint what went wrong with previous attempts to give a simple proof
of the theorem: they were missing quantum mechanics!

1.8 Circuit Lower Bounds

It’s a bit premature to tackle the P versus NP question. But like many complexity theorists, I’ve long been
interested both in the logical status of the P versus NP question [5], and in developing the sorts of circuit
lower bound techniques that would eventually be needed to address it. Recently my interest in circuit lower
bounds merged with my interest in quantum computing in at least two unexpected ways.

First, I was able to give one of the first examples of a provably-nonrelativizing circuit lower bound
[16]. Vinodchandran [54] had shown earlier that for every positive integer k, there exists a language in
the complexity class PP that does not have circuits of size nk. I generalized Vinodchandran’s result from
classical to quantum circuits. More importantly, using the same “polynomial method” that I had previously
used to prove quantum lower bounds, I gave an oracle relative to which PP has linear -size circuits. This
implies that Vinodchandran’s lower bound was nonrelativizing: in other words, it was necessarily “sensitive”
to the fact that no oracle was present. Since the work of Baker, Gill, and Solovay in the mid-1970’s [27],
complexity theorists have known that nonrelativizing lower bounds will be needed to attack the P versus NP

question, but have had almost no examples of such bounds.
The second example grew out of my work on Sure/Shor separators [8], discussed in Section 1.2. Razborov

and Rudich [46] famously argued that any proof of P 6= NP (or more precisely, of NP 6⊂ P/poly) would need
to be “non-naturalizing.” Loosely speaking, this means that such a proof would need to zero in on a specific
property of (say) the SAT function, and not a property that the SAT function has in common with random
Boolean functions. Unfortunately, we know of almost no non-naturalizing lower bound techniques for any
reasonable model of computation. As part of my investigation into the tree size of quantum states [8],
I showed that the so-called “manifestly orthogonal tree size” (MOTS) of a random coset state over Z

n
2 is

exponential in n. To do so, I used an argument that relies essentially on the coset structure of such states,
and that therefore appears not to naturalize in the Razborov-Rudich sense.

2 Future Work

Obviously, it’s vastly easier to summarize what I’ve already done than to say what I will do—since if I knew,
I presumably would’ve done it already! And indeed, rereading my graduate-school applications gives me
very little confidence in my ability to predict which problems I’m going to tackle next.

In the short term, I’ve been thinking about copy-protection of quantum software. In the classical world,
copy-protecting software is trivially impossible—not that that’s stopped people from trying! But what if
your program is a quantum state? The key question is this: given a Boolean function f , is there a state
|ψf 〉 that lets you efficiently evaluate f , but that doesn’t let you efficiently prepare more states with which to
evaluate f? So far, I’ve been able to prove three results about this question. First, I can give a nontrivial
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class of programs that can be quantumly copy-protected, under a new computational assumption that’s
related to (but stronger than) the hardness of the Nonabelian Hidden Subgroup Problem. Second, I can
give a nontrivial class of programs that can’t be quantumly copy-protected. Finally, I can give a “quantum
oracle” relative to which all programs can be quantumly copy-protected, except the ones that are like my
second example. The last result uses two components that might be of independent interest: an explicit
construction of “pseudorandom quantum states”; and a common generalization of the No-Cloning Theorem
and the quantum search lower bound.

I also hope to go further with my work on the learnability of quantum states [14], discussed in Section
1.4. In principle, my pretty-good tomography approach could extend the experimental frontier in any area
of physics that uses quantum state tomography. However, there are at least two things that will need to
be done to convince experimentalists to try the new approach. First, my quantum-state reconstruction
algorithm will need to be implemented, and its performance characterized empirically. Second, special
classes of quantum states will need to be identified that can be learned not only with a linear number of
measurements, but also with a reasonable amount of computation.

2.1 The Back Burner

So much for the immediate future. Over the longer term, many fundamental open questions in quantum
complexity theory remain on my back burner. Let me now describe four examples of such questions, together
with the progress on them that I’ve been able to make so far.

(1) Is BQP contained in the polynomial-time hierarchy? Alternatively, can we at least give an oracle
relative to which BQP 6⊂ PH? This has remained perhaps the most embarrassing open problem in all
of quantum complexity theory, ever since Bernstein and Vazirani [32] posed it in 1993.

In [7], I undertook a detailed study of Recursive Fourier Sampling (RFS), which is almost the only
candidate problem we have for proving an oracle separation between BQP and PH. I showed that the
known quantum algorithm for RFS was optimal, which ruled out the possibility of using RFS to place
BQP outside of PH with a non-constant number of alternations. More recently, Greg Kuperberg and
I [20] proposed a new approach to the problem: one that wouldn’t be based on RFS at all, but rather
on “dequantizing” quantum oracles. At this point, however, we don’t even have an oracle relative to
which BQP 6⊂ AM.

(2) Can quantum computers ever obtain more than the quadratic speedup of Grover’s algorithm for “un-
structured” problems? (Note that Shor’s algorithm solves a highly structured problem—namely
period-finding—and therefore doesn’t count.) There are actually at least three ways to make this
question precise, and all of them are open. First, does BPP = BQP relative to a random oracle with

probability 1? Second, is there a total Boolean function f for which D (f) = ω
(

Q (f)2
)

, where D (f)

is the deterministic query complexity of f , and Q (f) is the quantum query complexity? Beals et al.

[28] showed that D (f) = O
(

Q (f)6
)

for all total f , but improving their exponent of 6 has remained

open for a decade—see my paper [6] for a possible approach to the question. Third, is there any
problem invariant under permutation symmetry (like the collision and element distinctness problems),
for which quantum computing gives more than a quadratic advantage? Currently, we can’t even rule
out an exponential advantage for such functions; to do so would require a far-reaching generalization
of my collision lower bound.

(3) What is the power of quantum one-way communication? Here we consider two players Alice and
Bob, who have inputs x and y respectively. We then ask how many qubits Alice needs to transmit
to Bob, for Bob to evaluate a known Boolean function f (x, y). The central open question is this:
is there a total Boolean function f for which Q1 (f) = o

(

R1 (f)
)

, where Q1 (f) is the quantum one-

way communication complexity of f and R1 (f) is the randomized one-way communication complexity?
For partial Boolean functions, Gavinsky et al. [34] recently achieved an exponential separation between
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R1 (f) and Q1 (f), and I showed [10, 14] that their result is in some sense optimal. For total functions,
by contrast, I’d conjecture that R1 (f) and Q1 (f) are asymptotically equivalent. In [10], I managed
to prove this conjecture in some interesting special cases: for example, the case where Alice is given
〈x, y〉 ∈ F

2
p and Bob is given 〈a, b〉 ∈ F

2
p, and the problem is to decide whether y ≡ ax+ b (mod p). But

the general case remains wide open.

(4) What is the power of quantum proofs with multiple provers? Formally, Kobayashi et al. [40] defined
the complexity class QMA (2), which is the same as QMA (Quantum Merlin-Arthur) except that now
the verifier receives two quantum proofs that are guaranteed to be unentangled with each other. In
the classical case, receiving two proofs instead of one would make no difference, but in the quantum
case, we know essentially nothing about how much difference it makes. We don’t have an oracle
separation (even a quantum oracle separation) between QMA (2) and QMA. We don’t know if QMA (2)
is contained in EXP. We don’t even know if QMA (2) proofs can be amplified to exponentially small
error probability. A recent observation of mine begins to explain why these problems are so difficult.
I showed that if NP ⊆ SPACE (polylog (n)) in the unrelativized world, then QMA (2)

U ⊆ BQPSPACEU

for all quantum oracles U—and hence, we can’t hope for (say) a quantum oracle relative to which
QMA (2) 6⊂ BQPSPACE.

These are all problems that I’ve worked on in the past, that have repaid me with partial results, that I
still consider to be of fundamental importance, and that I intend to return to as soon as I see a promising
new line of attack.

2.2 New Directions

At no point in my research career have I been exclusively interested in quantum computing. As an example,
two years ago I undertook a detailed study of the complexity of Bayesian agreement protocols [9]. My
main result was the following: suppose two Bayesian agents Alice and Bob share a common prior but have
different information, and let X be any [0, 1] random variable that they both want to estimate (for example,
the probability of rain tomorrow). Then there exists a communication protocol that exchanges only O

(

1
δε2

)

bits of information, and that causes Alice and Bob’s expectations of X to agree within ε with probability
at least 1 − δ over their shared prior. Furthermore, the computations needed for this protocol can in a
certain sense be performed efficiently. This result is basically the complexity-theoretic version of Aumann’s
celebrated Agreement Theorem [26]: that Bayesian agents with common priors can never “agree to disagree.”
My result shows that agreeing to disagree is problematic not merely “in the limit” of common knowledge,
but even for agents subject to realistic constraints on computation and communication.

Not only has my research strayed often from my core interest of quantum complexity theory, I have not
even been averse to writing code (!) when the need arose. Prior to graduate school, I wrote three papers
with large implementation components: one on algorithms for Boolean function query complexity measures
[4], one on clustering documents by author [2], and one on optimizing link layout in hypertext systems
[1]. I began my graduate studies focusing on AI rather than theory, and I still maintain a strong interest
in complexity-theoretic questions arising from more applied areas such as machine learning, automated
reasoning, and bounded rationality.

Within quantum computing, I’ve worked on many problems of a less foundational nature than the
ones described in Section 1. For example, in joint work with Daniel Gottesman [19], we gave a new, more
efficient classical algorithm for simulating stabilizer circuits: quantum circuits that consist entirely of CNOT,
Hadamard, and π

4 -phase gates. We also showed that the problem of simulating stabilizer circuits is in a
subclass of P called ⊕L, and hence is presumably not even universal for classical computation. More to the
point, we actually implemented our simulation algorithm, and showed that it makes practical the simulation
of stabilizer circuits on up to about 3000 qubits (the main limitation being available memory). I’m pleased
that our simulation software is now being used to help design fault-tolerant quantum architectures (see
Metodi et al. [42] for example).

I’ll now try to give a sense of some new directions that my research might take. This list is by no means
exhaustive.
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(1) As alluded to in Section 1.5, supernova observations indicate that we live in a universe with a positive
cosmological constant Λ > 0 [47]. Combined with the holographic principle, this suggests that no
computation carried out in the physical world can ever involve more than 1/Λ ≈ 10122 bits. I want
to think more about the computational implications of a positive cosmological constant. To this
end, I’ve defined a formal model of “inflationary Turing machines,” which models computation in a
d-dimensional spacetime that is expanding exponentially. I’ve formulated several open questions in
this model: for example, for a fixed Λ, are d-dimensional inflationary Turing machines more powerful
than (d− 1)-dimensional machines? I haven’t yet been able to answer these questions.

(2) Now that quantum computing has left the Extended Church-Turing Thesis hanging by a fingernail, it’s
natural to ask whether the original Church-Turing Thesis—the one about computability theory—is
also open to attack. While I don’t believe that any of the existing attacks on the Church-Turing
Thesis have been successful, years ago I formulated a program for studying this question in a new way.
My program begins with the following question: is there any sensible model of computation that can
solve its own halting problem? To study this question, I look abstractly at the set of possible program
behaviors—for example, {Accept,Reject,LoopForever}—and more specifically, the way in which those
behaviors can depend on the behaviors of another program that is given as input. The problem of
characterizing the possible “theories of computation” then boils down to one of characterizing the
monoids and clones that do not contain any fixed-point-free elements. At this point I set the problem
aside.

(3) Another one of my goals is to develop a theory of procrastinating algorithms : algorithms that, whenever
possible, try to put off all the actual work until later in the computation. I can show that, in a certain
precise sense, the n-bit XOR function can be evaluated by a procrastinating algorithm whereas the
n-bit OR function cannot. However, it remains an open problem to characterize the set of all Boolean
functions that can be evaluated by procrastinating algorithms. I intend to work on this problem as
soon as I have the time.

(4) I’ve long been interested in applying tools from computational complexity theory to understand Dar-
winism. One way of doing this would start from Valiant’s beautiful notion of ‘evolvability’ [53]. A
different way would start from a speculation of Richard Dawkins: that natural selection is basically
the only mechanism for producing adaptive complexity; or in other words, that if we ever encounter
extraterrestrial life, then we should assume that it ultimately arose by some trial-and-error process
like natural selection. Does Dawkins’s conjecture have any complexity-theoretic counterpart? The
following is one attempt to provide one:

Given any randomized algorithm for solving a PLS-complete local optimization problem, it is possible to
modify that algorithm, adding only a small overhead in complexity, so that as it proceeds the algorithm
outputs an “evolutionary path” that starts with an arbitrary solution and ends with a locally optimal
one.

Here PLS, or Polynomial Local Search, is the class of local optimization problems defined by John-
son, Papadimitriou, and Yannakakis [38]. Note that there is no hope of proving such a conjecture
unconditionally, since any reasonable formalization of it would imply P 6= NP. However, for a certain
reasonable formalization, I believe I can prove that the above conjecture does hold relative to an oracle,
by extending my query complexity lower bound for local search [15].

Whether I continue attacking the core questions of quantum complexity theory, branch out into other
areas, or (most likely) do some of both, there are two properties that I think will characterize my research for
the foreseeable future. First, any research project I undertake will use ideas from theoretical computer science
in a nontrivial way. Second, whether the inspiration comes from physics, cosmology, or even economics or
biology, any problem that captures my interest will have a philosophical point : some conceptual issue at
stake beyond the difference between O

(

n3/2
)

and O
(

n4/3
)

. I will feel, in other words, like the universe
would be a different place if the conjectured result were true than if it weren’t. I can’t say with certainty
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where the problems that produce this feeling will come from in the future, but seeking them out, and then
trying to solve them, has been a viable strategy for me in the past.
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