CS395T Problem Set 2

Sep. 30, 2016

1. Distinguishing two quantum states.

(a) Show that there exists a measurement that, given as input either |¢)) = a|0) + b|1) or |¢) =
a|0) — b|1), for some real numbers a,b with a? + b*> = 1, correctly identifies which state it was
given with probability 3 (a + b)%.

(b) Given two pure quantum states |¢)) = ay [1) +---+an |N) and |p) = 81 |1) + - -+ By |N), recall
that their inner product is defined to be

(Ylp) =i+ +ayhn.

Show that unitary transformations preserve inner product: that is, if [¢') = U [¢) and |¢') =
Ulp), then (¢'|¢") = (¢[¢).

(c¢) Show that there exists a measurement that, given as input either [¢)) or |¢), correctly identifies

which state it was given with probability 3+ 141/1 — [(]@)|>. So in particular, if (1)|p) = 0 (i.e.,
|t)) and |p) are orthogonal) then they can be distinguished perfectly. [Hint: Use symmetry to
reduce to part a.]

2. Recall that a density matrix p is an N x N Hermitian positive semidefinite matrix with trace equal to
1. If a quantum system in state p is measured in the standard basis, the result is |i) with probability
(p);;; if a unitary transformation U is applied to the system, then the density matrix of the transformed
system is UpU~!. Given two N x N density matrices p and o, recall that their trace distance is defined
to be
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where the supremum is over all N x N unitary matrices U. Trace distance is a measure of the distance
between two quantum states.

(a) Show that 0 < ||p — o||,, <1 for all quantum states p and o.
(b) Show that if a measurement accepts the state p with probability p, then it accepts the state o
with probability between p — ||p — o||,, and p + ||p — o[,

(¢) Show that for pure states, trace distance is related to inner product via the following formula:

1) (W] = le) (@l = /1= [l

(d) Combining b. and c., show that the measurement you designed in problem 1 was the optimal
one. That is, any measurement either mistakes |1)) for |p) or vice versa with probability at least
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3. Recall the definition of BQP, as the class of languages L C {0,1}" decidable with bounded probability
of error by a uniform family {C},}, <, of polynomial-size quantum circuits. Here uniform means there
exists a deterministic (classical) algorithm that, given n as input, outputs a description of C,, in time
polynomial in n. Show that we get the same complexity class, if we instead allow a quantum algorithm
to output C,, (or more precisely, a probability distribution over C),’s). Here, in the preceding sentence,
“quantum algorithm” means one defined using the original definition of BQP.



4. Say a problem B is complete for the complexity class C if (i) B is in C, and (ii) every problem in C can
be reduced to B in deterministic polynomial time (i.e., C C P¥).

(a)

(b)

Let PromiseBQP be the class of promise problems efficiently solvable by a quantum computer:
that is, the set of all ordered pairs Iy gs C {0,1}", lIyo C {0,1}" such that

o [Iyps NIlyo = &, and

e there exists a uniform family of polynomial-size quantum circuits that decides, given an input

x, whether z € Illygg or « € llyo with bounded probability of error, promised that one of
these is the case.

Give an example of a promise problem that’s complete for PromiseBQP. [Hint: This problem

just requires understanding the definitions; it does not require cleverness.]

Explain the basic difficulty in finding a language L C {0,1}" that’s complete for BQP.

5. Recall Simon’s problem: given oracle access to a function f : {0,1}" — {0,1}", and promised there
exists a secret string s # 0 such that f(z) = f (y) if and only if x = y @ s, find s. Simon’s algorithm
works by repeatedly finding a uniform random 2 € {0,1}" such that s-z = 0(mod 2). Assuming this,
show that s is uniquely determined after O (n) steps, with all but exponentially small probability.

6. In class, we discussed how to use Simon’s problem to construct an oracle A such that BPPA #* BQPA.

(a)

Consider the variant of Simon’s problem where we’re promised that either f is a one-to-one
function (in which case the answer is YES), or else f satisfies the usual Simon promise (in which
case the answer is NO). Show that this variant is not even solvable in NP: that is, YES answers
have no polynomial-size certificates that can be verified in polynomial time.

[Eztra credit] MA (Merlin-Arthur) is a probabilistic version of NP. Formally, MA is the class of
languages L C {0,1}" for which there exists a probabilistic polynomial-time Turing machine M
such that for all inputs x:

o If z € L, then there exists a polynomial-size witness w such that M (z,w) accepts with
probability 1.
o If v ¢ L, then M (z,w) accepts with probability at most 1/2 regardless of the witness w.

Using the same variant of Simon’s problem from part a., show that there exists an oracle A such
that BQP* ¢ MA4.

7. Consider using Grover’s algorithm to search a database of N items, of which T" > 1 items are “marked.”
Assume T is known in advance.

(a)

(b)

Show that Grover’s algorithm can be used to find a marked item with constant probability after
0] (\ /N/T ) queries. [Note: You do not need to worry about computation cost, just the number of
queries. Also, there are two ways to solve this problem: you can either apply Grover’s algorithm
to the multi-item case directly, or you can reduce to the case of a single marked item and then
run Grover’s algorithm on that case.]

Show that any quantum algorithm needs €2 (\/ N/ T) queries to find a marked item with constant
probability.



