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Sep. 30, 2016

1. Distinguishing two quantum states.

(a) Show that there exists a measurement that, given as input either |ψ〉 = a |0〉 + b |1〉 or |ϕ〉 =
a |0〉 − b |1〉, for some real numbers a, b with a2 + b2 = 1, correctly identifies which state it was

given with probability 1
2 (a+ b)

2
.

(b) Given two pure quantum states |ψ〉 = α1 |1〉+ · · ·+αN |N〉 and |ϕ〉 = β1 |1〉+ · · ·+βN |N〉, recall
that their inner product is defined to be

〈ψ|ϕ〉 = α∗1β1 + · · ·+ α∗NβN .

Show that unitary transformations preserve inner product: that is, if |ψ′〉 = U |ψ〉 and |ϕ′〉 =
U |ϕ〉, then 〈ψ′|ϕ′〉 = 〈ψ|ϕ〉.

(c) Show that there exists a measurement that, given as input either |ψ〉 or |ϕ〉, correctly identifies

which state it was given with probability 1
2 + 1

2

√
1− |〈ψ|ϕ〉|2. So in particular, if 〈ψ|ϕ〉 = 0 (i.e.,

|ψ〉 and |ϕ〉 are orthogonal) then they can be distinguished perfectly. [Hint: Use symmetry to
reduce to part a.]

2. Recall that a density matrix ρ is an N ×N Hermitian positive semidefinite matrix with trace equal to
1. If a quantum system in state ρ is measured in the standard basis, the result is |i〉 with probability
(ρ)ii; if a unitary transformation U is applied to the system, then the density matrix of the transformed
system is UρU−1. Given two N×N density matrices ρ and σ, recall that their trace distance is defined
to be

‖ρ− σ‖tr =
1

2
sup
U

Tr
∣∣UρU−1 − UσU−1∣∣ ,

where the supremum is over all N×N unitary matrices U . Trace distance is a measure of the distance
between two quantum states.

(a) Show that 0 ≤ ‖ρ− σ‖tr ≤ 1 for all quantum states ρ and σ.

(b) Show that if a measurement accepts the state ρ with probability p, then it accepts the state σ
with probability between p− ‖ρ− σ‖tr and p+ ‖ρ− σ‖tr.

(c) Show that for pure states, trace distance is related to inner product via the following formula:

‖|ψ〉 〈ψ| − |ϕ〉 〈ϕ|‖tr =

√
1− |〈ψ|ϕ〉|2.

(d) Combining b. and c., show that the measurement you designed in problem 1 was the optimal
one. That is, any measurement either mistakes |ψ〉 for |ϕ〉 or vice versa with probability at least

1
2 −

1
2

√
1− |〈ψ|ϕ〉|2.

3. Recall the definition of BQP, as the class of languages L ⊆ {0, 1}∗ decidable with bounded probability
of error by a uniform family {Cn}n≥1 of polynomial-size quantum circuits. Here uniform means there
exists a deterministic (classical) algorithm that, given n as input, outputs a description of Cn in time
polynomial in n. Show that we get the same complexity class, if we instead allow a quantum algorithm
to output Cn (or more precisely, a probability distribution over Cn’s). Here, in the preceding sentence,
“quantum algorithm” means one defined using the original definition of BQP.
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4. Say a problem B is complete for the complexity class C if (i) B is in C, and (ii) every problem in C can
be reduced to B in deterministic polynomial time (i.e., C ⊆ PB).

(a) Let PromiseBQP be the class of promise problems efficiently solvable by a quantum computer:
that is, the set of all ordered pairs ΠY ES ⊆ {0, 1}∗, ΠNO ⊆ {0, 1}∗ such that

• ΠY ES ∩ΠNO = ∅, and

• there exists a uniform family of polynomial-size quantum circuits that decides, given an input
x, whether x ∈ ΠY ES or x ∈ ΠNO with bounded probability of error, promised that one of
these is the case.

Give an example of a promise problem that’s complete for PromiseBQP. [Hint: This problem
just requires understanding the definitions; it does not require cleverness.]

(b) Explain the basic difficulty in finding a language L ⊆ {0, 1}∗ that’s complete for BQP.

5. Recall Simon’s problem: given oracle access to a function f : {0, 1}n → {0, 1}n, and promised there
exists a secret string s 6= 0 such that f (x) = f (y) if and only if x = y ⊕ s, find s. Simon’s algorithm
works by repeatedly finding a uniform random z ∈ {0, 1}n such that s · z = 0 (mod 2). Assuming this,
show that s is uniquely determined after O (n) steps, with all but exponentially small probability.

6. In class, we discussed how to use Simon’s problem to construct an oracle A such that BPPA 6= BQPA.

(a) Consider the variant of Simon’s problem where we’re promised that either f is a one-to-one
function (in which case the answer is YES), or else f satisfies the usual Simon promise (in which
case the answer is NO). Show that this variant is not even solvable in NP: that is, YES answers
have no polynomial-size certificates that can be verified in polynomial time.

(b) [Extra credit] MA (Merlin-Arthur) is a probabilistic version of NP. Formally, MA is the class of
languages L ⊆ {0, 1}∗ for which there exists a probabilistic polynomial-time Turing machine M
such that for all inputs x:

• If x ∈ L, then there exists a polynomial-size witness w such that M (x,w) accepts with
probability 1.

• If x /∈ L, then M (x,w) accepts with probability at most 1/2 regardless of the witness w.

Using the same variant of Simon’s problem from part a., show that there exists an oracle A such
that BQPA 6⊂ MAA.

7. Consider using Grover’s algorithm to search a database of N items, of which T ≥ 1 items are “marked.”
Assume T is known in advance.

(a) Show that Grover’s algorithm can be used to find a marked item with constant probability after

O
(√

N/T
)

queries. [Note: You do not need to worry about computation cost, just the number of

queries. Also, there are two ways to solve this problem: you can either apply Grover’s algorithm
to the multi-item case directly, or you can reduce to the case of a single marked item and then
run Grover’s algorithm on that case.]

(b) Show that any quantum algorithm needs Ω
(√

N/T
)

queries to find a marked item with constant

probability.
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