
Lecture 1, Tues Jan 17: Course Intro, 
Church-Turing Thesis 
 

● Quantum Information Science is an inherently interdisciplinary field (Physics, CS, Math, 
Engineering, Philosophy) 

● It’s about clarifying the workings of quantum mechanics.  
○ We use it to ask questions about what you can and can’t do with quantum mechanics 
○ It can help us better understand the nature of quantum mechanics itself. 

● Professor Aaronson is very much on the theoretical end of research. 
○ Theorists inform what experimentalists make, which in turn informs theorists’ queries 

 
Today we’ll articulate several “self-evident” statements about the physical world.  We’ll then see 

that quantum mechanics leaves some of these statements in place, but overturns others--with the 
distinctions between the statements it upholds and the ones it overturns often extremely subtle!  To start 
with… 
 
Probability ​(​P​ ∈ [0,1]​)​ ​is the standard way of representing uncertainty in the world. 
Probabilities have to follow certain obvious axioms like: 

mutually exclusive exhaustive possibilities sum to 1 
 

 
As an aside: 

There’s a view that “probabilities are all in our heads.”  Which is to say that if we knew 
 everything about the universe (let’s say position/velocity of all atoms in the solar system) 

 that we could just crunch the equations and see that things either happen or they don’t. 
 
 
Let’s say we have two points separated by a barrier with an open slit, 
and we want to measure the probability that a particle goes from one 
point to the other.  It seems obviously true that increasing the number 
of paths (say, by opening another slit) should increase the likelihood 
that it will reach the other end. 
 
We refer to this property by saying that probabilities are ​monotone​. 
 
Locality​ is the idea that things can only propagate through the structure of the universe at a certain speed. 

When we update the state of a little patch of space, it should only require 
knowledge of a little neighborhood around it.  Conway’s Game Of Life (left) is an 
apt comparison: things you do to the system ​can ​affect it, but they propagate only at 
a certain speed. 



 
Einstein’s Theory of Relativity explains that a bunch of known physics things are a direct result of light’s 
finite speed. Anything traveling past the speed of light would be tantamount to travelling back in time. 

Local Realism​ says that any instantaneous update in knowledge about far away events can be 
explained by correlation of random variables. 

For example, if you read your newspaper in Austin, you can instantly collapse the probability of 
your friend-in-San-Francisco’s newspaper’s headline to whatever ​your ​ headline is. 

Some popular science articles might talk about how you measure the spin of one particle, and then 
instantaneously you know the spin of another particle on the other side of the galaxy.  But ​unless and until 

something more is said about it, that’s no different from the case of the newspapers, and seems 100% 
compatible with local realism! 

 
The ​Church-Turing Thesis ​ says that every physical process can be simulated by a Turing machine to 
any desired precision. 

The way that Church and Turing understood this was as a definition of computation, but we can 
think of it instead as a falsifiable claim about the physical world.  You can think about this as the idea that 
the entire universe is a video game: you’ve got all sorts of complicated things like quarks and whatnot, 
but at the end of the day, you’ve got to be able to simulate it on a computer. 

Theoretical computer science courses can be seen as basically math courses. 
 So what ​does ​ connect them to reality?  The Church-Turing Thesis. 

 
The ​Extended Church-Turing Thesis ​ says moreover that, when we simulate reality on a digital 
computer, there’s at most a polynomial (e.g., linear or quadratic) blowup in time, space, and other 
computational resources. 
 
So, what does quantum mechanics have to say about each of these principles? 
 
To give you a teaser for much of the rest of the course: 
 

We’ll still use probabilities.  But the way we’ll ​calculate​ probabilities will be totally different, 
and will violate the axiom of monotonicity.  That is, ​increasing​ the number of ways for an event to 
happen, can ​decrease​ the probability that it happens. 
 

Locality will be upheld.  But ​Local Realism​ will be overthrown.  And if those two principles 
sounded like restatements of each other---well, quantum mechanics will dramatically illustrate the 
difference between them! 
 

As we’ll see, the Church-Turing Thesis still seems to be in good shape, even in light of quantum 
mechanics. 

 
Using time dilation, you could travel billions of years in the 
future and get results to hard problems.  Fun!  But you’d 



need a ​LOT ​ of energy, and if you have that much energy in one place you basically become a black hole. 
Not so fun! 
 

But the ​Extended​ Church-Turing Thesis seems to be false, with quantum computing standing as a 
glaring counterexample to it--possibly the ​one​ counterexample that our laws of physics allow. 

With that said, however, one can formulate a quantum version of the Extended Church-Turing 
Thesis, which remains true as far as anyone knows today. 



Lecture 2, Thurs Jan 19: Probability Theory and 
QM 
 
Feynman said that everything about quantum mechanics could be encapsulated in the ​Double Slit 
Experiment. 

In the double-slit experiment, you shoot photons one at a time toward a wall with two 
narrow slits.  Where each photon lands on a second wall is probabilistic.  If we plot where photons 
appear on the back wall, some places are very likely, some not. 

Note that this itself isn’t the weird part: we could totally justify this happening, by some 
theory where each photon just had some extra degree of freedom (an “RFID tag”) that we didn’t 
know about, and that determined which way it went.  What’s weird is as follows.  For some 
interval on the second wall: 

Let  be the probability that the photon lands in the interval with both slits open. 
Let -​be the probability that the photon lands in the interval if only slit 1 is open. 
Let -​be the probability that the photon lands in the interval if only slit 2 is open. 
 

You’d think that .  But experiment finds that that’s not the case!  Even places that are 
never​ hit when both slits are open, can sometimes be hit if only one slit is open. 

The weirdness isn’t that “God plays dice,” but rather that “these aren’t normal dice”! 
 
You may think to measure which slit the photon went through, but doing so ​changes ​ the 
measurements into something that makes more sense.  Note that it isn’t important whether there’s 
a conscious observer: if the information about which slit the photon went through leaks out in any 
way, the results go back to looking like they obey classical probability. 

As if Nature says “What? Me? I didn’t do anything!” 
 
This reversion to classical probabilities, when systems are coupled to their environments, is called 
decoherence​. 

Decoherence is why the usual laws of probability look like they work in everyday life.  A cat isn’t 
found in a superposition of alive and dead states, because it interacts constantly with its environment. 
These interactions essentially leak information about the ‘cat system’ out. 

Quantum superposition is something that happens to particles, or groups of particles, when 
they’re isolated from their environments.  Needing the particles to be isolated is why it’s so hard to build 
a quantum computer.  (And what if the particles aren’t ​perfectly​ isolated, but merely ​mostly​ isolated? 
Great question!  We’ll come back to it later in the course.) 
 
The story of atomic physics between roughly 1900 and 1926 is that scientists kept finding things that 
didn’t fit with the usual laws of mechanics or probability.  They usually came up with hacky solutions that 
explained a phenomenon without connecting it to much else.  That is, until Heisenberg, Schrödinger, etc. 
came up with the general rules of quantum mechanics. 
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A traditional quantum physics class would go through the whole series of experiments by which 
physicists arrived at quantum mechanics, but we’re just going to accept the rules as given and see what 
we can do from there.  

Briefly, though, take the usual high school model of the electron, rotating around a nucleus 
in a fixed orbit. Scientists realized that this model would mean that the electron, as an accelerating 
electric charge, would be constantly losing energy and spiraling inwards until it hit the nucleus.  To 
explain this, along with the double-slit experiment and countless other phenomena, physicists 
eventually had to change the way probabilities are calculated. 

Instead of using probabilities  -​they started using ​amplitudes ​ .  ​Amplitudes can be 
positive or negative, or more generally complex numbers (with real and imaginary part). 
 
The central claim of quantum mechanics ​ is that to fully describe the state of an isolated system, you need 
to give one amplitude for each possible configuration that you could find the system in on measuring it. 
 
The​ Born Rule​ says that the probability you see a particular outcome is the squared absolute value of the 
amplitude: 

 

      
 
So let’s see how amplitudes being complex leads them to act differently from probabilities.  Let’s revisit 
the Double Slit Experiment considering ​interference​.  ​We’ll say that: 
 

the total amplitude of a photon landing in a spot,  
is the amplitude of it getting there through the first slit,  

plus the amplitude of it getting there through the second slit,  

 

  

      
 
 
If -​and , then interference means that if both slits are open ,  

but if only one of them is open, . 
 
 
So then to justify the electron not spiraling into the nucleus: 

We say that, yes, there are many paths where the electron does do that, but some have positive 
amplitudes and others have negative amplitudes and they end up canceling each other out. 

With some physics we won’t cover in this class, you’d discover 
 that the possibilities where amplitudes don’t cancel each other 

 out lead to discrete energy levels, where are the places where the 
 electrons can sit—this phenomenon being what leads to chemistry. 
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We use ​Linear Algebra​ to model states of systems as vectors and the evolution of systems in 

isolation as transformations of vectors.    
 
 
For now, we’ll consider classical probability. Let’s look at ​flipping a coin​: 

 tails  
 heads  

 
We model this with a vector listing both possibilities and assigning a probability to each. 
 
We can apply a transformation, like ​turning the coin over​. 
 
 
 
Turning the coin over means the prob that the coin ​was ​ heads is now the probability that the coin ​is ​tails. 
If it helps, you can think of the transformation matrix as: 
 
 
 
We could also ​flip the coin fairly​. 
 
 
 
 
Which means regardless of previous position, both possibilities are now equally likely. 
 
Let’s say we ​flip the coin, and if we get heads we flip again, but if we get tails we turn it to heads ​. 
 
 
 

Does that make sense? 
If we say that ​p​, ​q​ are ​P​(​tails ​) and ​P​(​heads ​) after the first flip: 

Then the probability the coin will land on tails in the end is: 
 0 if (it lands on tails on the first flip) and  

if (it lands on heads and we flip again).2
1  

So we sum those values. 
The probability that the coin will land on heads in the end is: 

 1 if (it lands on tails on the first flip) and 
if (it lands on heads and we flip again).2

1  
So we sum those values. 
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So which matrices ​can​ be used as transformations? 
Firstly, we know that ​all entries have to be non-negative​ (because classical probabilities can’t be 

negative). 
We also know that ​all columns must sum to 1​, since we need the sum of initial probabilities to 

equal the sum of the transformed probabilities (namely, both should equal 1). 
 
 

We can see this clearly by using basis vectors. 
 

 
 
 
 
 
 
A matrix that satisfies these conditions is called a ​Stochastic Matrix​. 
 
Now let’s say we want to flip two coins, or rather, two bits.  For the first coin , ​-  

.    For the second coin we’ll use ​P​(​c​)​-​and ​P​(​d​). 
 

0 0 
1 1  

 
To combine the two vectors, we need a new operation, called ​Tensor Product​.

 
 
 
 
 
 
It’s worth noting that not all possible 4-element vectors can arise by tensoring two 2-element vectors. 
For example:  

would mean that 

 
Therefore the right-hand side can’t be a tensor product. 

 
Let’s say that if the first bit is 1, we want to flip the second bit: 
 ​00 00 
 ​01 01 
 ​10 10 
 ​11 11 
      ​00​  ​01​  ​10​  ​11  
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We’d do: 

 
This 4×4 matrix is called the ​Controlled NOT ​or​ CNOT  
matrix; it will also come up often in quantum computing. 

 
 

Note that we’ve reached an output distribution that we previously proved can’t arise as a tensor product! 
Such a distribution is called ​correlated ​: learning one bit tells you something about the other bit.  (In this 
case, the two bits are always equal; with 50% probability they’re both 0 and with 50% probability they’re 
both 1.)  So, we’ve learned that the CNOT matrix can ​create correlations ​: it can transform an 
uncorrelated distribution into a correlated one. 
 
Quantum mechanics basically follows the same process to model states in quantum systems except that it 
uses amplitudes instead of probabilities. 
 

 
 

Where we preserve  

and  ​or  represent the probability of measuring outcome ​i​. 
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Lecture 3, Tues Jan 24: Basic Rules of QM 
Tensor products are a way of building bigger vectors out of smaller ones. 
 
Let’s apply a NOT operation to the first bit, and do nothing to the second bit. That’s really the same as 
defining the function ​f​  as .  So we can write the 
operation as follows: 

   00​ (  0    0    1   0  ) ​00 
   01​ (  0    0    0   1  ) ​01 

   10​ (  1    0    0   0  ) ​10 
                  11​ (  0    1    0   0  ) ​11 

                  ​00​    ​01 ​   ​10​   ​11  
 
A ​quantum state​ (technically, a “pure state”) is a unit vector in describing the state of a quantum 
system. 

Formally a quantum state could exist in any dimension.  Physics courses cover infinite- 
dimensional vectors, but we’ll stick to discrete systems (which is to say that when we make a 
measurement, there are only finitely many possible outcomes). 
 

 ​What does quantum mechanics say about the universe being discrete or continuous at the base level? 
 It suggests a strange, hybrid picture.  There’s a continuum of possible quantum states, but every 

 measurement has a discrete outcome. A system with two amplitudes,​- ,​-​has uncountably infinitely 

 many possible states (given the only restriction is that​_ ),​-​though note that the same 
would be true even if we described states using classical probabilities.  In both cases, classical and 

quantum, the continuum is never directly observed, but is only used to calculate the probabilities of 
discrete outcomes. 

 
The ​qubit​ is the simplest interesting quantum system. 
It’s a two-level system (we label the levels ‘0’ and ‘1’), with an amplitude for 0 and an amplitude for 1. 

A one-state quantum system would just be . Not very interesting! 
In physics, following Dirac, we like to write quantum state vectors using the so-called ​Ket Notation​. 

0 
1  

Note that and  

and that  is a symbol we’ll often use for quantum states. 
Why do we use ket notation? 

One main advantage is that practically speaking, we usually deal with really sparse vectors 
(where most amplitudes are 0).  Ket notation makes it easier to represent only the values we’re talking 
about. 
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It’s really just a formalism to make life easier, we can put anything in ket 

notation. Look: this is Schrödinger’s Cat in ket notation: | ⟩ + | ⟩. 
 
 
Often you’ll need to take the transpose of a vector or for complex values  
 
Using the complex conjugate allows you to define a norm 

 
 
Then we get   

  
    

     
 
What does this look like in ket notation? 
 

Just like we have the ​ket ​  ​for  
 

We define the ​bra   ​for   
 
And we define  ​as the inner product of  ​with  (which automatically involves taking the 
conjugate transpose of ). 
 
Therefore . 
So . 
 
Remember: the way we change quantum states is by applying linear transformations: 

 
 

A linear transformation is ​unitary​ if . 
 
Unitary matrices ​ correspond to unitary transformations. 

We’ve got the identity -​and permutation | ​matrices, which are the only unitaries that 

are also stochastic. 
 
Other unitaries include 

 which maps |0〉➝  |0〉 
 |1〉➝  ​i​|1〉, 
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Note: Euler’s Equation says , and we could also replace any of the 1’s, -1’s, ​i​’s, or 
-​i​’s by that 
 
All real possible states of a qubit define a circle and all complex possible states define a hypersphere. 
That’s because these states are all the vectors of length 1. 
 
We define: 

 

 

 

 
 
Unitary transformations ​ are norm-preserving linear transformations. 
 
For any angle  you could have -​which grabs a vector and rotates it  radians. 
 
 
What does it mean that a unitary matrix preserves the 2-norm? 
It means applying a unitary transformation retains the inner product, . 

 
For this to hold for any , must equal .  Which means . 
That in turn implies that the rows of must be an orthogonal unit basis. 

So you can tell if a matrix is unitary by checking if the rows (or, equivalently, the columns!) form 
an orthogonal unit basis. 

This is not the “operational definition” of unitary matrices, but is a 
logical consequence of unitary transformations preserving inner products. 

 
An ​orthogonal matrix​ is both unitary and real. 

Any orthogonal matrix is a product of rotations and reflections. 
 
Some examples: 

 

You’ll get a full revolution after applying | ​eight times. 
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In the classical world, if an event could happen multiple ways, but will be “random” no matter which way 
it happens, then it’s simply “random” overall. 
But in the quantum world, you can sometimes apply a unitary transformation to a superposition state and 
then get a determinate answer 
 
Anything interesting in quantum mechanics can be explained in terms of ​interference​. 

 
The  basis state can go to states  and  equally. 
 
Above, there are two different paths that lead to the  
outcome, but they cancel each other out, with one having 
positive amplitude and the other having negative 
amplitude. 

The  states interfere destructively. 
The  states interfere constructively. 

 
 
No matter what unitary transformation you apply:   If   ​goes to  , then  goes to  . 
 
The zero state and the minus zero state are indistinguishable mathematically, which is to say: 

Global phase is unobservable. 
Multiplying your entire quantum state by a scalar is like if last night someone moved the entire universe 
twenty feet to the left. We can only really measure things relative to other things!  Which leads to a 
second maxim:  

Relative phase ​is ​ observable. 
To distinguish between the states | ​and | ​we can rotate by 45 degrees and then measure to see 
whether we got | ​or . 

There are no second chances.  Once you measure, the outcome is set. 



Lecture 4: Thurs Jan 26: Quantum Gates and 
Circuits, Zeno Effect, Elitzur-Vaidman Bomb 
 
We call the ma​trix | ​the gate, as√NOT  , aka the NOT Gate. 

 
The ​Hadamard Gate​ is  
 
Hadamard is ubiquitous in quantum information because it maps the ,  basis to the ,  basis. 

 Similarly  ,  , and  
 
Note that we’ve got two orthogonal (complementary) bases: being maximally 
certain in the ,  basis means that you’re maximally ​uncertain​ in the 

,  basis and vice versa. 
 
Why would we want to use 2 different bases? 

We like to think of vectors existing abstractly in vector space, but to 
use one meaningfully, we often need to pick a basis. When we see some actual 
quantum algorithms and protocols, we’ll see the power that comes from 
switching between bases. 

Side note, when talking about the Born Rule, we’ve been using 
 a special case of one particular basis for simplicity. 

 
We can think about measurement more generally. Measuring the state  in 
the orthonormal basis , you’ll get the outcome  with 
probability . 
 
So the probability of the outcome  is the projection onto the basis vector. 

 
We pick bases like  arbitrarily as a nice convention. 

 
To do operations in a different basis, we can use unitary transformations to convert between bases. 

So for  use  if you want the 
basis  
 

There’s an extreme point of view in quantum mechanics that unitary transformations are the only thing 
that really exist, and measurements don’t really exist. And the converse also exists: the view that 

https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C0%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C1%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C%2B%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C-%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=H%7C0%5Crangle%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5Cbegin%7Bbmatrix%7D1%20%26%201%20%5C%5C%201%20%26%20-1%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7D1%5C%5C0%20%5Cend%7Bbmatrix%7D%3D%20%5Cbegin%7Bbmatrix%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%20%5C%5C%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%7D%5Cend%7Bbmatrix%7D%20%3D%20%7C%2B%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C%2B%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C-%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C0%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C1%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C%5Clangle%20V_i%7C%5Cpsi%5Crangle%7C%5E2%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%7C%5Clangle%20V_i%7C%5Cpsi%5Crangle%7C%5E2%20%3D%20%7C%5Calpha_1%7C%5E2%0
https://www.codecogs.com/eqnedit.php?latex=%5Csmall%20%5Ccolor%7BGray%7D%5C%7B%7C0%5Crangle%2C%7C1%5Crangle%5C%7D%0


measurements are the only thing that really exist, and that unitary transformations don’t.  More when we 
talk about interpretations! 

Unitary Transformations ​are: 
●  ​Invertible​. This should be clear, since preserving the two norm means that  which 

means . 
○ Reversible. ​The transformation  ​| ​can be reversed with . 

Interestingly this implies that unitary evolution can never destroy information, which should 
 imply that the universe is reversible. Physics has treated the microscopic laws as reversible 

 since Galileo’s time (i.e. a time-reserved video of a swinging pendulum still shows it obeying 
 the laws of physics). So for example burning a book shouldn’t destroy the information within, 

 as physics says that in principle you can get all the information from the smoke and ash left over. 
 

● Deterministic 
● Continuous 

i.e. you can apply them in a time-continuous way. 
That’s why it’s important that  unitary matrices are complex. 

If the transformation | ​took place in 1 second, then over the first half of the second, perhaps 

took place—or some other square root of the transformation. 

 
By the way, there is a 3x3 matrix that “squares” to .  

  
But to take a square root of this transformation, ​either ​ you need complex numbers, or else you 

need ​to add a third dimension.  The latter is analogous to reflecting your three-dimensional self by 
rotating yourself in a fourth dimension--as in some science fiction stories! 

Important: If you come back reflected after a trip into the fourth dimension, don’t eat anything without 
first consulting medical professionals. Normal food will have molecules of the wrong chirality for you to 

digest them. 
 
Measurements ​ break all three rules of unitary transformations!  Measurements are: 

● Irreversible 
○ Whatever information about the system you didn’t capture is now lost. 

● Probabilistic 
○ Everything in quantum mechanics is deterministic ​until​ measurement (or information 

leaves the system), but measurement outcomes are in general random. 
● Discontinuous 

○ The “collapse of the amplitude vector” is treated as instantaneous in textbooks. 
 
So how can we reconcile these two sets of rules? 
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That’s the ​Measurement Problem​. We’ll talk about various points of view on it later. 
 
Despite the philosophical conflict, unitary transformations and measurement sync up well because: 

● Unitary transformations preserve the 2-norm and 
● Measurement gives probabilities governed by the 2-norm 

 
Classical probability is based on the 1-norm, while quantum mechanics is based on the 

 2-norm.  So it’s natural to wonder: what about theories based on the 3-norm, 4-norm, etc.? 
  Actually, there don’t seem to be any interesting theories there (the extra credit problem on 

 the homework on norm preserving linear transformations sheds light on why), making quantum 
mechanics a bit of “an island in theory space”. If you try to adjust anything about it in any way, 

 you typically get gunk!  You could alternatively say that there seems to be  “nothing near quantum 
mechanics, that’s nearly as nice as quantum mechanics itself.”  As another example of this, there are 

many technical reasons why complex numbers work better than the reals or quaternions as amplitudes. 
 
One more example of a linear transformation. 

The matrix  | ​maps   
 | ​   and   

 
Quantum Circuit Notation ​helps us keep track of what 
qubits we have and what operations we apply to them. 
 

So to the left we start with , apply a Hadamard 
Gate, apply another Hadamard Gate, then measure (implied 
to be in the , | ​basis) 

We’ll never branch a qubit line into multiple qubit 
lines, since that doesn’t correspond to a unitary 
transformation. To enlarge a system we can use a new  ​qubit, an ​ancilla​ qubit. 
 
There are several interesting phenomena that already happen in the quantum mechanics of one qubit. 

 
Suppose you have a qubit in the state . We 

can know this because it’s staying 0 over and over in 
measurements. Let’s say we want to put it in the  ​state 
without using any unitary transformations. 

For some small , we can measure the qubit in a 
basis that’s rotated from  | ​by an angle . The 
probability of getting the qubit to move by  increases as 
decreases. 
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where  
 

 
So over | ​such measurements, we could slowly drag the qubit from | ​to . 

What’s the likelihood that we’d ever get a measurement outcome that ​wasn’t ​the one we wanted? 

By union bound, it’s of order , so can be made arbitrarily small. 

This is called ​The Quantum Zeno Effect 
One of its discoverers was Alan Turing. 
 

Perhaps an everyday-life analog would be asking a stranger to have coffee 
 with you, then to go dancing, etc.—there’s a higher probability of success 

 than if you just immediately ask them to marry you! 
 
 
Another interesting variant of the same kind of effect is as follows: 
 
 Say we want to keep a qubit at , but it keeps rotating 
towards  (it’s ​drifting​). 

If we keep measuring it on the ,  ​| ​basis the odds of it 
jumping to | ​at any given measurement is only .  So if we repeat 

 times, then the probability it ending up at  ​is only , even 

though it would have drifted to  ​with certainty had we not 

measured. 
 
This is called ​The Watched Pot Effect. 
 
 
Another interesting phenomenon is the ​Elitzur-Vaidman Bomb​. 
A quantum effect discovered in the early 1990’s. 
 

Say we’re at a quantum airport and there’s a piece of unattended 
luggage which could be a bomb, but opening the suitcase would 
trigger it. 

How do we check if there’s a bomb there without triggering it? 
 
We could make a query with a classical bit: 
  
But then we either learn find nothing, ​or ​ we set off the bomb if 
there’s indeed a bomb there.  Not good! 
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Instead, we can upgrade to a qubit: 
 

 
 
Now assume:    If there’s no bomb the state  | ​gets returned to you. 

If there is a bomb, the bomb measures in the  ​basis. If the outcome is , then 
| ​is returned to you, while if the outcome is , the bomb explodes.  

 
 
What we can do is apply the rotation .  Giving us: 

 
If there’s a bomb, the probability it explodes is , otherwise we get back . 

If there’s no bomb, we get back  
 
So repeating about π/(2ε) times makes the probability of setting off the bomb 

only .  Yet by measuring our  qubit to see whether it’s  
or , we still learn whether or not a bomb was there. 
 
Of course, the catch is that this requires not merely a qubit on our end, but 
also a bomb that can be “quantumly interrogated”! 
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Lecture 5, Tues Jan 30: Coin Problem, Inner 
Products, Multi-Qubit States, Entanglement  
 
Say you have a coin, and you want to figure out if it’s fair ( ) or if it’s biased ( ). How 
would you go about doing so? 
 

The classical approach to solving this problem would be to flip 

the coin a lot (about  times), keeping track of heads and tails until you 
have a strong degree of certainty that randomness isn’t affecting your 
results. Standard probability stuff. 

This requires about -​bits of memory to store the running  

totals. In fact, there’s a theorem by Hellman and Cover from the 70’s that 
says that any protocol to solve this problem requires that much storage. 
 
What if instead we used quantum states? 

We can start with a qubit in the | ​state, and consider the two rotations -​and , which 
rotate by  and  radians respectively.  We can repeatedly flip the coin, and if it lands tails apply 
(rotating clockwise) and if it lands heads apply | ​(rotating counterclockwise).  After many flips (order

) we can then measure the qubit and statistically infer that if it’s in the | ​state, the coin was fair, 
while if it’s in the | ​state, the coin is biased. 

● Won’t counting out the right number of steps again require a lot of storage? 
○ No. We can give a protocol with a half-life (some independent probability of halting at 

each step) causing it to repeat approximately the number of times we want it to. 
● What about if the qubit drifts by a multiple of , won't that make a biased coin look fair? 

○ That’s possible, but we can make it so that a biased coin is more likely to land on | ​than 
a fair coin. 

 
Quantum information protocols are like baking souffles. 

Opening the oven too early will collapse the souffle.  
 
This is our first example of a quantum protocol getting a resource advantage: 

the quantum solution takes ​1 qubit of storage​ as opposed to the classical solution’s  bits ​. 
This result was shown by Professor Aaronson and his former student Andy Drucker. 

It wasn’t a particularly hard problem, but no one had asked the question before. 
There’s still “low hanging fruit,” even in the mechanics of a single qubit! 

 
Distinguishability of Quantum States 
Given two orthogonal quantum states  These on the other hand are  
and | ​there’s a basis that distinguishes them. indistinguishable. 
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 gives a good measure of the distinguishability of arbitrary states. 
  

What about these? 
More specifically: What measurement would minimize the chance of 
making a mistake in differentiating | ​from ? 
 

You may want to measure in the , ​| ​basis, 
as it would eliminate one kind of error completely (not getting 
| ​ensures the state was ).  But if you just 
want to maximize the probability of getting the 

right answer, and if  ​| ​and  ​| ​are equally likely, then there’s a better way: 
 
Take the bisector of | ​and , and get the angles  to either side, 
ensuring each original vector is the same distance to its closest basis vector. 
  
 
 
A general state of ​2 Qubits ​ is: 

 
 

The probability of getting Note that | ​is the same as | ​or | ​or  

    

    

    
In principle there’s no distance limitation between qubits.  One qubit could be on Earth, and the 

other could be with your friend on the moon. 
In such a case, though, you’d only be able to measure the first qubit: 

The probability of getting | ​is  because those are the amplitudes compatible with  in the 
first qubit. 

The probability of getting | ​is  
 
Suppose I measure th​e first qubit and get the outcome .  What can I say about the second qubit? 

Well we’ve narrowed down the possibilities to | ​and . The state of the system is thus 
now in the superposition:  

 ← Don’t forget to normalize! 
This is called the ​Partial Measurement Rule 

Systems collapse however is needed to fit the measurement you made and the outcome you saw. 
 
This is actually the last “basic rule” of quantum mechanics that we’ll see in the course. 

Everything else is just logical consequences of rules we’ve already covered. 
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This -​is the ​Controlled NOT​. 
 Remember: it flips the 2nd bit iff the 1st bit is 1. 
 
 
 
What if we wanted to always do NOT on the 2nd bit:  

  
        ​This is   

            /        |  
    (nothing on 1st bit)   with  (NOT on 2st bit) 
 
It can be decomposed as: | ​which makes it a tensor product unitary. 
 
What if we want​ NOT ⊗ I ​?  
 
00  
01  ​Remember that rows and columns represent the transformation 
10 so the amplitude on 00 in the input  
11 is the amplitude on 10 in the output 
          00​    ​01​   ​10​    ​11  
 
Very often in quantum information we’ll want to take a group of qubits and perform an operation on one 
of them: say, “Hadamard the third qubit.” 

What that really means is applying the unitary matrix : 
The tensor product of the desired operation on the relevant qubit(s), with the identity operation on 

all the other qubits. 
 
What’s ? 
  
 
 
 Why should it look like this? 

Let’s look at the first row: .  Which means for  
each​ qubit there’s an equal amplitude on | ​0⟩ and |1⟩. 

 
 
 
All of these are examples of using tensor products to build bigger unitary matrices, except for the 
Controlled NOT, where the first qubit affects the second.  We’ll need operations like Controlled NOT in 
order to have one qubit affect another. 
 



 
2 Qubits In Quantum Circuit Notation 
 
 
 
 

Start with 2 qubits in | ​0⟩ Apply Hadamard to 1st 
qubit 

Apply a Controlled NOT with the 1st qubit 
as the ​control​ and the 2nd as the ​target​. 

 

 

 

 
 

 

 

The action of the Controlled NOT can also be written as  
 
The state that this circuit ends on, | ​is called the ​Singlet​ or the​ Bell Pair ​or the ​EPR Pair 

This state is particularly interesting because measuring the first qubit collapses the state of the 
second qubit.  The state can’t be factored into a tensor product of the first qubit’s state and the second’s. 
Such a state is called ​entangled​, which for pure states simply means: not decomposable into a tensor 
product. 
 
A state that’s not entangled is called ​unentangled ​ or ​separable​ or a ​product state​ (for pure states, which 
are the only kind being discussed at this point in the course, all three of these mean the same thing). 
 
The basic rules of quantum mechanics, which we saw earlier, force entanglement to exist.  It was noticed 
quite early in the history of the field.  It turns out that ​most​ states are entangled. 

 
As we mentioned earlier, entanglement was arguably what troubled Einstein most about quantum 

mechanics.  He thought that it meant that quantum mechanics must entail “spooky action at a distance.” 
That’s because particles need to be close to become entangled, but once they're entangled you can 

separate them to an arbitrary distance and they’ll stay entangled.  This has actually been demonstrated 
experimentally for distances of up to 150 miles (improved to a couple thousand miles by Chinese satellite 
experiments, while the course was being taught!). 

 
Let’s say that Alice and Bob entangle a pair of particles by  

setting their state to , then Alice brings her particle to the moon  

while Bob stays on Earth. If Alice measures her particle, she can 
instantaneously​ know whether Bob will observe a | ​or a | ​when he 
measures his ​. 

 This bothered Einstein, but others thought that it wasn’t that big a deal.  After all, Alice 
doesn’t get to control the outcome of her measurement!  She sees  | ​and | ​with equal probability, which 
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means that in this case, the “spooky action” can be explained as just a correlation between two random 
variables, as we could already see in the classical world. 
 
However, a famous 1935 paper of Einstein, Podolsky, and Rosen brought up a further problem: namely, 
there are other things Alice could do instead of measuring in the , | ​basis. 
 
What happens if Alice measures in the ,  basis? 

She’ll get either or , as you might expect. 
 
Indeed, we can model the situation by Alice Hadamarding her qubit and then measuring in the 
basis. 

That gives us the state: 

    ​Remember , etc. 
 
So now, applying the ​Partial Measurement Rule​ what is Bob’s state? 

If Alice sees , then Bob’s qubit collapses to the possibilities where Alice sees : 

 
Conversely, if Alice sees :  

 
 

The paper goes on to talk about how this is more troubling than before.  If Alice measures in the 
| ​basis, then Bob’s state collapses to | ​or , but if she measures in the | ​basis, then 

his state collapses to | ​or .  And ​that​ looks a lot like faster-than-light communication! 
 
How can we explain this? 

One thing we can do is ask “what happens if Bob makes a measurement?” 
● In the case where Alice measured her qubit in the basis, Bob will see | ​or | ​with 

equal probability if he measures his qubit in the same basis. 
● In the case where Alice measured her qubit in the | ​basis… 

○ Bob will still see | ​or | ​with equal probability (measuring in the | ​basis) 
So, at least in this case, the probability that Bob sees | ​or | ​is the same regardless of what Alice 
chooses to do.  As an exercise, check that this remains the case even if Bob measures his qubit in the 

| ​basis. 
So, it looks like there might be something more general going on here!  In particular, a different 

description should exist of Bob’s part of the state that’s unaffected by Alice’s measurements.  Which 
brings us to the next lecture… 
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Lecture 6, Thurs Feb 2: Mixed States 
 

So far we’ve only talked about ​pure states ​ (i.e., isolated quantum systems), but you can also have 
quantum superposition layered together with regular, old probabilistic uncertainty.  This becomes 
extremely important when we talk about states where we’re only measuring one part. 

Last time we discussed the ​Bell Pair​, and how if Alice measures her qubit in any basis, the state 
of Bob’s qubit collapses to whichever state she got for her qubit.  Even so, there’s a formalism that helps 
us see why Bob can’t do anything to learn which basis Alice makes her measurement in, and more 
generally, why Alice can’t transmit ​any​ information instantaneously--in keeping with special relativity. 
This is the formalism of… 
 
Mixed States 

Which in some sense, are just probability distributions over quantum superpositions. 
We can define a mixed state as a distribution over quantum states, so  
meaning that with probability ​p​i​, the superposition is . 

^  
Note that these don’t​ ​have to be orthogonal 

 
Thus, we can think of a pure state as a degenerate case of a mixed state where all the probabilities 

are 0 or 1. 
The tricky thing about mixed states is that ​different probability distributions over pure states, can 

give rise to exactly the same mixed state​.  (We’ll see an example shortly.)  But to make manifest why 
information doesn’t travel faster than light, we need a representation for mixed states that’s unique. 
That’s why we use:  
 

Density Matrices 
represented as  

 
 is the ​outer product​ of  with itself. 

 
 

It’s the matrix you get by multiplying  
 

 
 
Note that ​α​i​α​j​* = (​α​i​*​α​j​)*, which means that the matrix is its own conjugate transpose 

That makes ​ρ​ a ​Hermitian Matrix​. 
 
Some examples:  
 
Therefore an even mixture of them would be  
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Similarly:   
 
 
And  
 

 
Note that an equal mixture of | ​and | ​is ​different​ from an equal superposition of | ​and 

(a.k.a. ), and so they have different density matrices.  However, the mixture of | ​and | ​and the 
mixture of | ​and | ​have the same density matrix, which makes sense because Alice converting 

between the two bases in our Bell pair example should maintain Bob’s density matrix 
representation of the state. 

In fact, this is true of whichever basis Alice chooses: for any two orthogonal 
vectors | ​and , we have that  

(check this!) 
 
 
Measuring in the basis gives us outcome with probability: 

 
So, the diagonal entries of the density matrix directly represent probabilities. 

You don’t need to square them or anything because the Born Rule 

 is already encoded in the density matrix (i.e. ) 
 
In particular, a density matrix that’s diagonal is  
just a fancy way of writing a classical probability distribution.  
 

 
While a pure state would look like : that is, a matrix of rank one. 
 
What if we want to measure a density matrix in a different basis? 

Measuring in the basis will give  

and similarly for | ​w​〉 

You can think of a density matrix as encoding not just one but infinitely 
 many probability distributions, because you can measure it in any basis. 

 

The matrix  that we’ve encountered above, as the even mixture of | ​and | ​(and also of 
and ) is called the ​Maximally Mixed State​.  This state is basically just the outcome of a classical coin 
flip, which gives it a special property: 

Regardless of the basis we measure it in, both outcomes will be equally likely. 
So for every basis , | ​we get the probabilities  
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This explains why Alice is unsuccessful in sending a message to Bob, by measuring her half of a Bell 
pair.  Namely, because the maximally mixed state in any other basis is ​still the maximally mixed state​. 
 
So how do we handle unitary transformations with density matrices? 

 
Since ,  applying  to means: 
 

 
You can pull out the ’s since it’s the same one applied to each mixture. 

 
 
It’s worth noting that getting  numbers in the density matrix isn’t some formal artifact; we really do 
need all those extra parameters. What do the off-diagonal entries represent? 

 
These are where all the ‘quantumness’ resides. 
It’s where the interference between | ​and | ​is represented. 

 
The off-diagonal entries can vary depending on relative phase: 

 | ​has positive off-diagonal entries 
 has negative off-diagonal entries 

  
 

 
 
Later we’ll see that as a quantum system interacts with the environment, the off-diagonal entries tend to 
get pushed down toward 0.  

The density matrices in  experimental quantum papers typically look like . 
The bigger the off-diagonal values, the better the experiment, because it 

 represents them seeing more of the quantum effect! 
 
Which matrices can arise as density matrices? 

We’re effectively asking: What constraints does the form put on the matrix ? 
Well, such a must be: 

● Square 
● Hermitian 

●  (which is to say: the ​trace​, ) 
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Could be a density matrix? 
    

No. Measuring this in the , | ​basis would give  
Bad! 

 
Remember that you can always transform to , whose diagonal then has to be a probability 
distribution for all ​U​.  If we want that condition to hold, then in linear algebra terms, we need to add the 
restriction: 
 

● All eigenvalues are non-negative (aka being ​PSD: Positive Semidefinite​) 
 

     As a refresher: For the matrix , the eigenvectors | ​are the vectors that satisfy the equation: 
  for some eigenvalue  

If we had a negative eigenvector |Ψ〉, 
the probability would be negative, which is nonsense. 

 
Could we have missed a condition?  Let’s check. 
We claim: any Hermitian PSD matrix with trace 1 can arise as a density matrix of a quantum state. 

For such a , we can represent it in the form | ​where the | ​are the (unit) 
eigenvectors. 

Then ,​ ​so the λ​i​’s sum to Tr(​ρ​)=1. 
 
This process of obtaining eigenvalues and eigenvectors is called ​eigendecomposition ​. 

We know the eigenvalues will be real because the matrix is Hermitian, 
They’re non-negative because the matrix is PSD. 

 
One quantity you can always compute for density matrices is: 
Rank 

 | ​= the number of non-zero eigenvalues | ​(counting with multiplicity) 
 
 
A density matrix of rank  might look like  

  
 
While a density matrix of rank  represents a pure state. 

We know from linear algebra that the rank of an ​n​×​n​ matrix is always at most .  Physically, this means 
that every ​n​-dimensional mixed state can be written as a mixture of at most  pure states. 

 
In general, rank tells you the number of pure states that you have to mix to reach a given mixed state. 
 
Now, consider the 2-qubit pure state . 
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We’ll give the first qubit to Alice and the second to Bob. 

How does Bob calculate his density matrix? 
By picking some orthogonal basis for Alice’s side. 

You can rewrite the state as , which lets you calculate Bob’s density 
matrix as: 

 

 

 
 
In general, if you have a bipartite pure state, it’ll look like  
 
And you can get Bob’s local density matrix 

 
The process of going from a pure state of a composite system, to the mixed state of part of the system, is 
called ​tracing out​. 
 
 
The Key Points: 

1) A density matrix encodes all and only what is physically observable 
● Two quantum states will lead to different probabilities ​iff​  they have different density 

matrices  
2) No-Communication Theorem 

● If Alice and Bob share an entangled state, nothing Alice chooses to do will have any 
effect on Bob’s density matrix. 

In other words, there’s no observable effect on Bob’s end. Which is the fundamental  
reason that quantum mechanics ​is ​ compatible with the limitations of relativity. 

 
We’ve already seen particular examples of both statements.  But both of them hold in full generality, and 
you’ll prove that in your homework! 
 

OK, just to get you started a bit: recall that the No Communication Theorem says that, if Alice 
and Bob share an entangled state 

 
there’s nothing that Alice can do to her subsystem that affects Bob’s density matrix. 
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You already have the tools to prove this: just calculate Bob’s density matrix, then apply a unitary 
transformation to Alice’s side, then see if Bob’s density matrix changes.  Or have Alice measure her 
qubit, and see if ​that​ changes Bob’s density matrix changes. 
 

Note that if we condition on the ​outcome​ of Alice’s measurement, then we do need to update  
   Bob’s density matrix to reflect the new knowledge: if Alice sees  then Bob sees , etc. 

But that’s not terribly surprising, since the same would also be true even with classical correlation! 
In particular, this doesn’t provide a mechanism for faster-than-light communication. 

 
 
To review, we’ve seen three different types of states in play, each more general than the last: 

● Basis States, or Classical States 
○ exist in a computational basis  

● Pure States 
○ superpositions of basis states  

● Mixed States 
○ classical probability distributions over pure states   

 
Which represents the actual physical reality: pure or mixed states? 

It’s complicated. Sometimes we use density matrices to represent our probabilistic ignorance 
 of a pure state.  But when we look at part of an entangled state, a mixed state is the most 

 complete representation possible that only talks about the part that we’re looking at.  
We’ll generally just focus on what these representations are useful for. 
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Lecture 7, Tues Feb 7: Bloch Sphere, 
No-Cloning, Wiesner’s Quantum Money 

 
 
The Bloch Sphere 

is a geometric representation of all possible states of a qubit. 
We’ve often drawn the state of qubits as a circle, which is already a little 
awkward: half of the circle is going to waste since ​  (both represent 
the same density matrix). 
 
Instead, what if vectors that pointed in ​opposite​ directions were orthogonal? 
We get the Bloch Sphere... 

 
We can see that  and  should be between | ​and . Then we can 
add | ​and | ​as a new dimension. 
 

In this representation, points on the surface of the sphere are pure 
states, such that 
 if they’re  apart, they’re orthogonal,  

and if they’re  apart, they’re conjugate. 
 

 
What about mixed states? 

Well we know that the maximally mixed state, , can be defined as ​, , or . 
The sum of any two of these vectors on the sphere is the origin. 

We can in this way represent any mixed state as a point inside of the sphere. 
 
The mixture of any states | ​and ,​ represented as points on the surface of the sphere, will be a point 
on the line segment connecting the two. 

We can show geometrically that every mixed state can be written as a mixture of only two pure 
states.  Why?  Because you can always draw a line that connects any pure state you want to some point in 
the sphere representing a mixed state, and then see which other pure state that the line intersects on its 
way out.  By some vector math, the point can be described as some linear combination of the vectors 
representing the pure states. 

Experimentalists love the Bloch sphere, because it works almost identically to how spin works 
with electrons and other spin-½ particles. 

With these things, you can measure the particle’s “spin”—a qubit attached to the particle, 
basically—relative to any axis of the sphere.  You see if the electron is spinning clockwise or 
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counterclockwise relative to the axis.  And it behaves just like a qubit, in that the measurement collapses a 
more complex behavior into a binary result.  

The weird part about spin-½ particles is that you ​could have ​asked the direction of the spin 
relative to any other axis. So what’s really going on: what’s the real spin direction?  Well, the actual state 
is just some point on the Bloch sphere.  So if the state of the electron is that it’s spinning clockwise 
around the | ​axis, we can say that it’s in the | ​state, and if it’s spinning clockwise around the 

| ​axis, we can say that it’s in the ​ state, and so forth.  The crazy part here is how the 
three-dimensionality of the Bloch sphere “perfectly syncs up” with the three-dimensionality of actual 
physical space. 

 

 
 

Visualizing the actions of gates on the Bloch sphere: 
Applying gates , ,  or  is the same as doing a half turn on their respective axis. 

 corresponds to a quarter turn around . [in the  to  direction] 
, so  corresponds to an eighth turn around . 

 corresponds to a quarter turn (i.e. ) on . 
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The No-Cloning Theorem 

We’ve seen how entanglement seems to lead to “non-local effects,” like for the state , 
where if Alice measures her qubit then she learns the state of Bob’s.  The reason that Alice isn’t 
communicating faster than light boils down to Bob not being able to tell if his qubit’s state is in the ,

 basis or the ,  basis. 
But what if Bob could make unlimited copies of his qubit? He could figure it out through repeated 

measurements, and so he’d be able to tell what basis Alice measured in.  Faster than light communication! 
Learning a classical description of a quantum state, given lots of copies 

 of the state, is called​ Quantum State Tomography​, 
  
 

It turns out that we can prove that a procedure to reliably copy an unknown quantum state cannot exist. 
It’s fairly easy to prove, but it’s a fundamental fact about quantum mechanics. 
 
In effect, we already saw one proof: namely, cloning would imply superluminal communication, which 
would violate the No-Communication Theorem that you proved in the homework!  But let’s see more 
directly why cloning is impossible. 
 
Let’s try to clone a single qubit,  
 
In our quantum circuit we want to apply some unitary 
transformation that takes  and a  ancilla as input, and 
produces two copies of  as output. 
 
Algebraically, a cloner would need to do: 

 

         
 
 
The cloner would need to look like: 

 
 
The problem: this transformation ​isn’t linear​ so it can’t be unitary! 
To clarify, a procedure that outputs some  can be rerun to get  repeatedly. What the No Cloning 
Theorem says is that if  is given to you but is otherwise unknown, then  
you can’t make a copy of it. 
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Another clarification: 
cNOT seems like a copying gate [as it maps ] 
So why doesn’t it violate the No Cloning Theorem? 

Because it only copies if the input state is | ​or . 
Classical information CAN be copied.  Just ask Richard Stallman! 

 
 
 
Doing cNOT on produces the Bell Pair: . Which sort of copies the first  
 
qubit in an entangled way, but that’s different making a copy of . 

Having two qubits be ,  is not the same as ​. 
 
In general, for any orthonormal basis you can clone the basis vectors, if you know 
that your input state is one of them. 
 
Since the No Cloning Theorem is so important, we’ll present another proof of it: 

A unitary transformation can be defined as a linear transformation that 
preserves inner product. Which is to say that the angle between | ​and | ​is the same as the one 
between | ​and . 

Thus . 
 
What would a cloning map do to this inner product? 

Let  

Then  
 

 only ever equals  if the inner product is  or : so the transformation can only copy if  and  
belong to the same orthonormal basis. 
 
 
There’s a fact in classical probability that provides a nice analog to the No-Cloning Theorem. 

If we’re given the outcome of a coin flip—from a coin that lands heads with some unknown 
probability —can we simulate a second, independent flip of the same coin, without having access to the 
coin? 
 
 
You’d need -​to be true for some stochastic matrix . 
 
 
But once again, this transformation isn’t stochastic, because it’s not linear. 
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The No Cloning Theorem has all sorts of applications to science fiction, because you can’t make arbitrary 

copies of a physical system (say for teleporting yourself) if any of the relevant information (say, in your 
brain) were encoded in quantum states that didn’t belong to a known orthogonal basis ​. 

 
Quantum Money 

is an application of the No Cloning Theorem.  In some sense it was the first idea in quantum 
information, and was involved in the birth of the field. The original quantum money scheme was 
proposed by Wiesner in 1969, though it was only published in the 80s. 

Wiesner had left research by then, and had become a manual laborer. 
Wiesner realized that the quantum No-Cloning Theorem--though it wasn’t yet called that—could 

be useful to prevent counterfeiting of money.  In practice, mints use special ink, watermarks, etc., but all 
such devices basically just lead to an arms race with the counterfeiters.  So Wiesner proposed using qubits 
to make money that would be physically impossible to counterfeit. 

The immediate problem is that a money scheme needs not only ​unclonability​ but also 
verifiability​.  How did Wiesner solve this problem? 
 
Wiesner’s Scheme 
The bank prints quantum bills (we’ll assume for simplicity that they’re all same denomination).  Each bill 
has: 

● A classical serial number  
● A quantum state | ​(of  qubits) 

○ The qubits in this state are unentangled, and each will always be in one of four states: 
 

 
The bank maintains a giant database that stores, for each bill in circulation, the classical serial number , 
as well as a string | ​that encodes what the quantum state attached to bill  is supposed to be. 

  
  
  

 
Wiesner’s scheme has an important practical problem though: you need to ensure that the qubits in a bill 

don’t lose their state (coherence).  With current technology, qubits in a lab decohere in like an hour, tops. 
Qubits stored in a wallet would decohere much faster! 

 
To verify a bill, you bring it back to the bank.  The bank verifies the bill by looking at the serial 

number, and then measuring each qubit in the bill in the basis in which it was supposed to be prepared. 
E.g., if the qubit was supposed to be | ​or , then measure in the | ​basis.  For each 
measurement, check that you get the expected outcome. 

Consider a counterfeiter who doesn’t know which basis each qubit is supposed to be in, so they 

guess the bases uniformly at random.  They only have a ​ chance of making all  guesses correctly. 
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Of course one could imagine a more sophisticated counterfeiter---but it’s possible to prove that, 
regardless ​ of what the counterfeiter does, if they map a single input bill to two output bills, then the 

output bills will both pass verification with probability at most . 
 

Wiesner didn’t actually prove the security of this scheme at the time he proposed it.  
Professor Aaronson asked about it on Stack Exchange a few years ago which prompted 

Molina, Vidick, and Watrous to write a paper that formally proved the scheme’s security. 
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Lecture 8, Thurs Feb 9: More on Quantum 
Money, BB84 QKD 
Guest Lecture by Supartha Podder 
 
Continuation of Quantum Money 

Last time we discussed how classical money is copyable and 
described a scheme for making money uncopyable through an 
application of the No-Cloning Theorem. 
 

Let’s consider a counterfeiter who wants to take a copy of a 
legitimate bill  and submit it for verification. 

 
Say the counterfeiter decides to measure all qubits in the | ​basis. 

Their new bill becomes: 
●  gets copied 

○ (classical information) 
● Puts | ​or | ​as each qubit. 

 
 
 
So the bank will measure each qubit.  The ones that should be in the  basis are correct all of the 

time.  But the ones that should be in the  basis are correct in both bills only  of the time. 

Thus the probability that the counterfeiter succeeds (i.e., that both bills pass verification) is . 
As we mentioned last time, it was recently shown that any 

such attack succeeds with probability at most  .  
 
Interactive Attack 

There’s a clever attack on Wiesner’s scheme based around the assumption that verification 
involves giving the bank a bill, and then the bank ​returns the bill whether or not it passed verification​. 

We can start with a legitimate bill, then repeatedly go to the bank and ask them to verify it—but 
manipulating the qubits of the bill one at a time. 

For example, if we set the first qubit to | ​and the bill still passes verification each and every 
time, then we’ve learned that the first qubit ​should​ be . Otherwise, we can successively try setting the 
first qubit to , , , and see which choice makes the bank consistently happy.  Then, once we 
know, we move on to toggling the second qubit, and so on. 
 
OK, but surely the bank wouldn’t be so naïve as to return the bill even if it fails verification!  We should 
assume instead that if verification fails (or fails often enough), then the bank alerts the police or 
something. 
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Can we come up with an attack that works even then?  A recent paper by Nagaj and Sattath points out that 
we can! 

Recall the ​Elitzur Vaidman Bomb ​.  The general idea is that by making a succession of 
measurements, none of which reveals that much by itself, we can with a high probability of success learn 
whether a system is a certain state, without triggering a “bad event” that would happen if the system were 
actually measured to be in that state (such as a bomb going off).  Applying a similar idea to quantum 
money gives us an… 
 
Attack Based on the Elitzur Vaidman Bomb 
Set | ​to  
Let | ​be the qubit of the banknote we’re trying to learn 
Repeat  times: 

Apply the rotation | ​to  
Apply a cNOT gate to  
Send the bill to the bank for verification. 

 
Suppose .  Then each time we apply cNOT, we get 

 
Most of the time | ​will stay at . 
At each step, the probability of getting caught (i.e. failing verification) is . 
Thus Prob[getting caught at all] is upper-bounded by  

A similar analysis can be done if | ​is | ​or : we’re unlikely to get caught, ​and​ the | ​qubit keeps 
“snapping back” to . 
But if , then something different happens: the | ​qubit gradually rotates from | ​to . 
 
So when we measure at the end, we can distinguish | ​from the other states, because it’s the only one 
that causes the | ​qubit to rotate to . 
By symmetry, we can give analogous procedures to recognize the other three possible states for . 
So then we just iterate over all  qubits in the bill, learning them one by one, just like in the previous 
attack on Wiesner’s scheme. 
 
Can Wiesner’s scheme be fixed to patch this vulnerability? 

Yes!  The bank can just give the customer a ​new​ bill (of the same value) after each verification, 
instead of the bill that was verified. 
 

There’s an additional problem with Wiesner’s scheme, as we’ve seen it.  Namely, it requires the 
bank to hold a huge amount of information: one secret for every bill in circulation.  However, the paper 
(Bennett Brassard Breidbart Wiesner 82) points out how to circumvent this, by basically saying: let | ​be a 
pseudorandom function with a secret key , so that for any serial number , the bank can compute 
for itself, rather than needing to look it up. 
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Of course the bank had better keep  itself secret: if it leaks out, the entire money system 
collapses!  But assuming that  remains a secret, why is this secure? 

We use a reduction argument. Suppose that the counterfeiter can copy money by some means. 
What does that say about ?  If it were truly random, then the counterfeiter wouldn’t have succeeded. 
So by checking whether the counterfeiter succeeds, we can distinguish | ​from a random function.  So 
wasn’t very good at being pseudorandom! 

Note that with this change, we give up on provable security, of the sort we had with Wiesner’s 
original scheme.  Now we “only” have security assuming that | ​is computationally intractable to 
distinguish from random.  (And a recent result by Prof. Aaronson shows that some computational 
assumption is necessary, if we don’t want the bank to have to store a giant database.) 
 
However, even after we make the improvements above, Wiesner’s scheme still has a fundamental 
problem, which is that to verify a bill, you need to go to the bank.  And if you have to go to the bank, then 
arguably you might as well have used a credit card or something instead!  The point of cash is supposed 
to be that we don’t need a bank to complete a transaction.  Which brings us to...  
 
Public-Key Quantum Money 

This is quantum money that ​anyone​ can verify using a “public key,” but that can only be 
produced or copied using a “private key” known only to the bank. 

For formal definitions see (Aaronson 2009), (Aaronson, Christiano 2012). 
With this sort of scheme, you’ll ​always ​ need computational assumptions on the counterfeiter, in addition 
to quantum mechanics.  Why?  Because a counterfeiter with infinite computational power could always 
just try ​every​ possible quantum state (or an approximation thereof) on the appropriate number of qubits, 
until it found one that made the public verification procedure accept. 
 
Quantum Key Distribution 
 
Now we’ll discuss something closely related to quantum money, but that doesn’t require storing quantum 
states for long times—and that, for that reason, is actually practical today (though so far there’s only a 
small market for it). 
 
Key distribution​ is a fundamental task in cryptography.  It just means causing two agents, Alice and Bob, 
to share a secret key (without loss of generality, a uniformly random string), when they didn’t have one 
before. 
 
Once Alice and Bob share a long enough key, they can then exchange secret messages, using the central 
technique in cryptography called the ​One-Time Pad ​. 

Given a shared key  
Alice has a secret message  

Alice sends the ciphertext , where  denotes bitwise XOR 
Bob decodes the message  as  
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As its name implies, the One-Time Pad can only be used once securely with a given key , so it 
requires a large amount of sharing of keys.  In fact, in the classical world, it’s been proven that if they 
want to communicate securely, Alice and Bob either need initial secret information in common, or else 
they must make computational assumptions on the eavesdropper Eve. 

The great discovery of Quantum Key Distribution was that quantum mechanics lets us get 
encryption with no computational assumptions!  (But we do need communication channels capable of 
sending quantum states.) 

In cryptography, besides secrecy, an equally important goal is authentication.  
However, we’re only going to deal with secrecy. 

 
BB84 

We’ll describe the BB84 scheme, the first full quantum key distribution scheme.  This scheme 
was proposed by Bennett and Brassard in 1984, though it was partly anticipated in Wiesner’s paper (the 
same one that introduced quantum money!).  It circumvents the issues we’ve seen in maintaining a qubit, 
because it only requires coherence for the time it takes for communication between Alice and Bob. 

There are companies that are already doing quantum key distribution through fiber optic cables 
over up to about 10 miles.  In addition, just this year a team from China demonstrated QKD over 

distances of thousands of miles, by sending photons to and from a satellite that was launched into space 
for that express purpose. 

 
Here’s a diagram from the original paper that shows how BB84 works. 

The basic idea is that you’re trying to establish some shared secret knowledge and you want to 
know for certain that no eavesdroppers on the channel can uncover it.  You’ve got a channel in which to 
transmit quantum information, and a channel in which to transmit classical information.  In both, 
eavesdroppers may be able to listen in (no secrecy).  But in the classical channel, we’ll assume you at 
least have ​authenticity​: Bob knows that any messages really come from Alice and vice versa. 

● So Alice chooses a string  of random bits  
● And another string | ​of random bits , which she uses to decide which basis to encode 

each bit from  in. 
● She then encodes each bit of  in the | ​basis (in the diagram it’s ), if the 

corresponding bit of | ​is , or the | ​basis ( ), if the corresponding bit of | ​is  
● Then she sends over the qubits to Bob. 
● Bob picks his own random string | ​and uses | ​to decide in which basis 

https://www.codecogs.com/eqnedit.php?latex=k%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=R%0
https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=D%0
https://www.codecogs.com/eqnedit.php?latex=1%0


to decode the th​ qubit sent over (picking again between  and ) 
 
Now Alice and Bob share which bases they picked to encode and measure the bits of  (the strings | ​and 

).  They discard any bits of  for which they didn’t pick the same basis (which will be about half the 
bits). 
 
At this point we consider an eavesdropper Eve​ who was watching the qubits as they were were sent over. 
The whole magic of using qubits is that if Eve tries to measure the qubits, then she inherently changes 
what Bob receives!  Sure, if she measures a | ​qubit in the | ​basis, then the qubit 
doesn’t change.  But what if she’s unlucky, and measures a | ​qubit in the | ​basis? 
And eventually, she almost certainly ​will​ be unlucky. 

In more detail: suppose Alice sent , then Eve measured | ​and passed that along to Bob. 
Then even if Bob measures in the | ​basis (i.e., the “right” basis), he has a 50% chance of 
measuring | ​and a 50% chance of measuring .  In the latter case, Alice and Bob will be able to see 
that the channel was tampered with. 

So Alice and Bob can verify that no one listened in to their qubit transmission by making sure 
that some portion of their qubits that ​should​ match, do match.  Of course, after Alice and Bob discuss 
those qubits over the channel, they aren’t going to be secret anymore!  But they’ve still got all the others. 

If any of the qubits didn’t match, then Alice and Bob deduce that Eve eavesdropped.  So then 
they can just keep trying again and again until they can get a batch where no one listened in.  At worst, 
Eve can prevent Alice and Bob from ever communicating by listening in constantly.  But we can prevent 
a situation where Alice and Bob ​think​ their shared key is secure even though it isn’t. 
 
Again, once Alice and Bob share a secret key, they can then use some classical encryption scheme, like 
the One-Time Pad. 
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Lecture 9: Tues Feb 14: Superdense Coding 
 
OK, now on to some new stuff! 
 
Superdense Coding 

is the first protocol we’ll see that requires entanglement.  Basic information theory (Shannon) 
tells us that “by sending  bits, you can’t communicate more than  bits of information.” 

Now, by contrast, we’ll see how Alice can send Bob ​two​ classical bits by sending him only ​one 
qubit, though there is a catch: Alice and Bob must share some entanglement ahead of time. 
 
In the scenario with no prior entanglement, Alice can’t send more than one bit per qubit—a fundamental 
result known as ​Holevo’s Theorem ​. 

We’re not going to prove Holevo’s Theorem here, but the intuition is pretty simple: if Alice sends 
| ​to Bob, he can only measure it once in some basis and then the rest of the 

information in | ​is lost. 
 
Instead, let’s suppose that Alice and Bob share a Bell pair in advance:  

We claim that Alice can manipulate her half, then send her half to Bob, and then Bob can measure both 
qubits and get two bits of information from Alice. 
 
The key is to realize that Alice can get three different states, all of them orthogonal to the original Bell 
pair and to each other, by applying the following gates to her qubit: 
 

● NOT which gives us  
 

● A phase change --​which gives us  
 

● And applying both NOT and a phase change, which gives us   
 
These four states form an orthogonal basis. 
 
So suppose Alice wants to transmit two bits , and : 

If , she applies the NOT gate. 
If , she applies a phase gate. 
Then she sends her qubit to Bob. 

 
 
We can derive her encoding matrix as: 
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Which makes sense, because each column corresponds to one of the four states we listed above. 

(e.g. the second column corresponds to ) 
 
For Bob to decode this transformation, he’ll want to use the inverse transformation: 

 
Which corresponds to the circuit: 
 

cNOT (2nd controls 1st) 
then Hadamard on the 2nd qubit 

 
 
So, Alice transforms the Bell pair into one of the four orthogonal states above, then Bob decodes that 
two-qubit state into one of the four possible combinations of | ​and , corresponding to the original 
bits  and . 
 
For example: 
 
if Bob receives ,​  ​applying cNOT gets him , and Hadamard gets him . 
 
 
if Bob receives ,  applying cNOT gets him , and Hadamard gets him . 
 
 
Naturally, we could ask: if Alice and Bob had even more pre-shared entanglement, could Alice send an 
arbitrarily large amount of information by transmitting only one qubit? 

There’s a theorem that says: ​No​. 
It turns out that for every qubit, and any amount of entangled qubits (ebits), you can send two bits 

of classical information, but no more.  I.e., we can write the inequality: 
 

but ​not 
 

 
As far as quantum speed-ups go, a factor of two isn’t particularly impressive, but it is pretty cool that it 
challenges the most basic rules of information theory established by Shannon himself. 
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Lecture 10, Thurs Feb 16: Teleportation, 
Entanglement Swapping, GHZ, Monogamy 
 
Next let’s see... 
Quantum Teleportation 

which is a result from 1991 that came as a great surprise.  Science journalists still love it given its 
irresistible name.  In this lecture we’ll see what it can and can’t do. 
 
Firstly, what does teleportation mean? 

You might think it implies sending qubits instantaneously over vast distances, but that can’t be 
done, as it violates the causal structure of the universe.  So we’re only going to send qubits at the speed of 
light, no faster.  Of course, there are other ways to move qubits at the speed of light or slower, like just 
picking them up and moving them, or putting them on a bus!  (It doesn’t sound as sexy that way.) 

OK, but what if you only had a phone line, or a standard Internet connection?  That would let you 
send classical bits, but not qubits.  With teleportation, though, we’ll achieve something surprising.  We’ll 
show: 

It is possible for Alice and Bob to use pre-shared entanglement plus classical communication to 
perfectly transmit a qubit. 
 
The inequality here is almost the converse of the one for superdense coding: 

 
Which is to say, you need one pair of entangled qubits plus two classical bits in order to transmit 

one qubit.  (This can also be shown to be optimal.) 
 
We’ll give a more in-depth explanation in the next lecture, but the gist of it is: 
Alice has, say, a single qubit, .  She also shares a Bell pair with Bob. 
Alice applies some transformation to | ​that entangles it with her half of the Bell pair.  She then 
measures her qubits. 
Alice tells Bob the measurement outcomes over the phone. 
Bob applies some transformations (to his qubit of the entangled pair), based on what he hears from Alice. 

“Magically,” Bob now has​|  
At the end, will Alice also have ? 

No. A logical consequence of the No Cloning Theorem is that there can only be one copy of the qubit. 
 
Could we hope for a similar protocol ​without​ sending classical information?  
       No, because of the No-Communication Theorem. 
 

So let’s say Alice wants to get a qubit over to Bob, ​without​ using a quantum communication 
channel, but ​with​ a classical channel together with preshared entanglement.  How should Alice go about 
this? 



Once the question is posed, you can play around with different combinations of operations, and 
you’d eventually discover that what works is this: 

 
 
The qubit Alice wants to transmit is  
  
 
The entangled qubits form a Bell Pair. 
 
The total state starts as: 

         
 

Then Alice applies a cNOT gate (with | ​as the control, and her half of the Bell pair as the target): 

 
Alice then Hadamards her | ​qubit: 

 
 
Finally, Alice measures both of her qubits in the | ​basis. 
This leads to four possible outcomes: 
 

If Alice Sees     

Then Bob’s qubit is     

 
We’re deducing information about by Bob’s state by using the partial measurement rule.  E.g., if 

Alice sees , then we narrow down the state of the entire system to the possibilities that fit, namely 
and . 
 

What is Bob’s state, if he knows that Alice measured, but doesn’t know the measurement outcome? 
It’s an equal mixture of all four possibilities, which is just the Maximally Mixed State. 

 This makes sense given the No-Communication Theorem!  Until Alice sends 
        information over, Bob’s qubit can’t possibly depend on . 

 
Next, Alice tells Bob her measurement results via a classical channel.  And Bob uses the information to 
“correct” his qubit to . 

If the first bit sent by Alice is 1, then Bob applies  
 
If the second bit sent by Alice is 1, then Bob applies  
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These transformations will bring Bob’s qubit to the state . 
That means they’ve successfully transmitted a qubit without a quantum channel! 

      This protocol never assumed that Alice knew what was . 
For this protocol to work, Alice had to measure her ​syndrome​ bits. These measurements were 

destructive (since we can’t ensure that they’ll be made in a basis orthonormal to , and thus Alice 
doesn’t have | ​at the end.  Alice and Bob also “use up” their Bell pair in the process of teleporting . 

      Something to think about: Where is | ​after Alice’s 
 measurement, but before Bob does his operations? 

 
How do people come up with this stuff? I can’t picture how anyone trying to solve this problem would 
even begin their search… 

Well it’s worth pointing out that quantum mechanics was discovered in 1926 and that quantum 
teleportation was only discovered in the 90’s. These sorts of protocols ​can​ be hard to find.  Sometimes 
someone tries to prove that something is impossible, and in doing so eventually figures out a way to get it 
done... 
 
Aren't we fundamentally sending infinitely more information than two classical bits if we’ve sent over 
enough information to perfectly describe an arbitrary qubit, since the qubit’s amplitudes could be arbitrary 
complex numbers? 

In some sense, but at the end of the day, Bob only really obtains the information that he can 
measure, which is significantly less.  Amplitudes may “exist” physically, but they’re different from other 
physical quantities like length, in that they seem to act a lot more like probabilities. 

Like, there’s a state , of a single qubit, such that  | ​is a binary encoding of the 
complete works of Shakespeare​—​the rules of quantum mechanics don’t put a limit on the amount of 
information that it takes to specify an amplitude.  With that said, we could also encode the complete 
works of Shakespeare into the probability that a classical coin lands heads!  In both cases, the works of 
Shakespeare wouldn’t actually be retrievable by measuring the system. 
 
If we can teleport one qubit, the next question we may want to ask is: 

 
Can we go further? What would it take to teleport an arbitrary quantum state, say of ​n​ qubits? 
 
To answer this question, let’s notice that nothing said that a qubit that’s teleported has to be unentangled 
with the rest of the world. 
 

You could run the protocol and 
have | ​be half of another Bell pair. 
That would entangle the fourth qubit to 
Bob’s qubit (you can check this via 
calculation).  That’s not a particularly 
interesting operation, since it lands you 
where you started, with one qubit of 
entanglement between Alice and Bob, but it does have an interesting implication. 



It suggests that it should be possible to teleport an arbitrary -qubit entangled state, by simply 
teleporting the qubits one at a time, thus using  ebits of preshared entanglement.  And indeed it’s not 
hard to check that that works. 
 
One further consequence of this is that two qubits don’t need to interact directly to become entangled. 

In some sense, we already knew that: 
Consider for example the following circuit. 

 
Here the first and third end up entangled, even though 
there’s never “direct” contact between them: the second 
qubit serves as an intermediary. 
 

What does it take for Alice and Bob to get entangled? 
The obvious way is for Alice to create a Bell pair and then send one of the qubits to Bob. 

 In most practical experiments, the entangled qubits are created somewhere between 
 Alice and Bob, then one qubit is sent to each. 

 
However, teleportation leads to 
something 
much more surprising than this, called... 
Entanglement Swapping 
 
If Alice has two entangled qubits, and also two Bell pairs shared with Bob, she can teleport both of her 
qubits to Bob, whereupon they’ll be entangled on Bob’s end … even though the two qubits on Bob’s end, 
which are now entangled, were never in causal contact with one another! 
 

This process has been used in real experiments, such as the recent  
“loophole-free Bell tests,” about which we’ll learn more later in the course. 

 
By the way, quantum teleportation itself has been demonstrated experimentally many times. 

 
A few more comments on the nature of entanglement: 

 
We’ve seen the Bell pair, and what it’s good for.  There’s a 3-qubit analogue of it called 

the ​GHZ state​: .  We’ll see applications of the GHZ state later in the course, but for 
now we’ll use it to illustrate an interesting conceptual point. 

Let’s say that Alice, Bob, and Charlie hold random bits, which are either all  or all  
(so, they’re classically correlated).  If all three of them get together, they can see that their bits are 
correlated, and ​the same is true if only two of them are together ​. 

But now suppose the three players share a GHZ state.  With all three of them, they can 
see that the state is entangled, but what if Charlie is gone?  Can Alice and Bob see that they’re entangled 
with each other? 
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No.  To see this, observe that by the No-Communication Theorem, Charlie could’ve measured 
without Alice and Bob knowing.  But if he did, then Alice and Bob would clearly have classical 
correlation only: either both ’s (if Charlie got the measurement outcome ) or both  (if Charlie got ). 
From this it follows that Alice and Bob have only classical correlation ​regardless of whether Charlie 
measured or not​. 
 
A different way to see this is to look at the density matrix of the state shared by Alice and Bob: 

 
 (all blank entries are 0) 
 
 
 

And notice that this is different than the density matrix of a Bell pair shared by Alice and Bob 

 
 
Where  
 
This is one illustration of a general principle called… 
The Monogamy of Entanglement 

Simply put, this means that if Alice has a qubit that is maximally 
entangled with Bob, then that qubit can’t also be maximally entangled with 
Charlie. 
 

With GHZ, you can only see the entanglement if you have all three 
qubits together.  This is sometimes analogized to the Borromean Rings (right), 
an arrangement of three rings with the property that all three are linked 
together, without any two of them being linked together. 

There are other 3-qubit states which aren’t like that… 
In the W state, , there’s ​some​ entanglement between Alice and Bob, and  

there’s ​some​ entanglement between Alice and Charlie, but neither pair is ​maximally entangled​. 
 
As for how you quantify entanglement … well, that will be the subject of the next lecture! 
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Lecture 11, Tues Feb 21: Quantifying 
Entanglement, Mixed State Entanglement 
 
How do you quantify how much entanglement there is between two quantum systems? 

It’s worth noting that we sort of get to decide what we think a measure of entanglement ​ought​ to 
mean.  We’ve seen how it can be useful to think of entanglement as a resource, so we can phrase the 
question as  “how many ‘Bell pairs of entanglement’ does a given state correspond to?” 
 

A priori, there could be different, incomparable kinds of entanglement that are good for different things. 
And that’s actually the case for entangled mixed states, or entangled pure states shared by three or more 
parties.  But for the special case of an entangled pure state shared by two parties, Alice and Bob, it turns 

out that there’s a single measure of entanglement, which counts “the number of Bell pairs needed to form 
this state, and equivalently the number that can be extracted from it.” 

So, given , how do we calculate many Bell pairs it’s worth? 
 

Our first observation here is that given any bipartite state, you can always find a change of basis 
on Alice’s side, and another change of basis on Bob’s side, that puts the state into the simpler form 

, 
where all ’s are orthonormal, and all ’s are also orthonormal.  To put the state into this form, we 
use a tool from linear algebra called… 
 
Schmidt Decomposition 
 

Given a the matrix  -​representing the entire quantum state. 
 
 
We can multiply  by two unitary matrices, one on each side, to get a diagonal matrix: 

 and ​ can be found efficiently using linear algebra 
 and ​ represent the changes of basis that Alice and Bob respectively would need to apply, in order to 

get their state into the Schmidt form 

.  
 
Measuring in the | ​basis would then yield the probability distribution 
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Now, recall that, for a classical probability distribution , its ​Shannon entropy​ is 

 
So now we just need to calculate the ordinary Shannon entropy of our probability vector, 

, 
in order to figure out how many Bell pairs our state is equivalent to. 
 
To come at it a bit differently: there’s a measure called ​von Neumann entropy​, which generalizes 
Shannon entropy from classical probability distributions to quantum mixed states.  We say that the von 
Neumann entropy of a mixed state ρ is 

 
 

You could also say that von Neumann entropy ​is ​ the Shannon entropy of the vector of 
eigenvalues of the density matrix of ​ρ.​  If you diagonalize the density matrix, the diagonal represents a 
probability distribution over  possible outcomes, and taking the Shannon entropy of ​that​ distribution 
gives you the von Neumann entropy of your quantum state. 
 
Yet another way to think about it: 

Say you looked at all the possible probability distributions, that could arise by measuring the 
mixed state ​ρ​ in all possible orthogonal bases.  Then the von Neumann entropy of ​ρ​ is the ​minimum​ of the 
Shannon entropies of all those distributions. 

 
where | ​means the length-  vector obtained from the diagonal of the ​ matrix . 

 
So the von Neumann entropy of any pure state | ​is , because there’s always some 

measurement basis (namely, a basis containing ) that returns a definite outcome. 
You could choose to measure | ​in the | ​basis and you’ll have complete uncertainty, 

and an entropy of 1.  But if you measure | ​in the | ​basis, you have an entropy of , because 
you’ll always get the outcome at . 

So . 
By contrast, the von Neumann entropy of the maximally mixed state, , is . 
Similarly, the von Neumann Entropy of the -qubit maximally mixed state is . 

 
We can now talk about how much ​entanglement entropy​ is in a bipartite pure state. 
Entanglement Entropy 
 
Suppose Alice and Bob share a bipartite pure state  
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To quantify the entanglement entropy, we’ll trace out Bob’s part, and look at the von Neumann entropy of 
Alice’s side, , in effect asking: if Alice made an optimal measurement, how much could she learn 
about Bob’s state? 
 

 
  ↑ This is the Shannon entropy of the vector of eigenvalues, which you can get 

by diagonalizing Alice’s (or Bob’s) density matrix, ​or​ by putting | ​in 
Schmidt form, as we did in the previous lecture. 

 
The entanglement entropy of any product state, , is . 

The entanglement entropy of a Bell pair, , ​is . 

You can think of entanglement entropy as either:  
● The number of Bell pairs it would take to create the state 
● The number of Bell pairs that you can extract from the state 

It’s not immediately obvious that these two values are the same, but for pure states, they are. 
(For mixed states, they need not be!) 

 
A sample calculation... 
Let This state is already in Schmidt form 

(otherwise, we’d have to put it in that form) 
 
Then the entanglement entropy is 

 
      
This means that if Alice and Bob shared 1000 copies of , they’d be able to teleport about 942 qubits. 
 
For bipartite ​mixed​ states, by contrast, there are two values to consider: 
 
The Entanglement of Formation  

is the number of ebits that Alice and Bob need to create one copy of the state , in the limit 
where they’re creating many copies of it, and assuming they’re allowed unlimited local 
operations and classical communication (called “LOCC” in the lingo) for free 

The Distillable Entanglement  
is the number of ebits that Alice and Bob can extract per copy of , again in the limit where 
they’re given many copies of it, and assuming local operations and classical communication are 
free 

 
Clearly , since if you could ever get out more entanglement than you put in, it would give you 
a way to increase entanglement arbitrarily using LOCC, which is easily seen to be impossible.  But what 
about the other direction? 
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It turns out that there exist bipartite pure states for which , which is to say that those states 
take a lot of entanglement to make, but then you can only extract a small fraction of the entanglement that 
you put in.  We won’t have time to explain this in more detail. 
 
We call a bipartite mixed state -​separable ​if there’s any way to write it as a mixture of product states: 

 
 
A mixed state is called entangled if and only if it’s not separable. 

This is subtle: it sometimes happens that a density matrix looks entangled, but there’s some weird 
decomposition that shows that no, actually it’s separable. 

And indeed, in 2003 Leonid Gurvits proved a pretty crazy fact: 
 
If you’re given as input a density matrix |​for a bipartite state, then deciding whether 

represents a separable or entangled state is an NP-hard problem! 
 

As a result, unless P = NP, there can be no “nice characterization” for telling apart entangled and 
unentangled bipartite mixed states—in contrast to the situation with bipartite pure states. 

This helps to explain why there are endless paper writing opportunities 
 in trying to classify different types of entanglement… 
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Lecture 12, Thurs Feb 23: Interpretation of QM 
(Copenhagen, Dynamical Collapse, MWI, 
Decoherence) 

 
At this point in the course, we’re finally in a position to step back and ask,“What is quantum 

mechanics telling us about reality?”  It should be no surprise that there isn’t a consensus on this question 
(to put it mildly)!  But regardless of your own views, it’s important to know something about the various 
positions people have defended over the years, as the development of these positions has sometimes gone 
hand in hand with breakthroughs in quantum mechanics.  (We’ll see an example of this later, with the 
Bell inequality, and arguably quantum computing itself is another example.) 

Most discussions about the implications of quantum mechanics for our understanding of reality 
center around the so-called ​Measurement Problem​. 

In most physics texts (and in this class, for that matter...), measurement is introduced as just a 
primitive operation that we don’t try to understand more deeply.  However, there’s a fundamental 
weirdness about measurement in QM, which stems from the fact that the theory seems to demand both: 

1. Unitary Evolution  
when no one is watching  

2. Measurement  
which collapses a state to a single possibility  | ​with probability  

|〈Ψ| ​i​〉| ​2​ = |α​i​| ​2  
 
In other words, quantum mechanics seems to work in a way that’s deterministic, reversible, and 

continuous most of the time (1), ​except​ during measurement (2), which is the only time we see it work in 
a way that’s probabilistic, irreversible, and sudden.  So we can phrase the question as: 

 
“How does the universe know when to apply unitary evolution and when to apply measurement?” 
 
People have argued about this for about 100 years.  The discussion is sometimes compared to the 

discussion about the nature of consciousness (which has gone on for millennia) in that they both tend to 
devolve into people talking in circles around each other. 
 
But it’s worth understanding the main schools of thought, starting with… 
 
The Copenhagen Interpretation 

This was the prefered interpretation of most of the founders of quantum mechanics.  It’s closely 
associated with Niels Bohr and his institute in Copenhagen (hence the name) and with Werner 
Heisenberg.  Note that the different founders said different and sometimes contradictory things, 
sometimes in very abstruse language, so it’s notoriously hard to pin down what the “Copenhagen 
interpretation” actually is! 



Basically, though, the Copenhagen viewpoint is that there are two different worlds (or parts of 
reality): the quantum world and the classical world.  We live in the classical world, where objects have 
definite locations, the objects can be measured without disturbing them, etc.  But in doing experiments 
we’ve discovered that there also exists the quantum world “beneath” ours, which obeys very different 
rules. 
 
Measurement​, in this view, is the operation that bridges the two worlds. 

It lets us “peek under the hood” into the quantum world and see what’s going on. 
 

Bohr wrote long tracts saying that even to make statements about the quantum world and the 
classical world is to presuppose that ​is ​ a classical world in which those statements can be made.  So 
there’s some “boundary” or “cut” between the quantum and classical worlds.  The exact location of this 
boundary might be fuzzy, and might vary depending on what sort of question we’re asking.  But in any 
case, we should never make the error of insisting that our commonsense, classical concepts remain valid 
on the quantum side of the boundary. 

Believers in the Copenhagen interpretation love to say things like: “if this doesn’t make sense to 
you, then you’re just stuck in the old way of thinking, and you need to change.  The problem is not with 
quantum mechanics, it’s with you.” 
 
The next interpretation, which is closely related is… 
 
S.U.A.C. : “Shut Up And Calculate!” 

This is probably the preferred “interpretation” of most physicists, chemists, and others who work 
with quantum mechanics. 

It says that at the end of the day, quantum mechanics works: it correctly predicts the results of 
experiments.  And that’s all we can reasonably ask of a scientific theory, or all that it’s fruitful to ask. 

Prof. Aaronson likes to say that the Copenhagen interpretation is basically just S.U.A.C. without 
the S.U. part!  Copenhagen starts from the intuition that “it’s pointless to philosophize about what this 
means,” but then elevates ​that​ to a philosophy, which of course is a little ironic. 
 

In any case, while the S.U.A.C. view has some obvious practical advantages, it seems clear that it 
can’t satisfy people’s curiosity forever.  This is not only because science has always aspired to ​understand 
what the world is like​, with experiments and predictions just a means to that end.  A second reason is that, 
as experimenters become able to create ever larger and more complicated quantum superpositions—in 
effect, “breaching” the Bohr/Heisenberg boundary between the quantum and classical worlds—it 
becomes less and less viable to “quarantine” quantum mechanics as just a weird mathematical formalism 
that happens to work for predicting the behavior of electrons and photons.  The more QM impinges on the 
world of everyday experience, the more it seems necessary to come to terms with whatever it says about 
that world. 
 
This seems like a good time for a digression about two celebrated thought experiments, which were 
invented to probe exactly this “breaching”... 
 



Schrödinger’s Cat 
There were physicists in the 20s and 30s who never accepted the Copenhagen interpretation, of 

whom the most famous were Einstein and Schrödinger.  They came up with many examples to try to 
show just how untenable it is to have a rigid boundary between the quantum and classical worlds, if you 
think hard about it. 

By far the most famous example is ​Schrödinger’s Cat​, which first appears with Einstein 
remarking in a letter that if you think of a pile of gunpowder as being inherently unstable, you could 
model it as a quantum state which looks like . 

Then Schrödinger adds some flair by asking, “What happens if we create a quantum state that 
corresponds to a superposition of a state in which a cat is alive and one where the cat is dead?”  He 
isolates the state from its external environment by putting it in a box .  

The point of the thought experiment is that the formal rules of quantum mechanics apply 
whenever ​ you have distinguishable states, regardless of their size.  In particular, they say that you can 
create arbitrary linear combinations of such states.  But by the time we’re talking about something as big 
as a cat, it seems patently obvious that we should have to say something about the nature of what’s going 
on before measurement.  Otherwise we’d devolve into extreme solipsism—saying, for example, that the 
cat only exists once we’ve opened the box to observe it. 
 
Wigner’s Friend 

is a similar thought experiment.  It says that Eugene Wigner—the physicist who proposed the 
experiment—could be put into an equal superposition of thinking one thought and thinking another one, 
which we model as 

. 
Now consider the joint state of Wigner and a friend who hasn’t yet measured his state: 

 
From Wigner’s point of view, he’s thinking one thought or the other one.  But from his friend’s 

point of view, he isn’t thinking ​either ​ of them until a measurement gets made.  At that point we’ll have an 
entangled state like 

 
But then what happens if another friend comes along, and then another? 
The point is to highlight an apparent incompatibility between the perspectives of different 

observers.  It seems like ​either ​ we need to retreat into a sort of solipsism—holding that an event that 
happened for Wigner might not have happened for his friend—or else we need some way of regarding 
measurement as fictitious. 
 
 

OK, now let’s discuss a few more interpretations of quantum mechanics.  Our next one isn’t 
really an “interpretation,” but rather a demand for a new physical theory. 
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Dynamical Collapse 
If quantum mechanics doesn’t make sense to us, it’s worth at least considering the possibility that 

it’s not a complete theory.  I.e., that maybe it does a good job of describing microscopic systems, but 
we’re not looking at all of the rules that govern reality. 

In more detail: maybe there exist some physics rules that we haven’t discovered which say that 
qubits ​normally​ evolve via unitary transformations, but that the bigger the system is (or something), the 
more likely it is to collapse.  In that case, we could view collapse as a straightforward ​physical​ process 
that turns pure states into mixed states. 
 

 -​with probability  ​|〈Ψ| ​i​〉| ​2​ = |α​i​| ​2 
 

So in the ​Schrödinger’s cat example, dynamical collapse would say that it doesn’t matter how 
isolated the box is.  There’s some yet-unknown physical law that says that a system that big would 
quickly evolve into a mixed state.

 
 
Note that in principle, there’s a measurement that can distinguish the two states above. 
 
Such a measurement would, admittedly, be absurdly hard to implement.  In fact, a recent result by Prof. 
Aaronson says, informally, that if you have the technological capability to distinguish the two states 
above, then you also have the technological capability to rotate between the cat’s “alive” and “dead” 
states.  For this reason, the Schrödinger’s cat experiment involves ​far ​ less animal cruelty than most people 
say!  If you can do the experiment at all, and prove that you did it, then you can also bring a dead cat back 
to life. 
 
But setting aside technological difficulties, for us the relevant point is this: in saying that the first state 
evolves to the second, we’re proposing new physics, ​different​ from standard quantum mechanics, that in 
principle has testable implications. 

In other words, this isn’t ​really​ interpreting quantum mechanics, it’s just proposing new laws of 
physics!  Physicists have a high bar for such proposals; the burden of proof is on the person proposing the 
new law to explain in quantitative detail how it works.  In this case, that would mean giving a criterion for 
exactly​ which systems are “big” enough, or whatever, to trigger a collapse like the above—and ideally, 
deriving that criterion from more fundamental laws.  Some suggestions include: 

● Collapse happens when some number of atoms get involved 
● Collapse happens after a certain mass is reached 
● Collapse happens when a system reaches a certain level of “complexity” (defined how?) 
● etc. 

○ On their face, all these views seem contradictory to our understanding of physics, which 
relies on ​reductionism​: each atom just keeps obeying the same simple equations, 
regardless of how big or complicated a system the atom might be part of. 

 



To escape that problem, one famous proposal is the… 
 
Ghirardi-Rimini-Weber (GRW) Theory 

which says that each atom has some tiny probability of collapsing (or if you like, “being 
measured by God”) at each point in time.  And if even one atom of Schrödinger’s cat was “measured by 
God,” that would cause the entire cat to collapse to the Alive or Dead states: this part is just the usual 
partial measurement rule of quantum mechanics.  By analogy, measuring just one qubit of 

 ​| ​will resolve all of the qubits to  or .  So in the GRW theory, Schrödinger 
cats are inherently unstable—and the bigger the system, the shorter the time it can be maintained in a 
Schrödinger-cat-like state. 

 
 
another option is the… 
Penrose Theory 

which says that superpositions spontaneously collapse when enough mass gets involved, and the 
mass is separated by a big enough distance across different branches of the superposition. 
 
Why mass and distance?            ​mass here ​▼​      or       ​▼​ mass there 

Say we have the superposition of .  General relativity tells us that mass curves the 
nearby space-time: indeed, bends it like a mattress.  That means that a mass in one location would make 
spacetime curve differently than the same mass somewhere else. 

The thing is, no one really knows how to combine general relativity and quantum mechanics; it’s 
one of the biggest unsolved problems in physics.  In particular, ordinary quantum mechanics presupposes 
space and time, or at least a ​causal structure​: in terms of quantum circuits, if you like, a definite 
collection of qubits and gates acting on those qubits in some order.  No one quite knows what it means to 
have a quantum superposition of different causal structures—yet, that ​seems ​ to be what we’d be talking 
about in the situation with the widely-separated masses.  So, Penrose’s proposal is basically that this 
could be the place where quantum mechanics breaks down, to be superseded by a more complete theory 
that includes “spontaneous collapses.”  And then he has further ideas about how all of this might be 
related to consciousness, which we won’t go into. 
 

One difficulty with this sort of theory, in general, is that the experimenters keep producing 
examples of bigger and bigger states in superposition.  And as long as that continues, it seems like the 
believers in these theories will always need to be on the defensive—adjusting their answers to questions 
like “so, how much mass ​is ​ enough to collapse a state?” to avoid contradicting the latest experiments. 

Early on, we discussed the significance of the double-slit experiment as performed with photons. 
Later on, though, people managed to do the same experiment with protons, then molecules, and in 1999 
the Zeilinger group in Vienna performed it with buckyballs: molecules with 60 atoms and hundreds of 
electrons.  Since then the double-slit experiment has been done with larger molecules still. 
 
To go even further...  
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Superconducting Qubits 

If you take a coil, like maybe a micrometer across, and cool it to almost absolute zero, 
you can get a current that’s in a superposition of the electrons flowing clockwise or 
counterclockwise around the coil. 

This constitutes a quantum superposition involving billions of particles! 
 

We’ll come back to these superconducting coils at the end of the course, 
 as they’re an important technology for quantum computers. 

 
 

Penrose has a specific prediction for the scale at which collapse happens, which might be testable 
in our lifetime.  But with GRW, the prediction is basically just made to avoid contradicting any existing 
experiments. 

 
One position, popular among people who want nature to be efficiently simulatable by a classical computer 
(and thus don’t want quantum computers to work) says that: 
 

A frog can be in a superposition of two states.  However, a complex quantum computer wouldn’t 
work, because quantum systems spontaneously collapse after they achieve “sufficient 
complexity” (whatever that means). 
 
This position is interesting because it could be falsified by building a scalable quantum computer, 

and reaching falsifiable theories is what moves these discussions from philosophy to science. 
 
What happens if we keep doing experiments and quantum mechanics keeps perfectly describing 
everything we see? 

In particular, suppose we ​don’t​ want to add any new physical laws, but we also insist on being 
scientific realists ​—holding that there exists a real state of the universe, and that the job of physics is to 
describe that state, not just to predict the results of measurements made by apes like ourselves. 
 
Well, that combination of choices basically gets you to… 
 
Everett’s Many Worlds Interpretation (1957) 

This famous view holds that the entire universe has a single quantum state , and the entire 

history of the universe is just the vector  going through unitary evolution. 
 

On the Everett view, what we call “measurement,” or “collapse,” is just a special case of quantum 
systems becoming entangled with each other when they interact.  In particular, ​your brain​—not to 
mention, your measuring apparatus, the air molecules in the room, etc. etc.—all become entangled with 
the quantum system that you’re measuring.  You can think of it as a giant Controlled-NOT gate, with the 
system you’re observing as the control qubit and you as the target qubit. 
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The thing is, if you take this view seriously, it implies that ​you yourself​ have now “branched” into two 
possibilities, one where you observed the qubit in the | ​state, and another where you observed the qubit 
in the | ​state.  Because unitary evolution is linear, these two branches are unlikely ever to interfere with 
each other again, or at least not for many quadrillions of years (more about that later).  So your experience 
is ​as if​ only one of the branches was realized—but in truth, neither branch is more real than the other. 

 
More generally, according to MWI, the universe “branches” each and every 
time a microscopic quantum state gets amplified to have macroscopic 
effect—even if there’s no one around to observe the amplification (e.g., if it’s in 
the interior of the Sun or something).  So there’s a staggering amount of 
branching happening!  And because of the well-known phenomenon of ​chaos ​, 
we can expect the branching to influence pretty much everything we care about. 
So for example, there are some branches of the quantum state of the universe 
where Austin is sunny at a specific moment one month from now, others where 

it’s rainy, others where it’s been destroyed in a nuclear war, etc., and no one of these branches is more 
“real” than the rest. 
 

Some variants of the Many Worlds interpretation choose words carefully to avoid sounding like 
there’s ​literal branching into different, equally-real worlds of experience​, but that’s basically what they 
all imply.  When Everett came up with MWI as a grad student at Princeton, his advisor—the famous John 
Wheeler—told him to remove from his paper all references to the physical reality of parallel worlds, 
because it wouldn’t chime with the physics establishment at the time.  So Everett did so, and partly as a 
result, it took almost 20 years for the rest of the physics community to rediscover Everett’s proposal and 
understand what it meant. 

Soon after publishing his thesis about MWI—which he called the “relative state 
 interpretation”—Everett left theoretical physics to become a nuclear war strategist 

 for the Pentagon.  The only public lecture Everett ever gave on MWI was here at 
 UT Austin, decades later, when some people were finally coming around to the idea. 

 David Deutsch, the biggest current advocate of the Many Worlds Interpretation 
 and one of the founders of quantum computing, was there. 

 
One issue that we should return to is interference between branches. 

If the different branches could interfere with each other, it would be as if not just the future but 
the past​ was constantly shifting, with no definite sequence of things that happened and were recorded.  To 
avoid that, we need the “ | ​branch” to ​not​ affect the “ | ​branch,” and vice versa.  Both 
branches might be equally real, but once you’re ​in​ one of the branches, you ought to be able to continue 
doing physics ​as if​ your branch was the only real one. 

Fortunately, the usual rules of quantum mechanics give us this property: we don’t need to add 
anything extra to them.  Recall: to calculate the amplitude of a given basis state | ​in a larger 
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superposition, you add up a contribution from every possible “path” that ends at .  Interference would 
only happen if two “macroscopically different” paths led to ​exactly​ the same outcome—meaning, every 
single atom in the universe in the same position.  But, while that’s not impossible, it’s massively 
“thermodynamically disfavored,” which basically means that it’s less likely to happen than seeing an egg 

unscramble itself.  In fact, the constant proliferation of branches—the way the universe’s state, , 
constantly sprouts new branches, but they almost never recombine—can be seen as literally an ​instance​ of 
the Second Law of Thermodynamics in action, as a process that constantly increases the universe’s 
entropy from the low value it had at the Big Bang. 
 

And ​why​ did the universe have such a low entropy at the Big Bang?  Well, to this day no one knows 
 the answer to ​that​, except that if it didn’t, we probably wouldn’t be here to wonder about it...  

 
Interestingly, if we ​also​ believed that the universe was only finitely large—and in particular, that it could 
be fully described by the unitary evolution of a finite number of qubits (say 10​122​ of them)—then 
eventually​ we’d run out of room, and the branches would necessarily start colliding with each other.  But 
even under that assumption, there doesn’t seem to be any reason for this happen in (say) the next 10​100 
years. 
 

We said before that measurement is the one random and irreversible part of quantum mechanics. 
But Many Worlds denies that even that part is random or irreversible.  After applying a unitary 
transformation  that describes a measurement process, in principle we could always apply | ​to make 
the measurement “unhappen.”  But just like with unscrambling an egg, thermodynamics isn’t going to 
make it easy. 
 
Let’s now discuss some of the most common other questions people have about Many Worlds. 
 
(1) Even if we accept that “measurements” have no fundamental physical status—still, where do the 
apparent​​ probabilities come from? 
 

That is, why does measuring a qubit , in the | ​basis, yield the outcomes 
and | ​with probabilities | ​and | ​respectively? 

It’s not enough to say that sometimes we see  and sometimes we see .  Quantum mechanics 
gives very specific probabilities that each will occur.  But if the world is just branching once for each 
observation, then how can we justify these probabilities as corresponding to anything meaningful?  Does 
an “ | ​fraction of souls” go down one branch while a “ | ​fraction of souls” goes down the other?  Or: 
does the “splitting of the worlds” happen in such a way that amplitudes of | ​and | ​would correspond to  

th​ “volume of worldness” going one way, and th​ going the other? 

Some philosophers don’t like this because if all the worlds are equally real, then why wouldn’t 
they just occur with equal probabilities?  Why bother with amplitudes at all? 

Everett’s response was to argue that if the universe branched many times in succession, then in 
“almost all branches” (where “almost all” is measured by amplitude), it would ​look like​ the Born 
probability rule was obeyed.  But many people in the past half-century have been unsatisfied with that 
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argument, seeing it as circular—indeed, as smuggling the Born rule into the definition of “almost all 
branches”!  So they’ve continued to look for something better. 

There are many arguments, which we won’t go into here, that try to formalize the intuition that 
the Born probabilities are just “baked into” how quantum mechanics works.  After all, unitary evolution 
already singles out the 2-norm as special by preserving it, so then why shouldn’t the probabilities ​also​ be 
governed by the 2-norm?  More pointedly, one can argue that, if the probabilities were governed by 
something other than the 2-norm, then we’d get bizarre effects like faster-than-light communication.  But, 
while these arguments help explain why the Born rule is perhaps the only choice of probability rule that 
makes internal mathematical sense, they still leave slightly mysterious how probability enters ​at all​ into 
Everett’s vision of a deterministically evolving wavefunction. 

In Everett’s defense, one could ask the same questions—”where do these probabilities come 
from?  why should they follow the Born rule, rather than some other rule?”—in ​any​ interpretation, not 
just in MWI. 
 
(2) “If there’s no experiment that could differentiate the Copenhagen Interpretation from Many 
Worlds, why bother arguing about it?” 

 
Many Worlders say that the opponents of Galileo and Copernicus could also claim the same about 

the Copernican versus Ptolemaic theories, since Copernican heliocentrism made no difference to the 
predictions of celestial movement. 

Today, we might say that the Copernican view is better because you could fly outside of the solar 
system and see all the planets (including Earth) rotating around the far more massive sun; it’s only our 
parochial situation of living on Earth that ever motivated geocentrism in the first place. 

But if we push this analogy further, it might be harder to think of anything similar for the Many 
Worlds interpretation, since quantum mechanics itself explains why we can’t really get outside of the 
universe to see the branching—or even get outside our own branch to interact in any way with the other 
decoherent branches. 
 
There is one neat way you could imagine differentiating the two, though... 

Before we talked about doing the double-slit experiment with larger and 
larger systems.  Bringing that thread to its logical conclusion, ​what if we could run 
the double-slit experiment with a person going through the slits? 

It seems like it would then be necessary to say that “observers” can, indeed, 
exist in superpositions of having one experience and having a different one.  This is 
what Many Worlds said all along, but seems to put a lot of rhetorical strain on the 
Copenhagen interpretation. 

If you talk to modern Copenhagenists about this they’ll take a quasi-solipsistic view, saying that 
if this experiment were run, “the person behaving quantumly doesn’t count as an observer---only I, the 
experimenter, do.” 

Of course, the Wigner’s Friend experiment was trying to get at this same difficulty. 
 

The third question we want to tackle is the ​Preferred Basis Problem​​.  It says: 
“Let’s say I buy into the argument that the universe keeps branching, well then…” 



 
(3)  In what basis is this branching occurring? 
 
We talked about Schrödinger’s cat as branching into the 

 state and the | ​state. 
 
 
But mathematically, we could equally well have decomposed the cat’s state in a basis like 

 
 
So is there anything besides our intuition to “prefer” the first decomposition over the second one? 
 
There’s a whole field of physics that tries to answer questions like these, called... 
Decoherence Theory 

which says that there are certain bases whose states tend to be robust to interactions with the 
environment, but most bases aren’t like that. 

So in the example above, decoherence theory would explain that an alive cat doesn’t easily 

decohere if you poke it, but that a cat in the | ​state does, because the | ​and  

branches interact differently with the environment.  This, according to decoherence theory, is 
more-or-less how the laws of physics pick out certain bases as being special. 
 

From the standpoint of decoherence theory, we can say that an event has “definitely happened” if 
and only if there exist many records of the event scattered all over the place, so that it’s no longer feasible 
to erase them all. 

This is perhaps best compared to putting an embarrassing picture on Facebook.  If only a few 
friends share it, you can still take it down.  On the other hand, if the picture goes viral, then the cat is out 
of the bag, and deleting all the copies becomes next to impossible. 
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Lecture 13, Tues Feb 28: Hidden Variables, 
Bell’s Inequality 
 
In the last lecture, we discussed four different attitudes people take toward quantum mechanics: 
Copenhagen, “shut up and calculate,” dynamical collapse, and Everett’s Many-Worlds Interpretation. 
You might think that ​all​ the options we’ve seen so far are bizarre and incomprehensible (Einstein 
certainly did), and wonder if we could come up with a theory that avoids all of the craziness.  This leads 
us to the old dream of… 
 
Hidden Variable Theories 

which try to supplement quantum state vectors with some sort of hidden ingredients.  The idea is 
to have a state, like , represent “merely” a way of making a prediction about what the 
universe​ has already ​set the result of measuring the qubit to be: either | ​or . 
 
The most famous hidden-variable theory is... 
Bohmian Mechanics 

which was developed by David Bohm in the 1950s.  It’s also called the 
“deBroglie-Bohm theory,” because it turns out that Louis de Broglie had the exact 
same idea in the 1920s—although deBroglie quickly disavowed it, after the idea 
faced a poor reception from other quantum mechanics pioneers. 

Normal quantum mechanics says that a particle is in a superposition of 
locations, which we can use to calculate the probability that the particle will be found in one place or 
another when measured—and moreover, that this superposition exhausts what can be said about the 
particle’s location.  But, while keeping that superposition as part of physics, we now want to say that 
there’s ​also​ a “real place” where the particle is, even before anyone measures it.  To make that work, we 
need to give a rule for how the superposition “guides” the real particle.  And this rule should have the 
property that, if anyone ​does​ measure the particle, they’ll find exactly the result that quantum mechanics 
predicted for it---since we certainly don’t want to give up on quantum mechanics’ empirical success! 
 

At first, you might think it would be tricky to find such a rule; indeed, you might wonder whether 
such a rule is possible at all.  However, the real problem turns out to be more like an embarrassment of 
riches!  There are infinitely many possible rules that could satisfy the above property—but by design, they 
all yield exactly the same predictions as standard quantum mechanics.  So there’s no experimental way to 
know which one is correct. 
 

To explain this in a bit more detail, let’s switch from particle positions back to the discrete 
quantum mechanics that we’re more comfortable with in this course.  Suppose we have a quantum pure 
state, represented as an amplitude vector in some fixed basis.  Then when we multiply by a unitary 
transformation, suppose we want to be able to say: “this is the basis state we were​ really in​ before the 



unitary was applied, and this is the one we’re ​really in​ afterwards.”  In other words, we want to take the 
equation 
 

 
 
and map it to an equation 
 

 
 
for some choice of stochastic matrix  (possibly depending on the input and output vectors). 
 

 

There are many, many such matrices .  For example you could put  in every column, 
which would say that you’re always jumping randomly over time, but in a way that preserves the Born 
Rule.  You could have been in a different galaxy a Planck time ago; now you’re here (with fictitious 
memories planted in your brain); who knows where you’ll be a Planck time from now? 
 

But Bohm thought, not about this discrete setting, but mostly about the example of a particle 
moving around in continuous Euclidean space.  And in the latter case, it turns out that one can do 
something nice that isn’t possible with finite-dimensional unitary matrices.  Namely, one can give a 
deterministic​ rule for how the particle moves around—a differential equation—that still reproduces the 
Born rule at every instant in time, provided only that it reproduces the Born rule at any ​one​ time.  More 
poetically, “God needs to use a random-number generator to initialize the hidden variables at the 
beginning of time”—say, at the Big Bang—but afterwards, they just follow the differential equation.  And 
furthermore, while the choice of differential equation isn’t quite unique, in simple scenarios (like a 
particle moving around in space) there’s one choice that seems ​better ​, simpler, more motivated than the 
rest. 
 

However, in thinking through the implications of Bohmian mechanics, Bohm and others noticed 
lots of weird things.  It looks very elegant with just one particle, but new issues arise when there are two 
entangled particles.  Bohmian mechanics says that you need to give a definite position for both particles, 
but people noticed that acting on Alice’s particle would ​instantaneously​ change the Bohmian position of 
Bob’s particle, however far away the particles were—even while Bob’s ​density matrix​ remained 
unchanged because of the No-Communication Theorem. 
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While unsettling, this still wouldn’t be useful for faster-than-light communication, 
 since the Bohmian hidden variables are explicitly designed to have no measurable 

 effects, over and above the effects we’d predict using the quantum state itself. 
 

When Bohm proposed his interpretation, he was super eager for Einstein to accept it, but Einstein 
didn’t really go for it, probably because of this non-locality problem. 
 
What Einstein really wanted (in modern terms), is a… 
 
Local​​ Hidden Variable Theory 

where hidden variables not only exist, but can be localized to specific points in space, and are 
only influenced by things happening close to them. 
 

For example, imagine that when an entangled pair  is created, the qubits secretly flip a coin and 
decide, “if anyone measures us in the | ​basis, let’s both be .”  More broadly, imagine that they 
agree in advance on such answers for all questions that could be asked (i.e., all bases in which they could 
possibly be measured), and that each qubit carries around its own local copy of the answers. 
 

This is ​not​ Bohmian mechanics.  In fact, around 1963 John Bell wrote a paper that drew attention 
to the non-local character of Bohmian mechanics.  Bell remarked that it would be interesting to prove that 
all​ hidden variable theories must be non-local: that this isn’t just a defect of Bohm’s proposal, but 
inherent to what Bohm was trying to do.  The paper has a footnote saying that as the paper was going to 
press, such a proof was found.  This was the first announcement of one of the most famous discoveries 
ever made about quantum mechanics, what we now call 
 
Bell’s Inequality / Bell’s Theorem 

Einstein and others had already touched on the idea of local hidden variables in their 
philosophical debates in the 1930s.  But Bell was the first to ask: do local hidden variables have any 
empirical consequences ​ that disagree with the predictions of quantum mechanics?  Is there an actual 
experiment that could rule out the possibility of local hidden variables? 

Bell came up with such an experiment.  We’ll describe it differently from how Bell did—more 
computer science-y—as a game with two cooperating players named (what else?) Alice and Bob, where 
the win probability can be improved through shared entanglement.  It’s called… 
 
The CHSH Game 

named after four people (Clauser, Horne, Shimony, and Holt) who in 1969 wrote a paper saying 
“​this ​ is how to think about what Bell did.”  The game itself doesn’t involve quantum mechanics, but 
quantum mechanics can help us win it. 

The CHSH game could be seen as a precursor to quantum computing, in that it’s one of 
 the first cases where people looked to see which information processing tasks quantum 

 mechanics helps us solve better—and where they enforced a conceptual separation between 
 the task itself (which is classical), and the strategy to solve it (which can be quantum). 
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The idea is that Alice and Bob are placed in separate rooms, and are each given a challenge bit (​x 

and ​y​, respectively) by a referee.  The challenge bits are chosen uniformly at random, and independently 
of each other.  Then Alice sends an answer bit ​a​ back to the referee, and Bob sends back an answer bit ​b​. 
 
Alice and Bob “win” the game iff​ a + b = xy (mod 2) 

So if either ​x​ or ​y​ is 0: a​ and ​b​ should be equal 
But if ​x​ = ​y​ = 1: a​ and ​b​ should be different 

 
Alice and Bob are allowed to agree on a strategy in advance, and to share random bits. 
 

The ​classical strategy​ to maximize winning probability is simply that Alice and Bob always send 
the referee ​a​ = ​b​ = 0, regardless of what ​x​ and ​y​ are.  In this case, Alice and Bob win 75% of the time, 
losing only if ​x​ and ​y​ are both 1. 

To prove that this is optimal, the first step is to notice that, without loss of generality, Alice and 
Bob’s strategy can be assumed to be deterministic (i.e., to involve no random bits besides ​x​ and ​y 
themselves).  For any probabilistic strategy is just a mixture of deterministic ones—but then the win 
probability is just the average over all the strategies, so there must be ​some​ deterministic strategy in the 
mixture that does at least as well as the average.  (This is called a ​convexity argument​.) 

So we can treat Alice’s output bit, ​a​, as a function of her input bit ​x​, and Bob’s output bit ​b​ as a 
function of his input bit ​y​.  And then we need the equation 

a(x) + b(y) = xy (mod 2)  
OK, but you can easily check by enumerating cases that this equation can’t possibly hold for all 4 values 
of ​x​ and ​y​!  At best it can hold for 3 of the 4 values, which is exactly what the trivial strategy above gets. 
 
The Bell Inequality​​, in this framework, is just the slightly-boring statement that we proved above: 
namely, that the maximum classical win probability in the CHSH game is 75%. 
 

Bell noticed an additional fact though.  Namely, if Alice and Bob had a pre-shared Bell pair, , 
then​ there’s a better strategy.  In that case, in fact, their maximum win probability is 
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Why?  Tune in next time to find out! 
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Lecture 14, Thurs March 2: Nonlocal Games 
 

Last time we talked about the CHSH Game, and how no classical strategy lets Alice and Bob win 
it more than 75% of the time.  Today we’ll see how, by using entanglement, they can win 85% of the 
time—and then we’ll delve deeper to try to understand what’s going on. 
 
The strategy involves Alice and Bob measuring their respective qubits in different bases, depending on 
whether their input bits ​x​ and​ y ​are 0 or 1, and then outputting bits ​a​ and ​b​ respectively based on the 
outcomes of those measurements. 
 
Let ,  and let . 
 
 
 
If ​x​ = 0, Alice measures in and if ​x​ = 1, Alice measures in  
 
 
She sets ​a​ to 0 if she measures | ​or  
  and 1 if she measures | ​or  
 
 
If ​y​ = 0, Bob measures in the X basis rotated by | ​clockwise. 
 
 
and if ​y​ = 0 rotated by , he sets ​b​ to 0 if he measures -​or  

      1 if otherwise 
 
 
This strategy has the amazing property of making Alice and Bob win with probability | ​for all 
possible values of ​x​ and ​y​. 
 
So why does this strategy work 85% of the time? 
Let’s consider the case where Alice gets ​x ​= 0 and measures . 
She’ll output ​a​ = 0, and she and Bob will win iff Bob outputs ​b​ = 0. 
 
So what are the odds that Bob outputs 0? 

Given that Alice measured her qubit already, Bob’s qubit collapsed to 
the | ​state. 

First suppose ​y​ = 0.  Then Bob measures the | ​state in a basis rotated 
by | ​clockwise.  He outputs 0 if he measures . Thus, the probability that 
Bob outputs 0 in this case is . 



We can do the same calculation for the case ​y​ = 1.  The angle between vectors is still .  In fact, 
we can generalize this result to ​all​ the cases where either ​x​ or ​y​ is 0. 

Note that we can assume without loss of generality that Alice measures first, 
 because of the No Communication Theorem. 

 
The interesting case is where ​a​ and ​b​ are both 1. 

Here Alice measures in the | ​basis.  Assume without loss 
of generality that Alice gets the outcome .  Then what’s Bob’s probability 
of getting the outcome ? 

It’s still , because the angle between | ​and | ​is , and 
global phase doesn’t matter. 
 

So, Alice and Bob win the game with probability | ​in all four cases. 
 

How does this game relate to hidden variable theories?  Well, if all correlations between the 
qubits could be explained by stories like “if anyone asks, we’re both 0,” then we’d make a firm 
prediction: that Alice and Bob can win the CHSH game at most 75% of the time (because that’s how well 
they can do by pre-sharing arbitrary amounts of classical information). 

So if they play the game repeatedly, and demonstrate that they can win more than 75% of the 
time, then local realism is false.  Notice that nowhere in this argument did we ever need to presuppose 
that quantum mechanics is true. 
 
Does Alice and Bob’s ability to succeed more than 75% of the time mean that they are communicating? 

Well, we know it’s not possible for either to send a signal to the other, by the No-Communication 
Theorem.  But how can we reconcile that with their success in the CHSH game? 

One way to understand what’s going on, is to work out Alice and Bob’s density matrices 
explicitly. 

Bob’s initial density matrix is -​and after Alice measures it’s still . 
 

  
So in that sense, no signal has been communicated from Alice to Bob.  Nevertheless, ​if​ you knew 

both Alice’s measurement and its outcome, then you could update Bob’s density matrix to that of a pure 
state.  That shouldn’t worry us though, since even classically, if you condition on what Alice sees then 
you can change your predictions for Bob. 
 

Imagine a hierarchy of possibilities for what the universe allows.  ​Classical Local Realism​ is at 
the bottom: that’s where you only ever need to use classical probability theory when you have incomplete 
information about physical systems, ​and also​ signals propagate only at the speed of light. 

At the top of the hierarchy is the ​Faster-Than-Light Science-Fiction Utopia​, where Alice and Bob 
can communicate instantaneously, you can travel faster than light, and so forth. 
 



A priori, people tend to believe that reality must be one or the other.  So when they read 
pop-science articles about how classical local realism is false, they think, “OK, 
then we must live in the FTL sci-fi utopia.”  

Instead, the truth—according to quantum mechanics—is in the middle, 
and is so subtle that perhaps no science-fiction writer would ever have had the 
imagination to invent it.  We live in a world where there’s no classical local 
realism, but no faster-than-light communication either.  Or to put it another way: a 
classical​ ​simulation​ of our universe would involve FTL communication, but our 
universe itself does not. 

Maybe no science fiction writer ever came up with this possibility, 
simply because it’s hard to think of a plot that requires Alice and 

 Bob to win the CHSH game 85% of the time instead of 75%! 
 
Indeed, this is a key piece of evidence that our world really ​is ​ quantum, and is not secretly 

classical behind the scenes: because we know from Bell that the latter possibility would require FTL 
communication. 

 
So where is that -​coming from anyways?  It seems so arbitrary… 

It may seem like the | ​is simply coming from our particular approach to the problem.  
Maybe if we came at it another way, we could use entanglement to win ​even more​ than 85% of the time: 
why not 100%? 
 
Surprisingly, | ​turns out to be optimal, even if Alice and Bob share unlimited amounts of 
entanglement.  This is the upshot of 
 
Tsirelson’s Inequality 

...a cousin of the Bell inequality, proved in the 1980s. 
 
It requires a ​bit​ too much machinery to give a complete proof of Tsirelson’s Inequality here.  However, 
we’ll convey the intuition, by showing that, among strategies “similar to the one we used,” ours was the 
optimal one. 
 

Let’s say that Alice has two angles: 
,​ ​the angle she measures in if she receives input ​x​ = 0, and 
, the angle she measures in if she receives input ​x​ = 1. 

Similarly, Bob has 𝜏​0​ and 𝜏​1​, corresponding to ​y​ = 0 and ​y​ = 1 respectively . 
 

The same rules apply from the solution we constructed earlier for the CHSH game. 
All we’re doing here is changing the chosen vectors into variables to try 

and show that there’s no better vectors to chose than the ones we did. 
 
The key formula is this: Alice and Bob’s total success probability is 



Why? 
1. Each of the four input pairs has an equal chance of occurring. 
2. In the first three cases, Alice and Bob win iff they output the same bit, so we take the squared 

cosine between their measurement angles. 
3. But in the fourth case, ​x​ = ​y​ = 1, Alice and Bob win iff they output ​different​ bits.  So in this case, 

we take the squared sine between their measurement angles. 
 
Now we use some high-school trigonometry to get the above equals 

 
 
We can get rid of the 2’s inside the cosines, by simply realizing that we could adjust our original angles to 
account for them. 
 
It will be helpful to think of the cosines as the inner products between unit vectors.  In that case, we can 
rewrite the above as 

 

 
 
Since ​u​0​, u​1​, ​v​0​, and v​1​ are all unit vectors, the above is upper-bounded by 

 
 
From here, we can use the parallelogram inequality to bound it further: 

 
 
Which equals 

 
 
Which wouldn’t you know it, is equal to 

  
 
So ​that really is the maximum winning probability for the CHSH game. 
 

There’s been a trend in the last 15 years to study theories that would go past quantum mechanics 
 by letting you violate Tsirelson’s Inequality, but that would still prohibit faster-than-light travel. 
  In such a world, it’s been proven (among other things) that if Alice and Bob wanted to schedule 

something on a calendar, they could decide if there’s a date where they’re both free by exchanging only 
one bit of communication.  That’s a lot better than can be done under the rules of quantum mechanics! 
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Testing the Bell Inequality 
When Bell proved his inequality, he was just trying to make a conceptual point, about the 

necessity for nonlocal influences in any hidden-variable theory underlying quantum mechanics.  But by 
the 1980s, technology had advanced to the point where playing the CHSH game was actually a feasible 
physics experiment!  Alain Aspect (and others) ran the experiment, and the results were fully consistent 
with quantum mechanics, and extremely problematic for local hidden variable theories. 

The experiments don’t quite get to 85% success probability, given the usual 
 difficulties that afflict quantum experiments.  But you can reach a high 

 statistical confidence that you’re winning more than, say, 80% of the time. 
 
This was evidence, not only that local realism was false, but also that ​entanglement had been 

created​. 
Most physicists shrugged, already sold on quantum mechanics (and on the existence of 

entanglement).  But a few, still committed to a classical view of the world, continued to look for 
loopholes in the experiment. 

Skeptics pointed out two loopholes in the existing experiments, essentially saying “if you squint 
enough, classical local realism might still be possible”: 

1. Detector Inefficiency 
Sometimes detectors fail to detect a photon, or they detect non-existent photons.  Enough noise in 

the experiments could skew the data. 
2. The Locality Loophole 

Performing the measurements and storing their results in a computer memory takes some time: 
maybe nanoseconds or microseconds.  Now, unless Alice and Bob and the referee are ​very​ far away from 
each other, this opens the possibility of a sort of “local hidden variable conspiracy,” where as soon as 
Alice measures, some particle (unknown to present-day physics) flies over to Bob and says “hey, Alice 
got the measurement outcome 0; you should return the measurement outcome 0 too.”  The particle would 
travel “only” at the speed of light, yet could still reach Bob before his computer registered the 
measurement outcome. 
 

By the 2000s, physicists were able to close loophole 2, but only in experiments still subject to 
loophole 1.  And conversely, they could close loophole 1, but only in experiments still subject to 2. 
Finally, in 2016, several teams managed to do experiments that closed both loopholes simultaneously.  
 

There are still people who deny the reality of quantum entanglement, but through increasingly 
solipsistic arguments.  For example…  

 
Superdeterminism 

is a strange way to maintain that classical local realism is still the law of the land. 
Superdeterminism explains the results of CHSH experiments by saying “We only ​think​ Alice and Bob can 
choose measurement bases randomly.  Actually, there’s a grands cosmic conspiracy involving all of our 
brains, our computers, and our random number generators, with the purpose of rigging the measurement 
bases to ensure that Alice and Bob can win the CHSH game ~85% of the time.  But that’s all this cosmic 
conspiracy does: it doesn’t allow FTL communication or anything like that, even though it easily could.” 



Nobel Laureate Gerard ‘t Hooft advocates superdeterminism, so it’s not like the idea lacks 
distinguished supporters, but Professor Aaronson is on board with entanglement. 
 
 
Now we’ll look at some other non-local games, to see what else entanglement can help with. 
First we have… 
 
The Odd Cycle Game 

There’s a cycle with an odd number of vertices ​n​. 
Alice and Bob claim that they have a two-coloring of the 

cycle, but basic graph theory tells us that this isn’t possible. 
Nevertheless, Alice and Bob will try to convince a referee that 

they’ve found a two-coloring anyway.  They’ll do that by using 
entanglement to coordinate their responses to challenges from a 
referee. 
 
The referee performs two obvious consistency checks: 

● He can ask them both the color of a random vertex ​v​, in the two-coloring they found. 
○ They pass the test iff their answers are the same 

● He can ask Alice the color of a random vertex ​v​, and Bob the color of an adjacent vertex ​w​. 
○ They pass the test iff their answers are different 

The referee chooses between these tests with equal probability—and crucially, he doesn’t tell Alice or 
Bob which test he’s performing. 
 
In a single run of the game, the referee performs one such test, and gets answers from Alice and Bob. 
Without loss of generality, assume their answers are always RED or BLUE. 
 
What strategy provides the best probability that Alice and Bob will pass the referee’s test and win the 
game? 
 

Classically​, we know that regardless of what Alice and Bob do, . 
 
Why?  Because for Alice and Bob to answer all possible challenges correctly, they’d need an  

actual two-coloring, which is impossible.  The best they can do is agree on a coloring for all but one of the 

vertices, which gets them . 

 
Nevertheless, we claim that ​quantumly​ Alice and Bob can do better, and can achieve 

. 

if they pre-share a single Bell pair, . 
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The strategy is as follows: Alice and Bob both measure their qubits in a basis depending on the vertex 
they’re asked about. 

The measurement bases for adjacent vertices differ by , so the 
bases rotate all the way around the unit circle. 

The first basis has outcome | ​map to answering BLUE, and 
outcome | ​map to answering RED.  The second basis has outcome 

 map to answering RED, and outcome | ​map to 
 answering BLUE.  They continue alternating in this way. 
 
 

The upshot is that, when Alice and Bob are asked about the same 
vertex, they both measure in the same basis, and thus answer with 
the same color. 

On the other hand, when Alice and Bob are asked about adjacent vertices, we get a similar 
situation to the CHSH game, where the probability of Bob producing the same output as Alice, is the 
squared sine of the angle between their vectors: 

. 
 
Another crazy game is…  
The Magic Square Game 

Here Alice and Bob claim that they can fill a 3×3 grid with 0’s and 1’s 
so that: 

1. Every row has an even sum 
2. Every column has an odd sum 

The referee asks Alice to provide a randomly-chosen row of the grid, 
and asks Bob to provide a randomly-chosen column.  Alice and Bob “win” the 
game if and only if: 

● The row has an even sum 
● The column has an odd sum 
● The row and column agree on the square where they intersect 

 
You can see that constraints 1 and 2 ​can’t​ actually both be satisfied, by examining the total 

number of 1’s in the grid.  Constraint 1 requires this total number to be even, while constraint 2 requires it 
to be odd.  This implies that there’s no ​classical strategy​ that lets Alice and Bob win the game with 
probability 1. 

Nevertheless, David Mermin (the author of our textbook) discovered a ​quantum strategy​ where 
Alice and Bob win with probability 1.  This strategy requires them to share 2 ebits of entanglement. 

We won’t describe the strategy in class, since it’s very complicated to state without the 
“stabilizer formalism,” which we haven’t yet seen (but will by the end of the course). 
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Lecture 15, Thurs March 9: Einstein-Certified 
Randomness 
 

Until recently, the Bell inequality was taught because it was historically and conceptually 
important, not because it had any practical applications. Sure, it establishes that you can’t get away with a 
local hidden variable theory, but in real life, no one ​actually​ wants to play the CHSH game, do they?  In 
the last 10 years, however, it’s found applications in… 
 
Generating Guaranteed Random Numbers 

This is one of the most important tasks in computing 
(and certainly in cryptography).  Once we have quantum 
mechanics, you might think that the solution is trivial.  After 
all, you can get a random bit by measuring the | ​state in the 

| ​basis.  Easy, right?  But this solution isn’t good enough for cryptography.  Cryptographers are 
paranoid people, and they want the ability to maintain security, even if the hardware they’re using was 
designed by their worst enemy. 

These sorts of assumptions aren’t just academic speculation, especially given the Snowden revelations. 
For example, NIST (the National Institute of Standards and Technology) put out a 

 standard for pseudo-random number generation based on elliptic curves to be used 
 for encryption a while back.  This standard was later discovered to have a backdoor 

 created by the NSA that would allow them to predict the output numbers, 
 thus being able to break systems encrypted under this standard. 

 
Thus cryptographers want to base their random number generation on the smallest set of 

assumptions possible.  They want bits that are guaranteed to be random, and to be sure that no one added 
predictability through any sort of backdoor. 

You might think that, logically, one can never prove that numbers are truly random: that the best 
one can ever say is “​I ​ can’t find any pattern here.”  After all, you can’t prove a negative, and if not the 
NSA, who’s to say that God himself didn’t insert a pseudorandom pattern the workings of quantum 
mechanics? 

Though presumably, if God wanted to read our emails he could also do it some other way... 
 

That’s what makes it so interesting, and non-obvious, that the Bell inequality ​lets us certify 
numbers as being truly random​ under very weak assumptions, which basically boil down to “no 
faster-than-light travel is possible.”  Let’s now explain how. 
 
Suppose you have two boxes that share quantum entanglement.  We’ll imagine the boxes were designed 
by your worst enemy, so you trust nothing about them.  All we’ll assume is that the boxes can’t send 
signals back and forth (say, because you put them in Faraday cages, or separate them by so large a 
distance that light has no time to travel between them). 



A referee sends the boxes challenge numbers, ​x​ and ​y 
respectively. 
The boxes return numbers ​a​ and ​b​ respectively. 
If the returned numbers pass a test, we’ll declare them to be 
truly random. 
 

So what’s the trick?  Well, we already saw the trick; 
it’s just the CHSH game! 
 

The usual way to present the CHSH game is as a 
way for Alice and Bob to prove that they share entanglement—and thus, that the universe is 
quantum-mechanical, and that local hidden-variable theories are false. 

However, winning the CHSH game more than 75% of the time ​also​ establishes that ​a​ and ​b​ must 
have some randomness, that there was some amount of entropy generated. 

Why?  Because suppose instead that ​a​ and ​b​ were deterministic functions—i.e., suppose they 
could be written as ​a​(​x​, ​r ​) and ​b​(​y​, ​r ​) respectively, in terms of Alice and Bob’s inputs as well as shared 
random bits.  In that case, whatever these functions were, they’d define a local hidden-variable theory, 
which is precisely what Bell rules out! 

So the conclusion is that, if 
(1) x​ and ​y​ are random and 
(2) there’s no communication between Alice and Bob, 

then there must exist at least some randomness in the outputs ​a​ and ​b​. 
 
Around 2012, Umesh Vazirani coined the term ​Einstein-Certified Randomness ​ for this sort of thing.  The 
basic idea goes back earlier—for example, to Roger Colbeck’s 2006 PhD thesis, and (in cruder form) to 
Prof. Aaronson’s 2002 review of Stephen Wolfram’s ​A New Kind of Science​, which used the idea to 
refute Wolfram’s proposal for a deterministic hidden-variable theory underlying quantum mechanics. 

 
OK, so how do we actually extract random bits from the results of the CHSH game? 

You could just take the stream of all ​a​’s and ​b​’s that are output, after many plays of the CHSH 
game.  Admittedly, this need not give us a ​uniform​ random string.  In other words, if the output string ​x 
has length ​n​, then its Shannon entropy, 

 

where ​p​x​ ​| ​is the probability of string ​x​, will in general be less than ​n​.  However, we can then convert ​x​, if 
we like, into an (almost) uniformly random string on a smaller number of bits, say | ​or something, by 
using a well-known tool from classical theoretical computer science called a ​randomness extractor ​.  A 
randomness extractor—something we already met in the context of quantum key distribution—is a 
function that crunches down many sort-of-random bits (and, typically, a tiny number of truly random bits, 
called the ​seed​) to fewer very random bits. 

David Zuckerman (here at UT) is an expert on randomness extractors. 
 
OK, but there’s an obvious problem with this whole scheme. 
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Namely: we needed the input bits to be uniformly random, in order to play the CHSH game.  But 
that means we put in two perfect random bits, ​x​ and ​y​, in order to get out two bits ​a​ and ​b​ that are ​not 
perfectly random!  In other words, the entropy we put in is greater than the entropy we get out, and the 
whole thing is a net loss. 

A paper by Pironio et al. addressed this by pointing out that you don’t have to give Alice and Bob 
perfectly random bits every time the CHSH game is played.  Instead, you can just input ​x = y = ​0 most of 
the time, and occasionally stick in some random ​x​’s and ​y​’s to prevent Alice and Bob from using hidden 
variables.  Crucially, if Alice or Bob gets a 0 input in a given round, then they have no way of knowing 
whether that round is for testing or for randomness generation.  So, if they want to pass the 
randomly-inserted tests, then they’ll need to play CHSH correctly in ​all​ the rounds (or almost all of them), 
which means generating a lot of randomness. 
 
At this point it all comes down to a quantitative question: 
 
So how much entropy can we get out, per bit of entropy that we put in? 

There was a race to answer this, by designing better and better protocols that got more and more 
randomness out per bit of randomness invested.  First Colbeck showed how to get  bits out per  bits 
in, for some constant .  Then Pironio et al. showed how to get  bits out per  bits in.  Then 
Vazirani and Vidick showed how to get | ​bits out per  bits in, which is the first time we had 
exponential randomness expansion.  But all this time, an obvious question remained in the background: 
“why not just use a constant amount of randomness to jumpstart the randomness generation, and then feed 
the randomness outputted by Alice and Bob back in as input, and so on forever, thereby getting ​unlimited 
randomness out?” 

It turns out that a naïve way of doing this doesn’t work: if you just feed Alice and Bob the same 
random bits that they themselves generated, then they’ll ​recognize​ those bits, so they won’t be random ​to 
them​—and that will let Alice and Bob cheat, making their further outputs non-random. 

Remember: We’re working under the assumption that 
 “Alice” and “Bob” are machines designed by our worst enemy! 

If you don’t have a limit on the number of devices used, then a simple fix for this problem is to 
feed Alice and Bob’s outputs to two other machines, Charlie and David.  Then you can feed Charlie and 
David’s outputs to two more machines, Edith and Fay, and so on forever, getting exponentially more 
randomness each time. 

OK, but what if we have only a ​fixed​ number of devices (like 4, or 6), and we still want unlimited 
randomness expansion?  In that case, a few years ago Coudron and Yuen, and independently Chung, 
Miller, Shi, and Wu, figured out how to use the additional devices as “randomness laundering 
machines”—basically, converting random bits that Alice and Bob can predict into random bits that they 
can’t​ predict, so that then the output bits can be fed back to Alice and Bob for further expansion, and so 
on as often as desired. 

One question that these breakthrough works ​didn’t​ address, was exactly how many random 
“seed” bits are needed to jump-start this entire process.  Like, are we talking a billion bits or 2 bits?  In a 
student project supervised by Prof. Aaronson, Renan Gross calculated the first explicit upper bound, 
showing that a few tens of thousands of random bits suffice.  That’s likely still far from the truth: it might 
be possible with as few as 10 or 20. 
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It’s a pretty amazing conceptual fact that playing the CHSH game can lead to certified random 
bits (and worth mentioning that this sort of protocol has already been experimentally demonstrated at 
NIST).  So you might wonder… 
 
What else can you certify about two separated boxes, by seeing them win at the CHSH game? 

It turns out that the answer is: an ​enormous ​ number of things. 
In a tour-de-force in 2012, Reichardt, Unger, and Vazirani showed how to use a sequence of 

CHSH-like challenges to certify that Alice and Bob performed a specific sequence of unitary 
transformations on their qubits (up to local changes of basis).  This means that, just by making Alice and 
Bob repeatedly win the CHSH game, you can force them to do ​any quantum computation of your choice​. 
Reichardt et al. describe this as a “classical leash for a quantum system.” 

This sort of thing constitutes one of the main current ideas for how a classical skeptic could verify 
the operation of a quantum computer.  For (say) factoring a huge integer into primes, we can easily verify 
the output of a quantum algorithm, by simply multiplying the claimed factors and seeing if they work! 
But this isn’t believed to be the case for all problems that a quantum computer can efficiently solve. 
Sometimes, the only way to efficiently verify a quantum computer is working correctly might involve 
using quantum resources yourself.  What Reichardt et al. show is that, as long as we have ​two​ quantum 
computers, and as long as those quantum computers are entangled with each other but unable to exchange 
messages, we can use the CHSH game to verify that the computers are behaving as expected. 
 
This brings us nicely to ​quantum computation ​, which is probably the subject that most of you took the 
course to learn about!  We’ll begin discussing quantum computation in earnest in the next lecture. 



Lecture 16, Tues March 21: Quantum 
Computing, Universal Gate Sets 
Guest Lecture by Tom Wong 
 

Having seen lots of quantum protocols, we’re finally ready to tackle the holy grail of the field: a 
programmable quantum computer ​, a single machine that could do ​any​ short series of 
quantum-mechanical operations. 
 
Quantum computation has two intellectual origins. 

One comes from David Deutsch, who was thinking about experimentally testing the 
Many-Worlds Interpretation (of which he was and remains a firm believer), during his time as a postdoc 
here at UT Austin.  Much like with Wigner’s friend, Deutsch imagined creating an equal superposition of 
a human brain having measured a qubit as , and the same brain having measured the qubit as .  In 
some sense, if you ever had to ascribe such a superposition state to ​yourself​, then we’d have to discard the 
Copenhagen Interpretation. 

But how could we ever test this?  Given the practical impossibility of isolating all the degrees of 
freedom in a human brain, ​Step 1​ would presumably have to be: take a complete description of a human 
brain, and upload it to a computer.  Then ​Step 2​ would be to put the computer into a superposition of 
states corresponding to different thoughts. 

But then, this leads to more general questions: ​could​ anything as complicated as a computer be 
maintained in a superposition of “semantically different” states?  How would you arrange that, in 
practice?  And would such a computer be able to use its superposition power to do anything that it 
couldn’t do otherwise? 
 

The other, more “respectable,” path to the same questions came from Richard Feynman, who 
gave a famous lecture in 1982 concerned with the question, “how do you simulate quantum mechanics on 
a classical computer?” 

Chemists and physicists had known for decades that this is hard, basically because the number of 
amplitudes that you need to keep track of increases exponentially with the number of particles.  This is the 
case because, as we know, an -qubit state can be highly entangled. 
 

The state  ​| must be described by the vector |  ​of length  
  

 
Chemists and physicists know many approximation methods for such problems—going by names 

like Density Functional Theory and Quantum Monte Carlo—that often work in practice.  In the worst 
case, though, even to solve for the energy of the system, or for the state of some particular qubit, there’s 
no known shortcut to dealing with the whole vector of  amplitudes.  So Feynman raised the question, 
“Why don’t we build computers ​out of qubits ​, which themselves could take advantage of superposition 
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and interference and entanglement?”  Of course he then faced the question: supposing we built such a 
computer, what would it be useful for?  At that time, he was really only able to suggest one answer to that 
question: namely, it would be good for simulating quantum mechanics itself!  If and when quantum 
computers really become practical, that’s probably still the most important application we know for them. 
In any case, no one knew at the time whether quantum computers would be useful for “classical” tasks as 
well: that’s a different, harder question, which will occupy us for much of the rest of the course. 
 
We already have all the tools we need to discuss quantum computers. 

The basic picture of a quantum computer is that it’s just a 
quantum circuit, but we’re jumping from working with 1, 2, or 3 
qubits at a time to  qubits—where  could be, say, a million or 
more.  You apply a sequence of gates on these qubits, each gate 
acting on just a few qubits (say, 1 or 2 of them), then measure some 
or all of the qubits. 

 
Let’s address a few conceptual questions before proceeding further: 
 

1. Will we able to solve any problem on a quantum computer that literally ​can’t​ be solved on a  
classical computer, regardless of resources? 

It’s easy to see that the answer is no.  Using a classical computer, one can always simulate a 
quantum computer with ​n​ qubits, by just explicitly storing the vector of  amplitudes (to some suitable 
precision, enough to approximate the final probabilities), and updating the vector whenever a unitary 
transformation gets applied.  For this reason, we see that a quantum computer could “only, at most” 
achieve an exponential speedup over a classical computer: it could “only” falsify the Extended 
Church-Turing Thesis, rather than the original Church-Turing Thesis.  Quantum computers might change 
what’s ​computable in polynomial time​—how drastically, we don’t yet know—but they’re not going to 
change what’s computable at all, by letting us solve the halting problem or anything of that kind. 
 

2. Why does each gate act on only a few qubits?  Where is this assumption coming from? 
It’s similar to how classical computers don’t have gates act on arbitrarily large numbers of bits, 

and instead use small gates like AND, OR, and NOT to build up complex circuits.  The laws of physics 
provide us with ​local​ interactions—one particle colliding with another one, two currents flowing into a 
transistor, etc.—and it’s up to us to string together those local interactions into something more 
complicated. 

In the quantum case, you could imagine a giant unitary matrix , which takes  qubits, 
interprets them as encoding an instance of the 3SAT problem (or some other NP-complete problem), and 
then cNOTs the answer (1 for yes, 0 for no) into an st​ qubit.  That  formally exists, is formally 
allowed by the rules of quantum mechanics.  OK, but how would you go about actually implementing it? 
Well, you’d need to build it up out of smaller components—say, components that act on only a few qubits 
at a time. 

It turns out that it’s possible to implement any unitary  you want, using exponentially many 
simple components (we’ll say more about that later in the lecture).  The question that will interest us, in 
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quantum computing theory, is which ’s can be implemented using only polynomially many simple 
components.  Those are the ’s that we’ll consider “feasible” or “efficient.” 
 
3. What is the role of interference in quantum computing? 

Quantum amplitudes can cancel each other out; that’s the most important way in which they 
differ from classical probabilities.  The goal, in quantum computing, is always to choreograph a pattern of 
interference such that, for each wrong answer, some of the contributions to its amplitude are positive and 
others are negative (or, they point every which way in the complex plane), so on the whole they ​interfere 
destructively​ and cancel each other out.  Meanwhile, the contributions to the right answer’s amplitude 
should ​interfere constructively​ (say, by being all positive or negative).  If we can arrange that, then when 
we measure, the right answer will be observed with high probability. 

Note that, if it weren’t for interference, then we might as well have just used a classical computer 
with a random-number generator, and saved the effort of building a quantum computer.  In that sense, all 
quantum-computational advantage relies on interference. 
 
4. What is the role of entanglement in quantum computing? 

In some sense, we can develop the entire theory of quantum computing without ever talking about 
entanglement.  However, pretty much any time we’re doing an interesting quantum computation, 
entanglement ​is ​ something that will be there, “along for the ride.”  The reason for this is simply that an 
un​entangled pure state of ​n​ qubits can always be written as 

. 
Specifying such a state requires only  amplitudes, so we can store it efficiently.  Thus, if for some 
reason the (pure) state of our quantum computer never had any entanglement in it, then the computer 
would be easy to simulate classically, and would be unable to achieve any speedup. 

By contrast, a general entangled state of  qubits, , requires  amplitudes to specify.  
 
It very quickly becomes hopelessly intractable to store and manipulate all these amplitudes on a classical 
computer. 

With 300 qubits, we already have more amplitudes to deal 
 with than there are atoms in the observable universe. 

 
Just to recap: it’s a theorem, which we won’t prove in this class, that ​any​ unitary transformation 

on ​any​ number of qubits  can be decomposed as a product of 1- and 2-qubit gates.  However, if you just 
run the decomposition blindly, it will produce a quantum circuit with something like  gates—just like, 
if you use the method of truth tables to build a circuit to compute some arbitrary Boolean function  

, you’ll get something with about 2​n​ AND, OR, and NOT gates.  Just like in the 
classical world, our real interest is in which Boolean functions can be ​efficiently​ computed—say, using a 
polynomial number of AND, OR, and NOT gates—so too in the quantum world, our real interest is in 
which -qubit unitary transformations can be realized using only polynomially many 1- and 2-qubit 
gates. 

But that being so, it behooves us to ask: is it possible that ​all​ -qubit unitaries  can be realized 
by polynomial-size circuits? 
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The answer turns out to be no: in fact, just like “almost all” Boolean functions require 
exponentially large circuits to compute them, so too “almost all” unitaries require exponentially large 
quantum circuits.  As in the classical case, the way to prove this is using a... 
 
Counting Argument... 

something that goes back to Claude Shannon in 1949.  Shannon observed that almost every -bit 
Boolean function requires a circuit of at least | ​AND, OR, and NOT gates to compute it.  The reason 
for this, in one sentence, is that there are too many Boolean functions, and not enough small circuits!  In 
more detail, there are  different Boolean functions , but only 
different circuits that take  inputs and that have at most  gates.  Since each circuit can only compute 
one function, we can simply set the two expressions equal and solve to find that almost every function 
must require a circuit of nearly  size. 

Strikingly, and famously, this argument doesn’t give us a single ​example​ of a hard-to-compute 
 Boolean function.  It merely tells us that such functions must exist, and be ubiquitous! 

 
We can use a similar sort of argument in the quantum case—although, since  unitary 

matrices form a continuous manifold, it’s easier to talk in terms of dimensionality rather than cardinality. 
For simplicity, let’s even restrict attention to those  unitary matrices that are ​diagonal​.  Even 
then, specifying such a matrix clearly requires us to specify  independent complex numbers of norm  
(or , if we ignore global phase).  By contrast, a quantum circuit with  gates, each acting on at 
most 2 qubits, can be specified using only | ​continuous parameters (plus some discrete choices 
about where to apply the gates, which won’t affect the argument). 

So we have a -dimensional manifold in the one case, and a union of -dimensional 
manifolds in the other.  Clearly, for the one to cover the other, we need  to grow at least like ~ . 
Hence there exist ​n​-qubit unitary transformations  that require exponentially many gates to implement. 
In fact, “almost all” ’s (now in the technical, measure-theory sense of 100% of them) have this 
property. 

You might complain that we’ve only showed that exponentially many gates are needed to 
implement most -qubit unitary transformations ​exactly​.  What about approximately implementing 
them—that is, implementing them up to some small error  (say, in each entry)?  In fact, though, a little 
algebraic geometry (which we won’t go into here) is enough to show that exponentially many gates are 
needed to ​approximate​ most -qubit unitaries as well, or even most -qubit diagonal unitary 
transformations. 
 

Once again, these arguments don’t give us a single ​example​ of a hard-to-implement 
 unitary transformation. They just tell us that that’s the norm, that the easy-to-implement 
 unitaries are the rare exceptions!  Yet, rare though they might be, the subset of unitaries 

 that are easy (i.e., that can be implemented by polynomial-size quantum circuits) 
 are the main ones that will interest us in quantum computing.  

 
Up till now, we’ve assumed that ​any​ 1- and 2-qubit gates are available, but is that assumption 

realistic?  Is it necessary?  This brings us to our next topic... 
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Universal Gate Sets 
In classical computing, you’re probably familiar with logic gates like AND, OR, NOT, NAND, 

etc.  A (classical) gate set is called ​universal​ if, by stringing together enough gates from the set, you can 
express any Boolean function on any number of bits. 

For example, the NAND gate by itself is universal.  The diagram on 
the right shows how you’d construct an OR gate out of NANDs.  You can 
also work out how to construct an AND gate and a NOT gate, and from there 
you can get anything else. 

By contrast, the set {AND,OR} is ​not​ universal, because it can only 
express monotone Boolean functions: that is, changing an input bit from 0 to 1 can never change an 
output bit from 1 to 0.  Likewise, the set {NOT,XOR} is not universal, because it can only express 
Boolean functions that are linear or affine mod 2.  So, while “most” gate sets are universal, being 
universal isn’t completely automatic. 
 

Next let’s discuss ​classical reversible gates ​ (that is, reversible mappings from -bit strings to  
-bit strings), where we’ll find that something similar happens.  We call a set of reversible gates 

universal if, by composing enough of them, you can express any reversible transformation on any number 
of bits . 

Here we allow the use of “ancilla bits” (that is, bits other than the  being acted on), as long as 
the ancilla bits are returned to their initial states by the end of the computation.  The use of ancilla bits is 
provably necessary for universality in this setting. 

The most famous example of a universal reversible gate—the reversible analogue of the NAND 
gate, if you like—is called the​ Toffoli gate​​.  The Toffoli gate, also known as controlled-controlled-NOT, 
is a 3-bit gate that flips the third bit ​if and only if​ the first two bits are both set to 1. 

To show that Toffoli is at least capable of universal computation, we construct a NAND 
gate out of one (in the diagram on the right).  Because 
Toffoli can simulate NAND, it can also simulate any 
ordinary (non-reversible) Boolean circuit. 
 

The third bit ends up as 0 if only if both A and B are 
both 1, meaning that the third bit gets flipped.  Thus, we’ve 
got a NAND gate. 
 

Note that this argument does ​not​ yet establish that 
Toffoli is a universal reversible gate, in the sense we defined above—because for that we need to 
implement all possible reversible transformations, not just compute all Boolean functions.  However, a 
more careful argument, which we’ll give later in the course, shows that Toffoli really is universal in that 
stronger sense as well. 

A good example of a gate that separates the two kinds of universality is the so-called ​Fredkin 
gate, which is also called ​Controlled-SWAP​​ or ​CSWAP​​.  This is a 3-bit gate that swaps the second and 
third bits, if and only if the first bit is set to 1.  Just like the Toffoli gate, the Fredkin gate can simulate a 
NAND gate (exercise to see how), and is therefore capable of universal computation.  However, Fredkin 
is ​not​ universal in the stronger sense, because it can never change the total number of 1’s in the input 
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string (the so-called ​Hamming weight​).  For example, there’s no way, by composing any number of 
Fredkin gates, to map the string 000 to 111.  A gate with this property, of always preserving the Hamming 
weight, is called ​conservative​. 

There are also reversible gates that are not even capable, on their own, of universal computation. 
An important example is the Controlled-NOT or CNOT gate, which we saw earlier.  By composing 
CNOT gates, we can only express Boolean functions that are affine mod 2: for example, we can never 
express AND or OR.  More generally, and in contrast to the irreversible case, it turns out that ​no​ 2-bit 
classical reversible gate is capable of universal computation.  For universality, we need reversible gates 
(such as Toffoli or Fredkin) that act on at least 3 bits. 
 

It’s worth noting that any classical reversible gate can ​also​ be used as a quantum gate (i.e., it’s 
unitary).  So in particular, Toffoli can be used as a quantum gate.  So we see that,​ if nothing else, a 
quantum circuit can compute any function that a classical circuit of similar size can compute: we simply 
need to transform the classical circuit into one made of Toffoli gates. 
 
We’re now ready to talk about ​universal ​quantum ​ gate sets ​. 

We’ll call a set  of quantum gates ​universal​ if, by composing gates from , you can 
approximate any unitary transformation on any number of qubits to any desired precision.  Note that, if  
is finite, then approximation is all we can hope for, because there are uncountably many unitary 
transformations, but only a countable infinity of quantum circuits built out of -gates. 

Just like with classical reversible gates, there are weaker kinds of universality for quantum gate 
sets that are often enough in practice.  That is, even if gates ​can’t​ be used to approximate an arbitrary 
unitary to any desired precision, they’ll often anyway suffice for universal quantum computation.  We’ll 
see examples of this soon. 

 
First, though, let’s list some of the ways a quantum gate set could be limited, in such a way that it 

fails ​ to be universal.  We’ll discuss such four ways: three of them obvious and one of them not. 
 

1. Your gate set doesn’t create interference/superposition 
Example​: The set {cNOT} can only map computational basis states, like , to other 

computational basis states, like .  It can maintain existing superpositions, but it can’t ​create​ a 
superposition of basis states where there wasn’t one already. 
 

2. Your gate set can create superpositions, but not entanglement 

Example​: The set {Hadamard} can map | ​to , thereby creating a superposition.  But it 
should be obvious that the Hadamard gate can’t map a product state to an entangled state, since it acts on 
only one qubit.  In fact, any quantum circuit made of Hadamard gates—or any 1-qubit gates, for that 
matter—will just act independently on each of the  qubits, so it will be trivial to simulate classically. 
 

3. Your gate set only has real gates 
Example​: The set {cNOT, Hadamard} is getting closer to universality, as it’s capable of creating 

entangled superposition states.  But it’s still not there, as can be seen from the fact that the cNOT and 
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Hadamard matrices have real entries only.  So composing them could never give us a unitary 
transformation like 

                  
 

4. Your gate set is “contained in the stabilizer set” 
This is the non-obvious case.  Later in the course, we’ll explain stabilizer gates in more detail, as 

well as their central importance for quantum error correction.  For now, though, the ​stabilizer gates ​ are 
the following three quantum gates: cNOT, Hadamard, and 

Phase  

These gates pass every test for universality that we saw before: they can generate superposition, ​and 
entanglement, ​and​ amplitudes that aren’t real.  Furthermore, they’re enough to demonstrate many (though 
not all) of the quantum phenomena that we’ve seen in this course, such as teleportation and superdense 
coding. 

Nevertheless, it turns out that the particular set 
{CNOT, Hadamard, P} 

is not universal.  Indeed, a famous result called the ​Gottesman-Knill Theorem​​ shows that these gates 
generate only a discrete subset of unitary transformations—and that furthermore, any circuit made of 
stabilizer gates, and applied to the initial state , can be simulated in polynomial time on a 
classical computer.  Thus, despite containing an interesting subset of quantum mechanics, these gates still 
aren’t enough to realize exponential quantum speedups. 
 
Are there any other ways for a set of quantum gates, acting on qubits, to fail to be universal? 

That’s currently an open question!  It’s one of Prof. Aaronson’s personal favorites.  Not many 
people in the field care about this particular question, since “we have lots of universal gate sets that work, 
so just roll with it,” but it would be nice to know, and you should go solve it. 

 
So then which quantum gate sets ​are​ universal? 

It turns out that, in the stabilizer set {CNOT, Hadamard, P}, if you swap out the Hadamard gate 
for nearly anything else, then the set becomes universal. 

So for example, {cNOT, , P } is universal. 

Also, {Toffoli, Hadamard, P} is universal, by a 2002 result of Yaoyun Shi. 
Also, if you just pick a 2-qubit gate uniformly at random, then it’s known to have a 100% chance 

of being universal.  With universality, the whole difficulty comes from the remaining 0% of gates! 
Above, we listed bad cases—ways of failing to be universal—but there are also general criteria 

such that if your gate set meets them then it ​is ​ universal.  We won’t cover this, but see (for example) the 
paper of Shi, or earlier literature on the subject, for examples of such criteria. 

 
So far, in discussing universal gate sets, we’ve swept an important question under the rug. 

Namely, a universal gate set lets us approximate any unitary to any desired accuracy —but how does the 
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number of gates needed with ?  If, for example, the number scaled like , then our gate set would be 
“universal” in only the most theoretical sense.  Fortunately, there’s a central result in quantum computing 
theory, called the... 

 
 

Solovay-Kitaev Theorem 
which assures us that this never happens!  In more detail, call a gate set  ​closed under inverses 

if, whenever a gate  is in , the inverse gate  is also in .  Then the Solovay-Kitaev Theorem 
says that, using any universal gate set  that’s closed under inverses, we can approximate any unitary on  

 qubits to within precision  (say, entrywise precision) using only | ​gates.  In other 
words, if we treat  as fixed—say, if we’re just trying to emulate a gate from one universal set using 
gates from a different universal set—then the complexity scales only like some power of .  This 
means that ​all​ universal gate sets, or at least the ones closed under inverses, “fill in the space of all unitary 
transformations reasonably quickly.”  Furthermore, the gate sequences that achieve the Solovay-Kitaev 
bound can actually be found by a reasonably fast algorithm. 

Whether the closed-under-inverses condition can be removed remains an unsolved problem to 
this day. 

With the original proofs of Solovay-Kitaev, from the late 1990s, the number of gates needed grew  
like .  However, more recently it’s been shown that, at least if we use special universal gate  
sets arising from algebra and number theory, we can get the number of gates to grow only like 
—which is not only much more practical, but also the best one could possibly hope for on 
information-theoretic grounds. 

The proof of Solovay-Kitaev is beyond the scope of this course, but it’s contained in many 
quantum computing textbooks (including Nielsen & Chuang), and is something you should know is out 
there. 
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Lecture 17, Thurs March 23: Quantum Query 
Complexity, Deutsch-Jozsa 
 
People often want to know where the true power of quantum computing comes from. 

● Is it the ability of amplitudes to interfere with one another? 
● Is it the huge size of Hilbert space (the space of possible quantum states)? 
● Is it that entanglement gives us  amplitudes to work with? 

But that’s sort of like dropping your keys and asking “what made them fall?” 
● Is it their proximity to the Earth? 
● Is it the curvature of spacetime? 
● Is it the fact that you dropped them? 

There can be many complementary explanations for the same fact, all of them valid.  And that’s the case 
here.  If there weren’t a huge number of amplitudes, quantum mechanics would be easy to simulate 
classically.  If the “amplitudes” were probabilities, rather than complex numbers that could interfere with 
each other, QM would also be easy to simulate classically.  If no entanglement were allowed, then at least 
all pure states would be product states, once again easy to represent and simulate classically.  If we were 
restricted to stabilizer operations, QM would be easy to simulate classically.  But as far as we know, full 
QM---involving interference among exponentially many amplitudes in complicated, non-stabilizer 
entangled states---is hard to simulate classically, and that’s what opens up the possibility of getting 
exponential speedups using a quantum computer. 
 
Quantum Complexity 
There are two major ways we look at the complexity of quantum algorithms 

The ​circuit complexity​ of a unitary transformation  is the size (i.e., number of gates) of the 
smallest circuit that implements ​.  We like unitaries with polynomial circuit complexity.  Alas, typically 
it’s ​extremely​ hard to determine the circuit complexity of a unitary; the best we can do is to prove upper 
bounds, and conjecture lower bounds on the basis of hardness assumptions and reduction arguments. 
Note that the reasons why this sort of problem is insanely hard have nothing to do with quantum 
mechanics. 

“What’s the smallest circuit that solves Boolean satisfiability?”  
is a similarly hard problem, indeed closely related to P vs NP. 

 
So if we want a more precise picture of what’s going on, albeit in a more limited model, we 

instead often use… 
Query complexity​, which is the number of calls the algorithm makes to an oracle (or black box 

function). The idea is that your oracle takes an input ​x​ and produces an output , where say 
 

is a Boolean function.  In quantum mechanics, our first guess for what this would mean might be: we map 
the input state | ​to the output state , or maybe the output state . 
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Here, though, we run into a bit of trouble because such a transformation is not unitary.  To make 
the transformation unitary, we need a so-called ​answer ​ or ​target​ register. 

So we give the black box two inputs: , 
which is unchanged, and , which has the answer 

| ​written into it in a reversible way, typically 
exclusive-ORing: 

 
If we took care to ensure that | ​initially, then 
this would map | ​to , exactly like in 
the classical case. 

A lot of times we ignore the answer qubit 
by moving the phases around.  So let’s say we prepare the answer qubit as . 
 
One important note for later: if | ​happens to be a Boolean function, then often it’s most convenient to  
consider quantum queries that map each basis state | ​to : in other words, that ​write the  
function value into the phase of the amplitude​, rather than storing it explicitly in memory.  Or more  
precisely, we consider queries that map each basis state | ​to , where  is a bit that 
controls whether the query should even take place or not.  This sort of “phase oracle” doesn’t really have 
any classical counterpart, but is extremely useful for setting up desired interference patterns. 
 
So it behooves us to ask: how do the “phase oracle” and the “XOR oracle” compare?  Could one be more 
powerful than the other?  Happily, it turns out that they’re ​equivalent​, in the sense that either can be used 
to simulate the other, with no cost in the number of queries.  This is a result that we’ll need later in this 
lecture. 
 
To see the equivalence, all we need to do is consider what happens when the second register—the one 
containing | ​or —is placed in the | ​state before a query.  You can check that this converts a XOR 
oracle into a phase oracle: we get 

 
 

which equals  
  

which we can rewrite as just .  Meanwhile, if the second register is placed in the  
state, then nothing happens, so we really do get the | ​behavior . 
 
Conveniently, the converse is also true!  That is, if we know that a phase oracle will be acting, then by 
placing the  register in one of the states | ​or , we can simulate the effect of a XOR oracle, with 
the phase oracle causing | ​and | ​to be swapped if and only if . 
 

Taking a step back, though, what are we really doing when we design a quantum algorithm in the 
query complexity model?  We’re abstracting away part of the problem, by saying: 
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“Our problem involves some function, say, , and we’re trying to learn 
some property of , in a way that only requires evaluating | ​on various inputs, not looking at the 
internals of how | ​is computed.” 

So for example, you might want to learn: 
 
Is there some input  such that ? 
Does | ​for the majority of ’s? 
Does | ​satisfy some global symmetry, such as periodic, or is it far from any function satisfying 

the symmetry? 
Etc. 

 
We then want to know how many queries to | ​are needed to learn this property. 

In this model, we abstract out the cost of any quantum gates that 
 are needed before or after the queries: those are treated as “free.” 

 
Before we delve deeper, it’s worth asking: 
“Why do we care about the black-box model?  You’re debating how you’d phrase your wishes if you 
found a magical genie.  Who cares?” 

The truth is more prosaic, though.  You can think of a black box as basically a huge input string. 
From that standpoint, querying | ​just means looking 
up the th​ element in the string. 

 
Another way to think about it: 

Imagine I’m writing code, and I have a subroutine that computes .  How many times do I 
need to call the subroutine to find some information about ?  Assuming, in the quantum case, that I even 
get to call the subroutine on a superposition of different  values, and get back a superposition of 
answers? 

But also assuming that we’re not going to “violate abstraction 
 boundaries” by examining the code of the subroutine. 

 
To justify the quantum black-box model, there’s one technical question we need to answer…  
Suppose we did have a small circuit to compute a function .  Could we then implement the quantum 
black-box behavior that we described above—without loss of generality, the XOR behavior,  

? 
The reason this isn’t entirely obvious, is that if you’ll recall, quantum circuits have to be 

reversible​.  So just because there’s a small circuit to compute , doesn’t immediately imply that 
there’s a small circuit that maps the basis state | ​to the basis state | ​with nothing else 
lying around​. 

 
Indeed, let’s step back, and think about the constraints on computation that are imposed by 

reversibility.  To start with the obvious: if we had a reversible circuit that maps | ​to , then  
must be an injective function.  But now for the subtle part: even if | ​is both injective ​and​ efficiently  
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computable, that still doesn’t imply (at least, as far as we know) that the map | ​is efficiently 
computable. 

Why not?  Well, imagine that | ​were an injective one-way function: that is, a function that’s easy 
to compute but hard to invert.  Such functions are the basic building blocks of cryptography, and are 
strongly conjectured to exist, even in a world with quantum computers. 

Note that even though quantum computers can break a few supposedly one-way 
 functions, like those based on factoring and discrete log, there are many, many 

 more “generic,” less “structured” one-way functions that don’t seem threatened 
 by quantum computers.  We’ll have more to say about such issues later. 

 
Anyway, now suppose we had a small circuit  such that .  Then simply by running that 
circuit backwards—that is, inverting all the gates and reversing their order—we could get  

, thereby inverting the supposed one-way function! 
But why doesn’t this contradict our starting assumption that | ​was easy to compute?  Here’s 

why: because a reversible circuit for g would at best give us a mapping like 
, a mapping that leaves  around afterward.   And inverting ​that​ mapping will only take us from  ​| ​to 

 if we know  already, so it’s no help in breaking the one-way function. 
 

OK, but this still leaves the question: how do we even efficiently implement the mapping  
, if ​| ​given a small ​non​-reversible circuit for ? 

In the last lecture, we saw how it’s possible to take any 
non-reversible circuit and simulate it by a reversible one, by using Toffoli 
gates to simulate NAND gates. 

The trouble with that is that, along the way to the final answer, the 
construction also produces all sorts of undesired 
results in the intermediate bits—the technical 
name for this is ​garbage​.  ​Yes, really. 
 
Why is garbage such a problem for quantum computing?  Because garbage can 

prevent the desired interference patterns from showing up—and the whole 
 point of quantum algorithms is to create those interference patterns. 

 
 

For example, what’s the difference between having | ​and having , where we treat the 
second qubit as unwanted garbage? 

The garbage is entangled with the first qubit, the qubit we ​do​ want.  So, in the second case, when 
we look at the first qubit only, we see the maximally mixed state rather than the | ​state that we wanted. 
 
So to return to the question: suppose you have a circuit to compute .  How you we get a circuit that  

maps | ​without all the garbage?  Back in the 1970s, Charles Bennett  

invented a trick for this called… 
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Uncomputing 

It’s simple, though also strange when you first see it.  The trick to getting rid of garbage is to run 
computations ​forward and then in reverse​. 

Let’s say I have some circuit  such that 
, 

where | ​is a generic term for all the garbage: that is, byproducts of the computation that I don’t 
want.  Then I do the following: 

First run the circuit , to get . 
Then cNOT the answer | ​into a register initialized to 0, to get  

      ​(in other words, make a copy of | ​in a safe place) 
Finally, run the inverse circuit, , to get | ​or just | ​if we ignore 

the 0 qubits. 
 
The reason why we can copy , in spite of the 

No-Cloning Theorem, is that we’re assuming that  is a 
classical answer.  This won’t work if the output is a general 
quantum state. 

 
This justifies the quantum query model because if we can 
compute | ​at all, then we ​do​ have the ability to map  | ​to  

.  (Note that in the uncomputing process, if the 
“safe” register was initialized to some arbitrary  rather than 
to 0, then it would end up in the state .) 
 
With that out of the way, we’re finally ready to talk about some quantum algorithms. 
 
Deutsch’s Algorithm 

was, by some definition, the first quantum algorithm proposed, in the mid-1980s.  It achieves 
something unimpressive, except for the fact of being possible at all: namely, it computes the parity of two 
bits using only one (superposed) query to the bits. 
 

In more detail, we’re given two unknown bits, | ​and . 
Given an index , our oracle returns the bit. i.e.  
What we want to know is, “What is the parity of these bits?” 

Parity​ is whether the bits have different values, so | ​or  
 
Classically, this would clearly take two queries since we need to know both bits.  So using a quantum 
algorithm, how do we do it in one? 

Simple: we start with a qubit at , Hadamard it to get , then apply a phase query, which 
applies a phase change to each branch of the superposition depending on the value of the function.  (Here 
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we’re using the result from earlier in this lecture, that we can use a single “ordinary” query to simulate the 
effect of a single phase query.)  This yields: 

 
Let’s factor out | ​to get 

 
So now if | ​we get  

   while if | ​we get  

We can ignore the phase out front since global phase doesn’t affect measurement, and then 
Hadamard again to get our quantum states back in the 
| ​basis. 
Now in the ​f​(0)=​f​(1) ​| ​case we get  
and in the ​f​(0)≠​f​(1)​ ​|​case we get . 
 
The complete quantum circuit is shown on the right. 
 
Note that, if we wanted the parity of an -bit input string , Deutsch’s algorithm would let us get that 
with /2 queries.  We simply need to break  up into /2 blocks of 2 bits each, use Deutsch’s algorithm 
to learn the parity  ​| ​of each block  (using /2 queries in total), then calculate the parity of all the  
’s.  This last step doesn’t increase the query complexity, because it doesn’t involve making any 

additional queries to . 
 
OK, if we understand Deutsch’s algorithm, then let’s next see a generalization, called…  
 
The Deutsch-Jozsa Algorithm 

Suppose we have a black box that computes a Boolean function , and 
suppose we’re promised that  |​is either: 

● a constant function All outputs are 0 or all outputs are 1 
● a balanced function There are the same number of 0 outputs as 1 outputs 

The problem is to decide which. 
 

Classically, deterministically, you could solve this problem by examining any | ​values of 
the function.  If all the values match, then the function is constant; otherwise the function is balanced.  If 
you want no possibility of error, then it’s not hard to see that this is the best you can do. 

Of course, you can do much better by using random sampling.  On average, you’d need maybe 5 
or 6 queries—or at any rate, a constant number—to get an answer with small probability of error.  If all of 
your samples match, you can guess that the function is constant; if they don’t, you know that it’s 
balanced. 

What the Deutsch-Jozsa algorithm does, is to solve the problem ​perfectly​ (that is, with zero 
probability of error), with only one quantum query.  That’s something that isn’t possible in the classical 
world. 

Truth is, this speedup still isn’t all that impressive, because the classical probabilistic algorithm 
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 is nearly as fast, and would be perfectly fine in practice.  This helps to explain why, until 1994 
 or so, most people didn’t care about quantum computing.  To whatever extent they looked 

 into it at all, they figured all quantum speedups would be in the same vein. 
 
Anyway, here’s the quantum circuit for Deutsch-Jozsa: 
 
You’ll begin to notice that some patterns appear a lot in 
quantum algorithms. 

● You start by putting everything in superposition 
● You then query a function ​f​—in this case, 

 mapping each basis state | ​to  
● You then apply a change a basis (in this case, 

another round of Hadamards) 
● Finally, you measure to get the information you want to know 

 
If you can’t figure out what to do next in a quantum algorithm, 

a round of Hadamards is always a good guess! 
 
So given this circuit (call it ), let’s ask: what’s the probability of getting back the state ? 

In other words, what is ? 
Well, the Hadamard gate maps | ​and . 

We can summarize this by saying that, for a bit , it maps  

So given a string , Hadamarding all  of the qubits produces the state

. 
This is a fact that we’ll also have several occasions to use in the next lecture. 

 
            Note: Here | ​denotes the inner product.  The formula is saying 

    that we pick up a –1 phase for every  such that . 
 
Now, coming back to the Deutsch-Jozsa algorithm, after we Hadamard all  of the qubits and then query 
the oracle, we get the state 

  
So by our previous result, after the second round of Hadamards we get 
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Rather than simplifying this entire sum, let’s take a shortcut by just asking: what is the amplitude for the 
basis state ? 

Well, it’s . 
 
Now, what does this amplitude have to do with whether | ​is constant or balanced? 
Well, if | ​is constant, then the above amplitude is either 1 (if | ​is identically 0) or –1 (if | ​is identically 
1). 
On the other hand, if | ​is balanced, then the amplitude is 0. 
So when we measure, if we see the outcome | ​then we know that | ​is constant, and if we see any 
other outcome then we know that | ​is balanced!  That was the Deutsch-Jozsa algorithm. 
 
The first problem we’ll see in the next lecture is the so-called ​Bernstein-Vazirani problem​, for which 
there’s a quantum algorithm that achieves a more impressive speedup than Deutsch-Jozsa does.  And the 
speedups will continue to get more impressive from there. 



Lecture 18, Tues March 28: Bernstein-Vazirani, 
Simon 
 
We ended last time with the Deutsch-Jozsa problem.  Today we’ll start with another black-box problem 
for which quantum algorithms provide an advantage: 
The Bernstein-Vazirani Problem 

We’re given access to a black box function  
We’re promised that  | ​for some secret string  

The problem is to ​find ​s ​. 
 

Classically, you could get an answer one bit at a time by querying all the strings of Hamming 
weight one: for example,  
 
 
 
 
But no classical algorithm can do better than this, since each query can only provide one bit of 
information about . 
 
The Bernstein-Vazirani algorithm, however, solves the problem quantumly using only one query (!). 
 
 
The Bernstein-Vazirani Algorithm 

We start with  qubits all in the | ​state. 
We then Hadamard them all (what else?). 
Next we query | ​(using the ‘phase’ type of query). 
 

The question is: 
How do we measure the resulting state in a way that gives 
us information about the secret string ​s ​? 
We can reuse work from the last lecture… 
We know that Hadamard gate maps | ​to | ​and | ​to | ​(and vice versa) 

i.e. it does  

and so Hadamarding a string of bits gets us 

  
  We pick up a –1 factor only when ​s​i​| ​and ​x​i​| ​are both 1. 

Now, note that we can write the current state of the Bernstein-Vazirani algorithm as 
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But this means that if we Hadamard all the qubits again, we’ll change: 

● The qubits that picked up a phase (i.e., for which ) from | ​to . 
● The qubits that ​didn’t​ pick up a global phase (i.e., for which ) from | ​to . 

So from here we can simply measure the qubits in the | ​basis to retrieve . 
 
You can see that Bernstein and Vazirani designed their problem around what a quantum computer would 
be able to do! 

Don’t tell anyone, but: this is actually pretty common in this field 
So, only for | ​are all  contributions to the amplitude of a measurement outcome pointing the same 
way.  For all the other outcomes, the contributions interfere destructively, with equally many positive and 
negative terms (all of the same magnitude), so the total amplitude for each of those outcomes is 0​. 

With pretty much ​every​ quantum algorithm, a similar story can be told, about the contributions to 
the amplitude reinforcing each other only for the outcomes that we want. 
 
On that note, let’s next see… 
Simon’s Problem (1994) 

The story goes that Simon looked at the quantum algorithms coming out, and he didn’t believe 
that any of them would give a ​real​ speedup.  Even the Bernstein-Vazirani problem is easy classically: a 
classical computer can find the  bits of  with  queries.  Sure, the quantum algorithm needs only one 
query, but it also requires | ​gates, so maybe it’s not that impressive. 

Simon believed there was a limit that would prevent you from getting a “true” exponential 
speedup from a quantum computer, and he set out to prove it.  What he ended up finding, instead, was 
that there ​is ​ a true exponential speedup, at least for an artificial black-box problem.  As we’ll see, this 
then played a central role in subsequent progress in quantum algorithms: particularly Shor’s algorithm, 
which came shortly afterward. 
 
In Simon’s problem, we’re once again given an oracle function, this time mapping  bits to  bits: 

 
We’re promised that there’s a secret string , such that 

 
for all inputs , , where the symbol  denotes bitwise XOR.  ​The problem is to ​find​ the secret string ​s ​, 
by querying ​f​| ​as few times as possible. 
 
Compared to Bernstein-Vazirani, here there’s more freedom in the choice of function .  In Simon’s 
problem, all we require is that | ​has a “hidden XOR mask”: that is, a subset of bits such that when you 
flip the bits in that subset (but ​only​ when you do so), the output is unaffected. 
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What does this mean? 
Let’s do an example with 3-bit inputs, and with secret string . 

Let’s say we query | ​a few times and get… 
 

 
 
 

We’re given no information about how to interpret the outputs themselves, so it doesn’t really 
matter whether we think of them as strings, integers, or whatever.  The only thing that ​does ​ matter is 
whether two inputs map to the same output. 

Since , we know that . 
 

This is simple enough with 3 bits, but we’re more interested in ’s with, say, 1000-bit inputs.  In 
that case, we claim that finding the secret string  is prohibitively expensive classically.  How expensive? 
Well, it’s not hard to show that any deterministic algorithm needs to query |​at least | ​times, by 
an argument similar to the one that we used for Deutsch-Jozsa.  But once again, the more relevant 
question is how many queries are needed for a ​randomized​ algorithm. 

We claim that we can do a little bit better in that case, getting down to | ​queries.  This is 
related to the famous ​Birthday Paradox​​, which isn’t really a paradox, it’s more of a “birthday fact.” 

It says that, if you gather merely 23 people in a room, that’s enough to have a ~50% probability 
of getting at least one pair of people who share a birthday.  More generally, if there were  days in the 
year, then you’d need about ​| ​people in the room for a likely birthday collision.  (At least, assuming 
birthdays are uniformly distributed, which they’re not exactly: e.g., there are clusters of them about 9 
months after major holidays.) 

The takeaway here is that the ​number of pairs of people​ is what’s important, and that scales 
quadratically with the​ number of people​.  Similarly, with Simon’s problem, the number of pairs of inputs 
that could collide is what’s important, and that grows quadratically with the number of inputs we check. 

The Birthday Paradox is useful in cryptanalysis. 
For example, cryptographic hash functions need to make it intractable to find any two inputs , 

      with the same hash value, .  But by using a “birthday attack”—i.e., repeatedly choosing 
          a random input , then comparing | ​against | ​for ​every​ previously queried input ​y​, looking  
   for a match—we can find a collision pair using a number of queries to | ​that scales only like the square  
                 root of the size of ’s range.  This is quadratically faster than one might have expected naïvely. 
 
Whatever other structure it has, Simon’s problem involves a two-to-one function in which we’re looking  
for a collision pair—so it also admits a birthday attack.  Roughly speaking, given two randomly-chosen  
inputs ​ and , we’ll observe | ​with probability , and while these events aren’t  
quite independent between the various | ​pairs, they’re nearly so.  Doing the calculation carefully, we 
find that we’ll observe a collision with high probability after querying | ​values of . 
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Is there a better classical algorithm? 
Let’s prove that the answer is no.  We’ll use an ​Adversary Argument​​: basically, 

“If my worst enemy got to choose f, what would he do?” 
Presumably, he’d choose a secret string | ​uniformly at random among all possible ’s, to 

make it as hard as possible to find an underlying structure in .  And then, perhaps, choose a random 
among all those consistent with that . 

Now, once we fix such a strategy of the adversary, we can assume without loss of generality that 
the algorithm is deterministic.  This is because a randomized algorithm is just a probabilistic mixture of 
deterministic algorithms, and there must be at least one algorithm in the mixture that does at least as well 
as the average!  (This observation—together with the complementary observation that ​all​ randomized 
lower bounds can be proved in this way—is sometimes referred to as ​Yao’s minimax principle​.) 
 
So the upshot is that we can view an optimal strategy as just a deterministic sequence of queries.  Let the 
queried inputs be ​x​1​, ​x​2​, etc.  Then the question is: 
What information can we derive about ​s ​ after the first ​t​ queries? 

If we’ve found a collision pair, | ​for some , then we’re done; we now know  
that .  So let’s assume that hasn’t happened yet.  Then all we can conclude about  is that  

| ​for every .  At most this rules out  possible values of , with all the other 
possibilities remaining equally consistent with what we’ve seen (i.e., having equal posterior probabilities). 
It follows that, ​unless ​ we observe a collision, narrowing the possibilities down to a single  requires  

| ​queries.  And the probability that we ​do​ observe a collision in the th​ query is only —so  

by the union bound, with high probability we won’t observe any collisions at all in the first ~  queries. 
 

And that’s the adversary argument: examining a “worst-case” distribution over ’s gives us a lower  
bound of | ​queries for any randomized algorithm solving Simon’s problem. 
i.e. the birthday attack yields a quadratic speedup, but the problem still takes exponential time classically. 

 
Quantumly, by contrast, we can solve Simon’s problem with only | ​queries to , by using... 
Simon’s Algorithm! 
The algorithm follows a now-familiar pattern: 

1. Start with  qubits all in the | ​state. 
2. Hadamard them all. 
3. Query . 

 
This yields the state 

 
 
This time the function | ​has a large output, so we 
need to write out its values in a separate -qubit 
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answer register, rather than just encoding it into the phase. 
But even though we’re giving more space to write out the answers , it’s important to note 

that the answers themselves aren’t what we care about! 
 

Instead, we’re only writing them out because by doing so, we create a desired interference pattern 
in the  register.  Indeed at this point in the algorithm we could simply discard the | ​qubits, or do 
anything else we liked with them. 

So for pedagogical simplicity, let’s assume we now ​measure​ the | ​qubits.  And let’s assume 
that the result of the measurement is .  

Keeping track of all of the ’s we could have seen would’ve resulted in a mixed state. 
Instead, we’re just conditioning on a particular . 

 
Now how many different values are superposed in the input register? 
By the partial measurement rule, we’re left with an equal superposition over all the different ’s that are  
consistent with the | ​value that we observed, namely . In Simon’s problem, there are necessarily 

two such ’s.  In other words, we’re left with a superposition  -​such that .  

By the Simon promise, this means in particular that  . 
 
So what is this state good for? 

First, observe that if we could just measure -​twice, then with high probability we’d first  

get  ​and then —so then bitwise-XORing the two strings would give us the secret string , and we’d 
be done!  Alas, in quantum mechanics we only get one chance to measure a state, so we’ll see either | ​x​〉
or 
| ​y​〉​, ​| ​which tells us nothing about .  We could of course repeat the whole algorithm from the 
beginning.  But if we did, then with overwhelming probability we’d get a different , corresponding to a 
new pair. 

So we’ll need to be more clever—although not ​that​ much more!  In particular, let’s see what 

happens if we measure the qubits of | ​in the Hadamard basis. 

 
What’s the effect of Hadamarding all the qubits on ? 

Well for starters, we saw in the last lecture that Hadamarding all qubits maps the basis state | ​to  

  
and maps | ​to 

  
By linearity, this means that doing the same thing to an equal superposition of | ​and | ​must 

give 
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Now let’s measure the above state in the standard basis. 
 
Which ’s could we get when we do so? 
For a given  to be observed, it must have a nonzero amplitude.  This means that  | ​and 
must be equal, which occurs if and only if 

. 
Or rewriting this equation a bit: 

 
 
 

 
Note that every  satisfying the above equation will appear with the same probability as every 

other, namely .  So, what we get when we measure is an -bit string , chosen uniformly at 
random among all the  strings whose inner product with  is 0.  In other words: we haven’t yet 
learned  itself, but we’ve learned a bit of information about , which I hope you’ll grant is something! 
 
But what if we really want  itself?  In that case, we can just repeat Simon’s algorithm over and over, 
starting from the beginning!  This will give us a collection of strings , which are uniformly 
random and independent of each other, subject to satisfying the equations 

 
 

⋮ 
 

 
After we’ve repeated enough times, what could we tell a classical computer to do with this information? 

Well, suppose , where  is some constant.  Then we now have a collection of 
linear equations in  unknowns, over a finite field with two elements.  We can solve this system 
efficiently using a classical computer. 

Through an algorithm called “Run Matlab.” 
 

      Or Gaussian elimination, taking | ​time. 
 

Or if you want to get all theoretical about it, the fastest known algorithm—whose 
        constant-factor overheads make it useless in practice—takes | ​time. 

 
It’s not hard to do a probabilistic analysis showing that, after we’ve seen slightly more than  ​equations, 
with overwhelming probability we’ll be left with a system that has exactly two solutions: namely,  and 

 itself.  We can throw away , because we assumed .  So that leaves us with . 
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That’s Simon’s algorithm, which solved Simon’s problem using only | ​queries to | ​plus a polynomial 
amount of side computation, as compared to the | ​queries that are provably needed classically. 
 
Does Simon’s algorithm have a deterministic counterpart? 

Yes, one can modify the algorithm so that it succeeds with certainty rather than “merely” 
overwhelming probability.  We won’t go into the details. 
 
So why doesn’t this just prove that quantum algorithms are better? 

It’s sort of tricky to translate Simon’s algorithm into “real-world” consequences.  To get a 
speedup over classical computing in terms of the sheer number of gates, or computational steps, we’d 
need some small circuit to compute a function | ​that was actually like our magical Simon function | ​has 
(i.e., that satisfied the same promise).  For example, | ​for some rank-( –1) Boolean matrix  
would do the trick. 

But the difficulty in claiming that we’re getting a quantum speedup this way is that, once we pin 
down the details of how we’re computing —so for example, the actual matrix —we then need to 
compare against classical algorithms that know those details as well.  And as soon as we reveal the 
innards of the black box, the odds of an efficient classical solution become much higher!  So for example, 
if we knew the matrix , then we could solve Simon’s problem in classical polynomial time just by 
calculating ’s nullspace.  More generally, it’s not clear whether anyone to this day has found a 
straightforward “application” of Simon’s algorithm, in the sense of a class of efficiently computable 
functions | ​that satisfy the Simon promise, ​and​ for which any classical algorithm plausibly needs 
exponential time to solve Simon’s problem, even if the algorithm is given the code for . 
 

So the story goes that Simon wrote a paper about this theoretical black-box problem with an 
exponential quantum speedup, and the paper got rejected.  But there was one guy who was like, “Hey, this 
is interesting.”  He figured that if you changed a few aspects of what Simon was doing, you could get a 
quantum algorithm to find the periods of periodic functions, which would in turn let you do all sorts of 
fun stuff. 

That guy was Peter Shor. 
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Lecture 19, Thurs March 30: RSA and Shor’s 
Algorithm 
 
Today we’ll see Shor’s algorithm.  Given a positive integer ​N​, which we’ll assume for simplicity is a 
product of two primes | ​and , this algorithm lets you find | ​and | ​using only about | ​steps. 
This application captured the world’s attention because ​RSA ​​, one of the most widely-used public-key 
encryption methods, relies on the assumption that factoring is hard. 
 
So before we start in on Shor’s algorithm, which will take a few lectures, let’s briefly review RSA.  The 
basic idea is: 

Some website, like Amazon, wants you to be able to send them messages that only they can 
decrypt (say your credit card number).  But they’ve never met with you in private to agree on a secret 
encryption key.  So what they do instead is that they find two large primes ​p​ and ​q​| ​(say a thousand digits 
each), which they keep secret.  They Amazon multiplies them to get , which they publish to the 
world.  Note that the fact that Amazon ​can​ efficiently pick two huge random prime numbers ​p​| ​and ​q​, and 
know for sure that they’re prime, is already not quite obvious, but it follows from some classical number 
theory that we won’t go into. 

Now you can encrypt a message using the public key, ​N​: if your plaintext message is , then in 
the simplest version of RSA, your encrypted message would just be .  And given that 
encrypted message, and ​also​ knowing ​p​| ​and ​q​, there’s a way for Amazon to efficiently recover —it’s 
again some basic number theory that we won’t go into right now, although we’ll see aspects of it later. 
The key idea is that, if you know ​p​| ​and ​q​, then you also know the order of the ​multiplicative group 
modulo , and that knowledge lets you do things like efficiently take cube roots modulo . 

By contrast, an eavesdropper who doesn’t know ​p​| ​and ​q​, but only knows ​N​, ​seems ​ to face an 
exponentially hard problem in recovering the plaintext—though it’s been proven neither that factoring is 
hard, nor even that breaking RSA is necessarily as hard as factoring. 

Some number theorists conjecture that factoring is in P, or profess agnosticism. 
The problem has only been seriously worked on for, like, 40 years. 

In any case, if you can factor, then you can break RSA, and that certainly provides more than enough 
reason to be interested in the complexity of factoring. 
 
The naive algorithm to factor ​N​ is trial division—in the worst case, requiring you to test all possible 
divisors up to  (note that every divisor greater than  must have an accompanying divisor that’s 
smaller).  We call this an “exponential-time” algorithm, since the running time is exponential in  

, which is the number of digits needed to specify ​N​. 
Number theorists have discovered several faster algorithms. 
The ​Quadratic Field Sieve​, from 1981, takes time roughly , a milder exponential. 
The ​Number Field Sieve​ brings that down to , though its correctness depends on the proof of 

a yet-unproven conjecture. 
This is why 512-bit, 768-bit, and maybe even 1024-bit encryption aren’t quite secure anymore. 
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They can be cracked using known algorithms and sufficient money for hardware. 
 

In the Snowden documents there’s evidence of money allocated for this sort of thing. 
In a way that’s almost reassuring, to people who worry that the NSA can break anything... 

 
Another public-key cryptosystem in widespread use is ​Diffie-Hellman ​​, which is based on a 

different problem than factoring, called ​discrete logarithms ​.  While we won’t cover this in lecture, it turns 
out that Shor’s algorithm ​also​ solves the discrete log problem in polynomial time, thereby breaking 
Diffie-Hellman as well. 

No one has shown that factoring and discrete log are necessarily related, e.g. by giving 
 a reduction between them.  In practice, though, advances in solving one problem 

 almost always seem​ ​to lead in short order to advances in solving the other. 
We now know that both RSA and Diffie-Hellman were first discovered in secret, by a 

mathematician named Clifford Cocks at the GCHQ (the British NSA), before they were rediscovered in 
public. 
 
What Shor’s algorithm really does, under the hood, is something called ​period-finding​.  Shor observed 
that, for classical number theory reasons having nothing to do with quantum mechanics, a fast algorithm 
for period-finding leads to a fast algorithm for problems like factoring and discrete logarithm. 
 
Period Finding 
is yet another black box problem—one that should remind you of Simon’s problem from the last lecture. 
You’re given oracle access to a function  
You’re also promised that ​there’s a secret integer  (the “period”) such that 

 
for all ​x​, ​y​. 
The problem is to ​find . 

   | ​has ​period​ , which is to say: it returns to the same value after every  steps. 
 
How many queries to  do we need to solve period-finding classically? 

Let’s assume that  (i.e., that ​s ​ is an -bit integer), and give our answer in terms of . 
Observe that once you find a pair , | ​such that , you’re very close to solving the problem. 
Indeed, if you found a few such collisions, you could just take their greatest common divisor, like so: 

  
We won’t give the analysis, but after not too many collisions, the odds are high that this will yield the 
period. 
 
Incidentally, how do we get the gcd of two integers in polynomial time? 
We use ​Euclid’s GCD Algorithm​​—possibly the oldest interesting polynomial-time algorithm in history! 

To find the gcd of ​x​ and ​y​ (with ​x​ > ​y​), we find ​q​| ​and ​r ​ that satisfy: 
 
          such that ​qy​| ​is the greatest multiple of ​y​| ​less than ​x​, which means ​y​ > ​r ​.  

Then we find the gcd of ​y​| ​and ​r​, and we keep recursing in this way until . 
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Each time you run this, the size of the numbers goes down by about a constant factor, which 
means the whole algorithm runs in time linear in  (i.e., the bit-length of  and ). 
 
OK, but how do we find collisions?  This is the birthday paradox all over again.  Recall from the last 
lecture that something like  queries to  is both necessary and sufficient. 

This is ​still​ a huge number of queries, if (say) . 
 
Now we’re ready to talk about… 
 
Shor’s Algorithm 
which has two very different ingredients: 

● A reduction from factoring to period-finding. 
This part is purely classical. 

● A quantum algorithm for period-finding that uses only a ​constant​ ( ) number of queries to , 
as well as a polynomial ( ) number of computational steps. 

 
Why is factoring ≤ period finding? Here ≤ means “reducible to” 

The main connection between the two is ​the multiplicative group modulo .  This is a finite 
abelian group—that is, a finite set with a commutative, associative, invertible multiplication 
operation—that’s one of the most basic examples of a group in all of math. 

For a prime , the multiplicative group consists of the set , with the group 
operation being multiplication mod . 

To be in the multiplicative group mod  where  is composite, you again need to be less than 
, and now also relatively prime with , since otherwise you won’t have a multiplicative inverse mod 
. 

For example, when , the multiplicative group mod  consists of the 8-element set 
, 

with the group operation being multiplication mod 15.  
To check that this is a group, you can fill out the multiplication table and see for yourself! 

In general, the size of this group, given , is going to be , since that’s how 
many positive integers less than  are relatively prime to .  For example, when , we 
saw that the size of the group is . 
 
An extremely useful fact about finite groups  is that, for any element , we have . 
This has a few corollaries, such as 

Fermat’s Little Theorem  
, for all primes ​p​| ​and integers  

and its generalization, ​ Euler’s Theorem 
, for all primes ​p​, ​q​| ​and integers  relatively prime to them 

 
Euler’s Theorem is super important in RSA encryption as well. 
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More generally, ​Euler’s Totient Function | ​returns the order of the multiplicative group mod , 
which is the number of integers from 1 to  that are relatively prime to .  For example, if | ​and | ​are 
prime, then | ​and .  And we can write: 

 
 

Why is this important? 
Well, let’s say we want to factor some number , a product of distinct primes. 
Then here’s an approach: pick an  such that  

           We can assume such ’s are easy to find.  Indeed, if ,  then 
           we can run Euclid’s algorithm on  and ​N​ to factor ​N​ right then and there. 

 
Shor’s algorithm is based on a careful study of the ​modular exponentiation function ​​: 

 
 
What can we say about this function?  First of all, how hard is it to compute?  A naïve approach would 
use –1 multiplications, which is exponential in .  But there’s a much, much faster approach, 
called ​Repeated Squaring​​.  It’s best illustrated with an example. 

Say we want to calculate . 
We could calculate , by alternating multiplication with reducing 

mod 15, but that’s still 20 multiplications. 
Instead, let’s rewrite it as a product of 13 raised to various powers of 2: 

. 

Then we can further rewrite that as . 

This may be ugly, but it requires considerably fewer multiplications, an advantage that grows rapidly as 
the exponent increases.  Indeed, the total time needed is polynomial in . 

Once again, repeated squaring also plays a central role in RSA decryption.  Ironically, many of the 
same number theory facts that led to RSA also allow lead to Shor’s algorithm, which breaks RSA. 

 
OK, so | ​is efficiently computable.  It’s also, clearly, a periodic function.  What could 
we learn by figuring out its period?  Here’s the key point: we claim that ​finding the period of  will 
help us factor ​​N​​. 
 
Why? 
First an intuition.  Suppose we were able to learn , the order of the multiplicative group mod ​N​. 
Then we’d surely be able to factor ​N​ into ​pq​.  Indeed, 

. 
So now we know both ​pq​| ​and ​p​+​q​, and we can use the 
          quadratic formula to solve for ​p​| ​and ​q​| ​themselves. 

Unfortunately, this doesn’t quite work with Shor’s algorithm, because the period of  might not be the 
same as : the most we can say is that the period ​divides . 
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So here’s what we’ll do instead.  We pick a random  relatively prime to ​N​, and find the period  of  
.  We then have that . 

Now let’s imagine we’re lucky, and  is even (which intuitively should happen maybe half the time?).  In 
that case we can write: 

 
 

 
Now let’s imagine we get lucky a second time, and neither | ​nor | ​are multiples of ​N​. 

Then that means we’ve learned a factor of ​N​. 
For we just compute , which will give us either | ​or . 

       Because if neither | ​nor | ​contains a full ​N​, then one 
          must contain a multiple of | ​and the other a multiple of . 

Furthermore, both of these “imagine we get lucky” steps can be shown to happen with a constant 
probability over the choice of , by using a little number theory that we won’t go into here.  The precise 
statement is as follows: 

For any ​N​, if  is randomly chosen relatively prime to ​N​, then with probability at least : 
●  ​is even 
● Neither | ​nor | ​is a multiple of ​N 

 
This gives us a plan of attack for… 
Shor’s Algorithm (The Quantum Part) 

Basically, we’ll give a quantum algorithm that solves the black-box problem of period-finding, in 
time polynomial in .  We’ll then apply that algorithm to find the period of the function 

, 
for a randomly chosen base .  (I.e., we’ll use the above  to “instantiate” the black box.)  By the 
previous discussion, this  can be computed in polynomial time—and better yet, the ability to find its 
period implies the ability to factor ​N​. 

When we write , what we really mean is  for a specific base  that we choose. 
As we saw before, to factor a given ​N​, we might need to try 
 several different values of  until we find one that works. 

 
The first step is to make an equal superposition over all positive integers ​| | ​less than some upper bound ,  

with each integer written in binary notation:  

For technical reasons, we set | ​to be the smallest power of 2 larger than . 
 
We can prepare this state by Hadamarding the qubits in the first register, then querying . 
 
Unlike with Simon’s algorithm and so forth, in Shor’s algorithm we don’t need to treat  |​as an abstract 
black box.  We can find an actual quantum circuit to implement  , because  is not arbitrary: 
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By using the repeated squaring trick, we can create actual circuit 
| ​that maps | ​to , out of a network of 

| ​Toffoli gates. 
 
We’ll use ancilla qubits to store the output .  Then, just like 
with Simon’s algorithm, we won’t care at all about the actual 
value of —only about the effect that computing |​had on 
the | ​register.  So for pedagogical purposes, we’ll immediately 
measure the | ​register and then discard the result. 
 
What’s left in the | ​register? 

By the partial measurement rule, what’s left is an equal 
superposition over all the possible ’s that could’ve led to the 
observed value .  Since | ​is periodic with a secret period , these values will differ from each other 
by multiples of .  In other words, we now have: 

 
 

The central challenge of Shor’s algorithm is to measure the above state in a way that reveals 
useful information about the period .  Just like with Simon’s algorithm, ​if​ we could measure the state 
multiple times, then we could compare the results to each other and take some gcd’s to find .  But we 
can’t do that!  We can repeat the whole algorithm from the beginning, but if we do, then we’ll almost 
certainly end up with a different offset , preventing useful comparisons. 
 
This simply means that, just like with everything else in quantum computing, to see a speedup at some 
point we’ll have to exploit the magic of minus signs: interference, cancellations, change of basis, 
whatever term you want to use.  But how do we change the basis to one that reveals the period —and 
moreover, do so efficiently, using a number of gates that’s only polynomial in ? 

That brings us to the topic of the next lecture: the ​Quantum Fourier Transform​​! 
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Lecture 20, Tues April 4: Shor, Quantum 
Fourier Transform 
 
Last time we started in on Shor’s algorithm, a quantum algorithm that can factor ​N​ into ​p​×​q​ in polynomial 
time by reducing the problem to period-finding.  Today we’ll start to see how to solve period-finding in 
polynomial time.  Before we do, though, a conceptual clarification: 
 
Is Shor’s algorithm ​provably​ faster than any classical algorithm for the same task? 

If by “Shor’s algorithm,” we mean the period-finding core of the algorithm, then the answer is 
yes.  As we saw in the last lecture, there’s a provable speedup from ~  queries to only O(1).√s  

If, on the other hand, we think of Shor’s algorithm as a way to do integer factorization, then the 
speedup remains conjectural.  Indeed it has to, because no one has even proven that P≠NP---and if P=NP, 
then of course factoring is classically easy. 

The way to reconcile these two statements is simply to observe that there are many ways to factor 
a number besides by reducing factoring to period-finding.  In fact, the best known classical factoring 
algorithms---the Quadratic Field Sieve and Number Field Sieve mentioned in the last lecture---do much 
better than  by exploiting additional structure in the factoring problem.  The most we can currently√s  
prove is that Shor’s algorithm achieves an exponential speedup over any classical factoring algorithm ​that 
works via the last lecture’s reduction to black-box period-finding​. 
 
We left off last time with our quantum state in the form 

| ​r ​⟩ + | ​r+s ​⟩ + | ​r+​2​s ​⟩ + … 
Now we’ll see how to measure this state to extract useful information about the period ​s ​. 
 
In science and engineering, any time you have a periodic signal and you’re trying to extract its period, 
there’s a single tool that gets called upon… 
 
The Fourier Transform! 
There are many types of Fourier transforms: continuous, Boolean, etc.  For us, though, the ​Q​-dimensional 
Fourier transform will be the ​Q​×​Q ​ matrix ​F​Q​ defined as follows: 

⟨ ​i ​| ​F​Q​ ​| ​j ​⟩ = ω ​ij / , √Q  ​where ω = ​e​2π​i​/​Q​ ​is a ​Q​th​ root of unity. 
So, the ​ij​th​ entry of the matrix involves ω raised to the ​ij​th​ power. 

 
Here’s some useful intuition for how it works: 

In grad school, you can easily fall into a 26-hour-per-day cycle.  So one day you wake up at 8am, 
the next day you wake up at 10am, then 12pm, and so forth. 

Suppose you’ve fallen into such a cycle, and you want to figure out how long the cycle is, without 
doing any complicated calculations like subtraction. 



What you can do is install a series of clocks in your room, each tracking “days” of different 
lengths.  So you’d have a 23-hour clock, a 24-hour clock, a 25-hour clock, etc.  In addition, install a 
bulletin board below each clock and place a single thumbtack in the center. 

 

Now: every time you wake up, for each clock, move the thumbtack one inch in the direction that 
the hour hand points. 
 
What will happen if you keep doing this, week after week? 

 
The thumbtack corresponding to the 26-hour clock will always move in the same direction. 

This is constructive interference! 
And the same can be said for the 13-hour clock (as well as the 2- and 1-hour clocks). 
All the others, the 23-hour clock, the 24-hour clock, etc, will have the thumbtack move around, 

but sometimes one way, sometimes another way, so that it eventually returns to the origin. 
The Quantum Fourier Transform is essentially this, but with quantum-mechanical amplitudes instead of 
thumbtacks. 
 
There are two questions we need to answer here: 

1. How do we implement the Quantum Fourier Transform using a small quantum circuit? 
Since it’s a ​Q ​×​Q​ matrix, it’s not obvious whether we can do it using a circuit with polylog(​Q ​) gates. 

2. Once we’ve applied the QFT and measured, how do we make sense of the outcome? 
Complications can arise because the period ​s ​ doesn’t divide ​Q ​ (in all likelihood). 

 
To answer the first question, let’s look at some examples. 
F ​2​ = H = ( 1   1 )1

√2
because it’s ( ω ​0*0​ ​ω ​0*1​ ) 



         ( 1 –1 )       ( ω ​1*0​ ​ω ​1*1​ ) 
 

 
F ​4​ =  ( 1   1   1   1 )2

1 i.e.​ ​( 1   1   1   1 ) 

( 1   ​i​  –1 –​i​ )       ​( 1​ ​ω ​1​ ω ​2 ​ω ​3​ ) 
( 1 –1   1 –1)       ​( 1​ ​ω ​2​   1​ ​ω ​2​ ) 
( 1 –​i​  –1   ​i​ )       ​( 1​ ​ω ​3​ ω ​2 ​ω ​1​ ) 

 
For F ​8​ you’d have  ( 1   1   1   1   1    1   1   1  )1

2√2
  

 ( 1 ω ​1​ ω ​2​ ω ​3​  ω ​4​ ω ​5​ ω ​6​ ω ​7​ ) 
 ( 1 ω ​2​ ω ​4​ ω ​6​   1  ω ​2​ ω ​4​ ω ​6​ ) 
 ( 1 ω ​3​ ω ​6​  ω   ω ​4​ ω ​7​ ω ​2​ ω ​5​ ) 
 ( 1 ω ​4​  1   ω ​4​  1  ω ​4​  1   ω ​4​ ) keep in mind that you can simplify 

 ( 1 ω ​5​ ω ​2​ ω ​7​  ω ​4​   ω ω ​6​ ω ​3​ ) ω ​2​ = ​i 
 ( 1 ω ​6​ ω ​4​ ω ​2​    1 ω ​6​ ω ​4​ ω ​2​ ) ω ​4​ = –1 

 ( 1 ω ​7​ ω ​6​ ω ​5​  ω ​4​ ω ​3​ ω ​2​ ω ​1​ ) 
 
We could design an algorithm to apply these matrices by brute force, but there’s a better way. 
This method is related to one of the most widely used classical algorithms… 
The FFT – Fast Fourier Transform 

Suppose we have a vector of length ​Q ​, and we want to apply a ​Q​×​Q ​ matrix ​A​ to it.  In general this 
takes ~​Q ​2​ operations.  However, ​if​ we know that ​A​ is the Fourier transform, then the FFT lets us apply it 
in only O(​Q​ log ​Q ​) steps, by exploiting regularities in the Fourier matrix. 
 
So what regularity ​is​ there in the Fourier matrix? 
 
Look at F ​4​ =  ( 1   1   1   1 )2

1  
( 1   ​i​  –1 –​i​ ) 
( 1 –1   1 –1) 
( 1 –​i​  –1   ​i​ ) 

If we swap the second and third columns, we get 
          ( ​1   1​  ​ 1   1​ )2

1  
This quadrant looks like H… ( ​1 –1​   ​i ​ –​i​ ​) 

( ​1   1​ ​–1 –1​) 
          This one too… ( ​1 –1​  ​–​i​   ​i​ ​) 

In fact, we can rewrite the whole matrix as 
 



( ​H ​  ​AH ​ ) 
(​ H ​–AH ​) for A = ( 1 0 )​ [the phase shift] 

( 0 ​i​ ) 
You can do the same procedure for F ​8  

  ( 1   1   1   1   1    1   1   1 )1
2√2   

          ( 1 ω​1​ ω ​2​ ω ​3​  ω ​4​ ω ​5​ ω ​6​ ω ​7​ ) 
          ( 1 ω​2​ ω ​4​ ω ​6​   1  ω ​2​ ω ​4​ ω ​6​ ) 
          ( 1 ω​3​ ω ​6​  ω   ω ​4​ ω ​7​ ω ​2​ ω ​5​ ) 
          ( 1 ω​4​  1   ω ​4​  1  ω ​4​  1  ω ​4​ ) 
          ( 1 ω​5​ ω ​2​ ω ​7​  ω ​4​   ω ω ​6​ ω ​3​ ) 
          ( 1 ω​6​ ω ​4​ ω ​2​    1 ω ​6​ ω ​4​ ω ​2​ ) 
          ( 1 ω​7​ ω ​6​ ω ​5​  ω ​4​ ω ​3​ ω ​2​ ω ​1​ ) 
Moving all the odd columns to the left, and the even columns to the right, and simplifying the ω’s, we get 

  ( ​1   1   1   1​   ​1    1   1   1​ )1
2√2   

          ( ​1​   i​  –1 –​i​ ​ ​ω ​1​ ω ​3​ ω ​5​ ω ​7​ ) 
          ( ​1 –1   1 –1​  ​ ​i   –i   i  –i​ ​) 
          ( ​1 –​i​  –1   ​i ​ ​ω ​3​  ω  ω ​7​ ω ​5​ ) 
          ( ​1   1   1   1​ ​–1  –1 –1 –1​ ) 
          ( ​1   ​i​  –1 –​i ​ ​ω ​5​  ω ​7​ ω  ω ​3​ ​) 
          ( ​1 –1   1 –1​  ​–​i    i – i   i​ ​) 
          ( ​1 –​i​  –1   ​i​ ​ ​ω ​7​ ω ​5​  ω ​3​ ω ​1​ ) 
Which, again, we can now rewrite as  

( ​F ​4​ ​  ​AF ​4​ ) 
(​ F ​4​ ​–AF ​4​ ​) 

This time A = ( 1  0  0   0 ) 
          ( 0 ω  0   0 ) 
          ( 0  0 ω ​2​  0 ) 

          ( 0  0  0 ω ​3​ ) 
 
You can work out why it happens on your own, but it turns out that we can define ​F​Q​ in terms of this 
nesting recurrence: 

F​​Q​​ =  ( ​F​Q​/2​ ​   ​AF​Q​/2​ )1
√2

 

     ( ​F​Q​/2​  ​–​AF​Q​/2​ ) 
Notice that applying ​F​Q​ takes linear time plus twice however much time it takes to apply ​F​Q​/2​, so 

solving the recurrence, the overall running time of the FFT algorithm is O(​Q​ log ​Q ​). 
In the quantum case, we’re actually interested in the unitary transformation 



|Ψ⟩ → ​F​Q​|Ψ⟩ where |Ψ⟩ is a quantum state of log​2​Q ​ qubits. 
In one sense, our new goal is less ambitious: we don’t need the result vector written explicitly in 

memory anywhere; it only needs to be encoded implicitly in a vector of amplitudes.  In another sense, 
though, our new goal is more ambitious, since we now want to apply a Fourier transform in time 
polynomial in only log ​Q​. 
 
So how do we do it? 

We can use the same recursion that we used for the FFT, ​plus ​ the additional observation that that 
recursion behaves “linearly” with respect to quantum states. 

Let’s think of our log(​Q​) qubits as representing an integer 
from 0 to ​Q ​-1 in binary notation.  And let’s order the bits of that 
integer from most to least significant.  Then we can try applying the 
circuit ​F​Q​/2​ to the “first half” of the number: in other words, to all but 
the least significant bit. 
 
This corresponds to applying the matrix 

( ​F​Q​/2​       ) 
(       ​F​Q​/2​ ) 

To get an ​A​ on the bottom right quadrant, as in the FFT algorithm, we can then apply a control-​A​: 
( ​F​Q​/2​          ) 
(       ​AF​Q​/2​ ) 

We can implement ​A​ using a linear number of gates, because it simply amounts to the following: 
If the most significant bit is 1, then do a rotation 
Else if the second bit is 1, then do a rotation that’s half as big 
Else if the third bit is 1, … etc…  

By the time you reach the last couple of bits, the rotation is exponentially small. 
 

When they first learn about Shor’s algorithm, some people object that it’s “unphysical,” since there’s no 
practical way to apply such tiny rotations.  But it turns out that the exponentially small rotations ​don’t 

matter ​ for the algorithm---indeed, there’s a theorem that says that you can just ​omit​ these tiny rotations. 
Doing so even improves the size of the quantum circuit that implements ​F​Q​, from O(​q​2​) to O(​q ​log ​q​). 

 
The final step to get the matrix we want is a Hadamard gate. 

 ​( 1   1 ) ( F ​Q/2​          )    =    ​( F ​Q/2​    AF​Q/2​ )
1

√2
1

√2
 

         ( 1 –1 ) (       AF ​Q/2​ )        ( F​Q/2​  –AF​Q/2​ ) 
 
So here’s our finished quantum circuit: 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
Note that the reordering of the qubits isn’t part of the recursion: it’s performed only once, at the very end 
of the circuit.  We’ll leave it as an exercise to see why the qubits emerge from the circuit in ​reverse​ order, 
with the least significant at the top and the most significant at the bottom.  (Hint: it has to do with the least 
significant, Hadamarded qubit “jumping up” to become the most significant one, at each level of the 
recursion.) 
 
Okay.  So now that we’ve seen how to implement the Quantum Fourier Transform as a quantum circuit, 
it’s time to answer our second question: 
What comes out when we measure, and how can we use it to learn ​s ​? 

We have a state like (​| ​r ​⟩ + | ​r+s ​⟩ + | ​r+​2​s ​⟩ + … + | ​r+​(​L ​-1)​s ​⟩)1
√L

 

And we know that the QFT maps this state to 
 

 |j⟩. 1
√QL

∑
Q − 1

j = 0
∑

L − 1

l = 0
ω(r+ls)j  

 
What’s going on with the above state?  Let’s start with an easy special case, and only later handle the 
general case. 
 
The easy case is that s divides Q. 
Assuming that, let’s answer the question: ​which ​j​’s can be observed, when we measure the above state in 
the computational basis?​  This in turn boils down to: ​for a given ​j​, do the various contributions to ​j​’s 
amplitude interfere constructively or destructively? 

To answer this question, we can ignore the global phase ω ​r​  and just look at the sum . ∑
L − 1

l = 0
ωjsl  

The key is to identify whether ​js ​is a multiple of ​Q ​. 
● If ​js ​ ​is not​​ a multiple of ​Q 

Then we have destructive interference because the terms ω ​js​, (ω ​js​)​2​ , (ω ​js​)​3​ , etc. are all pointing in 
different directions in the complex plane, and they cancel each other out. 



Just like the thumbtack’s movement coming back to the origin. 
● If ​js ​ ​is​​ ​​a multiple of ​Q​--or equivalently, if ​js ​ = ​kQ ​ and ​j​ = ​kQ​/​s ​ for some integer ​k​. 

Then, since ω was a ​Q​th​ root of unity, the terms ω ​js​, (ω ​js​)​2​ , (ω ​js​)​3​ , ... all point in the same direction in the 
complex plane, producing constructive interference. 
 

If we repeat this procedure several times, we’ll generate a list of such ​j​’s, each of which is an 
integer multiple of ​Q ​/​s ​: 

j​1​ = ​k​1​Q ​/​s ​, j​2​ = ​k​2​Q ​/​s ​, … 
So then we just need to take their GCD to get ​Q​/​s ​ itself (with overwhelming probability), from which we 
can compute ​s ​, given our knowledge of ​Q​. 

Remember: This is only possible because we assumed that ​s ​ divides ​Q​. 
 
The harder, general case is that s doesn’t divide Q. 
In this case, if we calculate the final amplitude for a specific basis state ​j​, then ignoring the global phase 

ω ​r​ , we’ll still get a sum of the form   So, how likely we are to observe ​j​ will still depend on.∑
L − 1

l = 0
ωjsl  

whether this sum involves constructive or destructive interference. 
What changes is that now ​Q ​/​s ​ isn’t an integer--and as a result, neither the constructive nor the 

destructive interference will be perfect.  But we’ll see that they’re still good enough for the period ​s ​ to be 
efficiently recovered. 

 Let’s ask whether ​j​ has the form ​⌊​k ⌉
s
Q   

for some integer ​k​: in other words, whether it’s the nearest integer to some multiple of .s
Q

 

● If ​j​ = ​⌊​k ⌉
s
Q

 

then we’ll claim that we’ll see ​mostly​ constructive interference. 

● If ​j​ ≠ ​⌊​k ⌉
s
Q

 

then we’ll claim that we’ll see ​mostly​ destructive interference. 
 
Let’s look at the constructive case first. 

Assume we get a bit lucky, and we have (say) ​j​ = ​k  ​+ ε  where |ε| ~ .s
Q 1

10  
That means that ignoring normalization, the final amplitude of basis state ​j​ has the form 

= . ∑
L − 1

l = 0
ω(k  + ε)sls

Q

ω  ∑
L − 1

l = 0
ωkQl εsl  

We can go further, and say that the ω ​k​Q​l​ term doesn’t matter, because 

ω ​kQl​ = ​e​(2π​i​/​Q​)(​kQl​)​ = ​e​2π​ikl​ = 1. 
 



So then we’re left with the ω ​ε​sl​ part, which amounts to a rotation around an ε fraction of the unit circle. 
i.e. mostly constructive interference. 

 

Next suppose ​j​ isn’t the nearest integer to a multiple of ​Q/s​.  In that case, as we vary ​l​, the term  will ωjsl  
loop all the way around the unit circle one or more times.  So we’ll get mostly destructive interference, 
except for a small amount of constructive interference from the final rotation. 
 

If you plot the final amplitude as a function 
of ​j​, you get something like the graph on the 
left. 
 
 
 
 



Lecture 21, Thurs April 6: Continued Fractions, 
Shor Wrap-Up  
 
Today we’ll finish Shor’s algorithm and then discuss some of its implications. 
 

Last we saw our protagonists, they were in a superposition of the form 
| ​r ​⟩ + | ​r+s ​⟩ + | ​r+​2​s ​⟩ + …, 

and we were trying to use the Quantum Fourier Transform (QFT) to extract the period ​s ​.  Our first order 
of business was to give a polynomial-size quantum circuit to implement the QFT.  Our second order of 
business was to understand what we observe after we apply the QFT and then measure in the 
computational basis. 

Recall that there were two cases: 
If ​s ​ divides ​Q​, then each possible measurement outcomes has either perfectly constructive or 

perfectly destructive interference.  And the outcomes with constructive interference---i.e., the ones that 
we could see---are all integer multiples of ​Q ​/​s ​.  From a few random such outcomes, it’s easy to recover ​s 
itself, given our knowledge of ​Q​. 

If ​s ​ ​doesn’t​ divide ​Q ​, then the pattern of constructive and destructive interference is no longer 
perfect, but has some noise to it. 

That’s because ​k  is no longer generally an integer, but the algorithm’s output still needss
Q

 
 to be an integer.  So we effectively get a rounding effect, where the nearest 

 integers to ​k ​ have the strongest constructive interference.s
Q

 
 

So we run the algorithm once and get an integer, let’s say ​l​1​ = ​⌊​k ⌉​
, then run it again to get ​l​2​, ​l​3​, etc.s

Q
 

And the question is then: given these integers, almost all of which are close to integer multiples of ​Q​/​s ​, 
how do we use them to deduce ​s ​ itself? 
 
This brings us to the final step of Shor’s algorithm, which is another piece of classical number theory 
called the… 
The Continued Fraction Algorithm 

Whenever an outcome ​l​ is observed, we’d like to determine whether it’s close to an integer 
multiple of ​Q​/​s ​, and if so what the multiple is.  This is where we use continued fractions. 

It’s easiest to illustrate with an example.  Let’s look at the continued fraction expansion of an 
approximation of π, 3.14. 

3.14 = 3 + = ​ 3 + = ​3 +14
100

1
14
100

1
7 + 2

14
 

The idea is that we keep pulling out the largest integer we can and rewriting, until we have an 
approximation of ​Q ​/​j​ to within an accuracy of about 1/​Q​2​. 



The reason why the method works is that ​s ​ is a relatively small integer, so is not only rational but has as
Q

 
relatively small denominator. 
 

In more detail, let’s write ​l​ = ​k  ​± ε, where ε is some small value.s
Q

 

Then we divide the above equation through by ​Q​, to get =  ​± .l
Q s

k ε
Q  

And so… ≤​ .|
|

l
Q − s

k |
|

ε
Q  

 
We’ll exploit the key inequality above, along with: 

● the fact that we know ​l 
● the fact that we know ​Q​ (because we picked it: it’s at most ~​N​2​) 
● the fact that we know that ​s ​ isn’t too large 

s ​ ≤ ​N​ because the order of the multiplicative group is less than ​N​, and 
the order of any element in the group is at most the number of elements. 

So isn’t just close to ​any​ rational number , it’s close to a rational number with a prettyl
Q s

k  

small denominator, and ​that​ doesn’t happen by random chance.  
There’s math that backs this up. 

This is the reason why we set ​Q​ to be ~​N​2​ in the first place.  Doing so ensures that the rational 
approximation ​to  is more-or-less unique, and moreover that there’s an efficient algorithm to find it.s

k l
Q  

 
Suppose I give you a rational number, say 0.25001, and I tell you that it’s close to a rational 

number with an unusually small denominator.  How could you figure out which such rational number it’s 
close to, without having to try ​all​ ​possible​ small denominators, of which there might still be too many? 

In this particular example, you just stare at the thing, and immediately see ¼ is the answer!  OK, 
but what would be a more systematic way of doing it? 
 
The more systematic way is to expand the input number as a continued fraction, until the leftover part is 
so small that we can safely discard it.  To illustrate: 
 

 =  ​ =  ​ = = 25001
100000

1
25001
100000

1
3 + 25001

24997
1

3 + 1

24997
25001

1
3 + 1

1+ 4
24997

 

Now we’ve reached , a number small enough for us to discard, which leaves us with4
24997  

~​ =  ​ 1
3 + 1

1 4
1  

So now we have a way to find . ​Are we done?s
k  

Well, we still have the same difficulty that we encountered in the ​s ​ divides ​Q ​ case, namely that ​k 
and ​s ​ might share a nontrivial divisor.  If, for example, ​k​ and ​s ​ were even, then we’d have no possible way 
to tell  apart from .s

k
s/2
k/2  



We solve this using exactly the same approach as before: we repeat the algorithm several times to 

generate , , , etc.s1

k1
s2

k2
s3

k3  

One can then show that the least common multiple of the ​s ​i​’s will be s itself, with a sufficiently 
high probability. 
 

Today, half of pop-science articles ​still​ say that “quantum computers would factor numbers by trying all 
the possible divisors in parallel.” 

If you’ve taken anything away from our discussion of how Shor’s algorithm works, I hope you now agree 
that it’s more subtle than that! 

 
In the next lecture, we’ll see how a quantum speedup for “pure, brute-force search” ​does ​ exist, but it’s not 

exponential, but “merely” quadratic. 
 
The ink wasn’t dry on Shor’s paper before people started asking… 
What else might Shor’s algorithm be good for, besides factoring? 
 
For starters, as we mentioned a couple lectures ago, and as Shor showed in his original paper, it also gives 
exponential speedup for ​Discrete Log​​: 

Given a prime ​p​, and an integer ​g​ such that ​g​x​ = ​a​ (mod ​p​).  Find ​x​. 
This is how Shor’s algorithm breaks the Diffie-Hellman cryptosystem. 

 
And it was noted shortly afterward that Shor’s algorithm can also be modified to break ​Elliptic Curve 
Cryptosystems ​​. Indeed, people quickly figured out that Shor’s algorithm can be modified to solve pretty 
much ​any​ problem related to finding hidden structures in abelian groups. 

Almost all the public-key cryptosystems that we currently use involve finding such hidden structures. 
 
In the years after Shor’s algorithm, a lot of research in quantum algorithms was directed towards 
answering the question: 
           “To what extent can we generalize Shor’s algorithm to solve problems about ​non​-abelian groups?” 

By now, though, many people have given up on this direction.  It’s very, very hard. 
 
Why did people care about non-abelian groups?  Well, if Shor’s algorithm could be generalized to handle 
them, there are two famous problems that would help us solve. 
 

1. Graph Isomorphism 
This is where you’re given two graphs, and need to decide whether they’re isomorphic.  It’s a problem 
that no one yet knows how to solve in polynomial time, but that famously seems to have “too much 
structure” to be NP-complete. 
In the early 1970s, when Leonid Levin co-discovered the theory of NP-completeness, legend has it that he 

sat on his discovery for more than a year because he was trying to show that Graph Isomorphism is 
NP-complete---something that we now believe is impossible. 



People quickly realized that if you could generalize Simon’s and Shor’s algorithms to a situation 
where the underlying group is the symmetric group S ​n​, instead of an abelian group like ​ℤ​2​n​ or ​ℤ​N​×​, then it 
would solve Graph Isomorphism in quantum polynomial time. 

In 2016, though, Babai (who’s been studying Graph Isomorphism for forty years) found a 
classical algorithm to solve Graph Isomorphism in ​quasipolynomial​ time, meaning ​n​polylog(​n​)​. 

Many people suspect that Graph Isomorphism is in P, for one thing because the problem is easy in 
practice almost all of the time.  In any case, since we now know that Graph Isomorphism is at worst 

quasipolynomial classically, there’s no longer any possibility of getting an ​exponential​ quantum speedup 
for the problem. 

 
2. Lattice-Based Cryptography 

There’s a set of public-key cryptosystems based on lattices, which are becoming increasingly 
important theoretically and even practically, and we don’t know how to break (yet) even with a quantum 
computer. 

Given a collection {​z ​1​,...,​z ​n​} of vectors in ​R​n​, the ​lattice​ spanned by the collection is the set of all 
integer linear combinations of the vectors: 

L ​ = {​a​1​z ​1​ + … + ​a​n​z ​n​ : ​a​1​ , …, ​a​n​ ϵ ​ℤ } 
A typical problem would be: “given {​z ​1​,...,​z ​n​}, find the shortest nonzero vector in ​L​---or at least, a 

vector that’s within a √​n​ factor of being the shortest.” 
It turns out that you can create entire public-key cryptosystems around these sorts of problems. 

 
There was an important result by ​Regev (2005)​​, which says that we could break lattice-based 
cryptosystems if we could generalize Shor’s algorithm to work for a nonabelian group called the dihedral 
group. 

Needless to say---because otherwise I would’ve told you!---no one has yet succeeded in doing so. 
So, lattice-based crypto is an attractive alternative to RSA and Diffie-Hellman for those who are 

paranoid about quantum computers.  But it’s also attractive for other reasons, including the prospect of 
Fully Homomorphic Encryption ​​: the ability to do arbitrary computations on encrypted data without ever 
decrypting it.  This would let people submit their data to cloud computing servers, and then get back the 
results, without the cloud server ever learning what computation it did.  In 2009 Craig Gentry proposed 
the first Fully Homomorphic Encryption scheme using lattice-based crypto; since then other schemes 
have been proposed.  These are not schemes that we know how to break even using a quantum computer. 
There’s still a practical problem with these schemes: the key sizes, message sizes, and computation times 

tend to be huge.  But the schemes have been steadily improving, and many of them are now either 
practical or nearing practicality. 



Lecture 22, Tues April 11: Grover 
 
The next quantum algorithm we’ll cover is… 
Grover’s Algorithm 

which was discovered in 1995, shortly after Shor’s algorithm. 
Both Grover and Shor were working at Bell Labs at the time. 

Grover’s algorithm gives a smaller speedup than Shor’s (quadratic rather than exponential), but for a 
much wider range of problems.  Just like with all the other quantum algorithms we’ve seen, it’s easiest to 
think of Grover’s algorithm in terms of a black box: 

Given an oracle function ​f​ : {1, … , ​N​} → {0, 1}. 
We’d like to answer two questions: 

● Is there an ​x​ such that ​f​(​x​) = 1? 
● If there is, what is such an ​x​? 

The basic problem that Grover’s Algorithm addresses is ​unordered search​. 
a.k.a looking through a list of bits for a 1 bit. 

Classically, we’d need a linear number of queries, ​Ω(​N​), to solve this problem deterministically​. 
Why?  Simply because, if we want to know for certain whether there’s a treasure hidden in one of 

n​ boxes, then even after opening ​N​–1 boxes and finding them empty, we still need to open the ​N​th​ box! 

If the treasure is guaranteed to be in ​some​ box, then finding it takes ~  queries on average,2
N  

which is still linear in ​N​. 
Grover’s algorithm solves both problems using only O( ) quantum queries to the function ​f​.√N  

This might seem unreasonable---but as we’ll see, it’s quite similar to how the Elitzur-Vaidman Bomb 
worked. 

 
The number of qubits needed to run Grover’s algorithm is very low, O(log ​N​), and the number of 

gates required is also reasonable, O( log ​N​).√N  
However, for Grover’s algorithm to work, we do need to assume that we have quantum access to 

the function ​f​, in such a way that we can apply the unitary transformation . Thisx, ⟩ x, (x)⟩  | a → | a ⊕ f  
wasn’t important in Shor’s Algorithm because we only made one query and then discarded the result. 
 
There are two main example applications to keep in mind with Grover’s algorithm. 
 
The first application is solving combinatorial search and optimization problems, such as NP-complete 
problems.  Here, we think of  ​N​ = 2​n​ as being exponentially large, and we think of each candidate solution 

x​ ​ϵ {0,1}​n​ as an ​n​-bit string.  We then set, for example, 
f​(​x​) = φ(​x​), 

where φ is an instance of Satisfiability or some other ​NP​-complete problem. 
Then Grover’s algorithm can solve the problem in O(2​n​/2​ poly(​n​)) time: namely, = 2​n​/2​ queries√N  

to ​f​, and poly(​n​) time to implement each query (say, by checking whether a given ​x​ satisfies φ).  



This is a speedup for ​NP​-complete problems---but at most a quadratic one, and also only 
conjectural​, because of course we can’t even rule out the possibility of ​P​=​NP​, which would annihilate 
this sort of speedup. 

For an ​NP​-complete problem like CircuitSAT, we can be pretty confident that the Grover 
speedup is real, because no one has found any classical algorithm that’s even slightly better than brute 
force.  On the other hand, for more “structured” ​NP​-complete problems, we ​do​ know exponential-time 
algorithms that are faster than brute force: for example, 3SAT is solvable in about O(1.3​n​) time.  So then 
the question becomes a subtle one, of whether Grover’s algorithm can be ​combined​ with the best classical 
tricks that we know, to achieve a polynomial speedup even compared to a classical computer that uses the 
same tricks.  For many ​NP​-complete problems, the answer seems to be yes, but it need not be yes for all 
of them. 
 
The second example application of Grover’s algorithm to keep in 
mind---Grover’s original application---is searching an actual 
physical database.  

Say you have a database of personnel records, and you 
want to find a person who matches various conditions (hair color, hometown, etc). 

You can set ​f​(​x​) = 1 if person ​x​ meets the criteria 
   0 otherwise 

Then Grover’s algorithm can search for an ​x​ such that ​f​(​x​) = 1 in O( ) steps.√N  
 
Some people have questioned the practicality of using Grover’s algorithm to search a physical 

database, because the database needs to support “superposed queries”: that is, you need to be able to 
query many records in superposition and get back a superposition of answers. 

A memory that would support these kinds of queries is called a “quantum RAM.”  Building one is a 
whole additional technological problem, beyond building a quantum computer itself.  And it remains 

unclear whether people will be able to build quantum RAMs without ​n​ active, parallel computing 
elements---which, if you had them, would remove the need to run Grover’s algorithm.  In this lecture, 

though, we’ll treat such things as “mere engineering difficulties”!  
 
Anyway, one big advantage of Grover’s algorithm as applied to actual physical databases is that there the 
quantum speedup is ​provable​: it doesn’t rely on any unproved computational hardness assumptions. 
 
OK, so without further ado, ​how does Grover’s algorithm work? 
 
For simplicity, let’s assume that a solution exists and is unique.  We call this the ​marked item​: it’s the 
unique ​x​*​ such that  ​f​(​x​*​) = 1 
 
We’ll also assume for simplicity that ​N​ = ​2​n​ is a power of 2, 
which will allow us to do our favorite trick: start by 
Hadamarding ​n​ qubits. 



Doing so brings the initially all-0 state to a uniform superposition: 

|00…0⟩  → (1/√​N​) | ​x​⟩∑
N

x = 1
  

As shown, all possible ​x​ values have the same amplitudes. 
 

Then we query with ​U​f​ , a unitary transformation that flips the 

amplitude of the marked item: ​U​f​ | ​x​⟩ = (-1)​f​(​x​)​ | ​x​⟩. 
As we’ve already seen in this course, if we can apply 

, then we can also apply the phase oracle | ​x​⟩x, ⟩ x, (x)⟩  | a → | a ⊕ f  
 (-1)​f​(​x​)​ | ​x​⟩.  Phase oracles are more convenient for the→  

purposes of Grover’s algorithm. 
 
 

Next we apply a unitary matrix ​D​ (shown below), the so-called 
“Grover diffusion operator,” which has the effect of flipping 
all ​N​ amplitudes about the mean amplitude. 

 where α​xααx → 2 − αx α = 1
N ∑

N

x = 1
 

 
 
 
 
 

 
 

So why does applying ​D​ help us? 
Well, let’s look at what’s happened after a single Grover iteration.  We’ve managed to increase 

the amplitude of the marked item, to roughly 3/√​N​, and decrease the amplitudes of all the other items. 
Now we keep repeating: another ​U​f​, then another ​D ​, then another ​U​f​, then another ​D​, and so on. 

If we run those steps repeatedly, we can increase the amplitude of the marked item further as pictured 
below. 
 
 

 
 

 
 
 



As an approximation, we can say that when the number of queries is small, the repetition increases the 
marked item’s amplitude as 

, , , , …1
√N

3
√N

5
√N

7
√N   

 

Notice that it would take O( ) steps for this series to reach = 1.√N √N
√N  

This is a quadratic speedup.  Classically we’d need about ​N​ queries to find the answer, because 
after ​t​ queries we’d have a probability of of having found the marked item.  Meanwhile, if we measuret

N  

after ​t​ queries in Grover’s algorithm, we find the marked item with probability of order  ~ . ( 2t
√N )2

N
4t2  

 
This picture isn’t exactly right, though, because we ignored some details.  Over time the mean gets 
smaller, so the increase in the marked item’s amplitude slows down. 

Which makes sense, because otherwise the amplitude would continue increasing past 1! 
We’ll see exactly what happens shortly. 
 
First, though, a natural question to ask about Grover’s algorithm is “​Why should it take  steps?√N  
Why not  or log​N​?​”√3 N  

We see here that, in some sense, the ultimate source of the  is the fact that amplitudes are the√N  
square roots of probabilities.  Instead of adding 1/​N​ probability to the marked item with each query, 
quantum mechanics lets us add  amplitude, resulting in quadratically faster convergence./1 √N  
 

Of course, if we want to use Grover’s algorithm in practice, then in addition to bounding the 
number of queries by O( ), we’ll ​also​ need to find a small quantum circuit to implement the Grover√N  
diffusion operator ​D​. 
 

Say we want to implement ​D​ on an ​n​-qubit state (​N​ = 2​n​).  It’s easiest if we look at what ​D​ does in 
the Hadamard basis.  What ​does ​ it do in that basis? 

Well, the β​th​ amplitude would be αβs = 1
√ N

∑
N  − 1

x = 0
(− )1 s·x

x  

We’ve seen previously that this is the result of switching to the Hadamard basis. 
 
So what happens to these β​s​’s? 

The first one plays a special role: if​ s ​ = 0, we have something proportional to the average, which 
is good because our goal was to invert about the average.  The other ​s ​ values play no particular role in 
Grover’s algorithm. 
 
So in the Hadamard basis, if you think about it, what we want is to perform the 
diagonal matrix ​A​ on the right.  This A is easy to implement as a quantum circuit, 
by using some ancilla qubits to check whether the input is all 0’s, inverting the 
phase if not, and finally uncomputing garbage (details left as an exercise). 
 



 
 
Again, we claim that the ​A​ transformation, 
conjugated by Hadamard gates on either 
side, just implements the Grover diffusion 
transform ​D ​.  If you don’t believe this, you 
can verify it by an explicit calculation. 
 
 
Our final circuit for Grover’s Algorithm (with ~ gates and ~ queries to ​f​) is drawn below.logN√N √N  

 
Now let’s analyze Grover’s algorithm more carefully, and actually prove that it works. 

e.g. we haven’t yet shown that O( ) queries is enough to take us to Pr(success) ≈ 1.√N  
 

Let’s call the initial state |Ψ⟩ = | ​x​⟩1
√N ∑

N−1

x = 0
 

Somewhere in ​N​-dimensional space is the basis state corresponding to the marked item we’re looking for: 
| ​x​*⟩. 
 
What is ​⟨ ​Ψ|x*⟩? 

It’s .  So |Ψ⟩ and | ​x​*⟩ are not quite orthogonal, but ​almost​.1
√N  

Now, even though |Ψ⟩ and | ​x​*⟩ are not orthogonal, these two vectors span a two-dimensional 
subspace.  A crucial insight about Grover’s algorithm is that ​it operates entirely within this subspace​. 
Why?  Simply because we start in the subspace, and then neither the queries nor the Grover diffusion 
operations can ever cause us to leave it! 

This means that we can visualize everything Grover’s algorithm is doing by just drawing a picture 
in the plane. 
 
We saw how the algorithm alternates between two types of operations: 
 



● Reflecting our state about |Ψ⟩ (the 
diffusion transform ​D​) 

 

● Inverting the component of our state that 
points in the |x*⟩ direction (a query ​U​f​) 

 
 
 
 
 
 
 
 
 
 
 
 
So the initial angle with the horizontal is  
 

 
 
 

And then we rotate by  at each iteration.  This means that we’ll get super close to | ​x​*⟩, and2
√N  

have a high probability of observing ​x​* when we measure, after about  iterations--something that 
you can directly see from the geometric picture.  We might not get ​exactly​ to 1, if the step size of the 
rotations causes us to overshoot the vertical direction slightly, but at any rate we’ll get close. 
 
There are several interesting things about this picture... 
What happens if we run Grover’s algorithm for too long? 
 

Well it has a property that almost no classical algorithm has: it starts getting worse. 
Grover’s algorithm has been compared to baking a souffle: 

Once risen, it must be taken out of oven or it’ll get short again. 
On the other hand, Grover’s algorithm has at least one property not shared by souffles: namely, if 

you “leave it in the oven” for even longer, it rises a second time, then goes down a second time, and 
so on forever! 

 

https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%5Csqrt%7BN%7D


Graphing the success probability over time produces a sinusoidal curve, since the probability is just the 
squared projection of the current quantum state onto the y-axis (i.e., sin​2​Θ): 
 
 
 
 
 
 
 
 
 
 
Grover’s algorithm can also put you into an interesting dilemma: 

Suppose you’ve run the algorithm for a given number of iterations, fewer than .  Then you 
could measure right now, and take your chances with whether you’ll observe the solution, or you could let 
it run longer to boost your chances.  If you measure right now and ​don’t​ see the solution, then you need to 
start over from the very beginning. 
 

This could make for an interesting science-fiction story: the heroes need to break 
 a cryptographic code to beat villains, so they run Grover’s algorithm over all the possible decryption 

keys.  They’ve run it for a day and gotten up to 45% probability of observing the solution, but now the 
villains have entered their compound and are closing in on them.  So, do they measure now, or do they let 

the algorithm run a bit more? 
 
Could you get a solution faster by doing many runs, each with measurement after a shorter amount of 
time? 

It depends on the desired level of confidence in getting the right answer after a set amount of 
time.  If your goal is just to minimize the ​average​ number of queries until you learn the answer, then it 
turns out to be optimal to stop some amount of time before you’re able to get a guaranteed answer (details 
left as an exercise). 
 

For simplicity, everything we said 
above assumed exactly one marked item. 
What happens if there are more?  Simple: the 
entire cycle happens faster.  The more items, 
the faster the cycle. 
 
In particular, if ​k​ items out of ​N​ are marked, 

then Grover’s Algorithm peaks at  4
π√ k

N

queries. 
 

https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7D%5Cfrac%7B%5Cpi%7D%7B4%7D%20%5Csqrt%7BN%7D


One of the first questions people asked about Grover’s algorithm was, “​but what if the number of marked 
items isn’t known?​” 

You can sort of see the danger. It’s possible to run Grover’s algorithm the right number of times 
to hit the peak when there’s a single marked item, but that might result in a trough if the number of 
marked items is larger. 

The most basic way to solve this problem is simply to run the algorithm for a ​random​ number of 
iterations, say between 0 and 2 .  If we do this, then most of the time, we expect to end up somewhere√N  
around the middle of a sinusoid, neither at a trough nor a peak, where we have a constant probability (say, 
40% or 60%) of observing a solution if we measure.  This is perfectly sufficient from an algorithmic 
standpoint, since it means that we only need to repeat the algorithm O(1) times on average. 

This gives us an upper bound of O( ) queries to find a marked item with high probability,√N  
regardless of how many there are (assuming there’s at least one). 

While we weren’t explicit about this point before, given a candidate solution ​x​ output by Grover’s 
algorithm, we can simply evaluate ​f​(​x​) classically to check whether ​x​ is really a marked item. 

 
What happens if we run Grover’s algorithm, but the database turns out to have no marked items? 

When we query ​f​: nothing happens 
When we do the diffusion transform: nothing happens 

So, the state just remains a uniform superposition over all ​N​ items for the entire duration of the algorithm. 
This means that when we measure, we just get a random item.  Then we can check that item and see that 
it isn’t marked. 
 
How can we be certain that there no marked items? 
This is the question that arises in the decision version of Grover’s algorithm.  In fact, no matter how many 
times we run Grover’s algorithm, we never become ​100% sure​ that there are no marked items, since we 
could’ve just gotten unlucky and failed to find the items every time.  However, because after O(1) 
repetitions, the algorithm has as a high a probability as we like (say, >99.99%) of finding a marked item 
assuming that there’s at least one of them, if after that time it ​hasn’t​ found a marked item, then we can 
deduce that there almost certainly weren’t any.  This again requires only O( ) queries.√N  
 
We’ve said that if there are ​k​ marked items, then we find one of them in O( ) queries without knowing√N  

k​.  But in fact we can do even better than that, and find a marked item in only O( ​) queries, again √N /k  
without knowing ​k​: the same performance as if we ​did​ know ​k​.  How? 

Assume for simplicity that ​N​ is a power of 2. 
Then first, we guess that almost all items are marked: we do a single query, then measure.  If we 

find a marked item, great. 
If not, next we guess that items are marked, and run Grover’s algorithm with ​k​=​N​/2.  If we2

N  
find a marked item, great. 

Next we run Grover’s algorithm with ​k​=​N​/4, then ​k​=​N​/8, and so on, repeating halving our guess 
for the number of marked items, until either we’ve found a marked item or we’ve searched unsuccessfully 
with ​k​=1. 
 



This method wastes some queries on “wrong” values of ​k​.  But crucially, because the number of queries is 
increasing exponentially, the number of wasted queries is only a constant factor greater than the number 
of queries used in the final iteration: the one that guesses an approximately correct value of ​k​.  Details of 
the analysis are left as an exercise. 
 
Let’s end by mentioning a different way to handle the case of multiple marked items.  This way achieves 
essentially the same performance using a purely classical trick. 

Again suppose we have ​N​ items, ​k​ of which are marked.  ​We want to reduce to the case of just a 
single marked item. 

How do we do that?  Simple: we pick  items uniformly at random, and then run Grover’sk
N  

algorithm on that subset only. 
The number of marked items that we’ll catch has a Poisson distribution.  And one can calculate 

the probability of catching exactly one marked item in our sample as ~ .  So, we search that subset ofe
1  

 items, using Grover’s algorithm for the single marked item case (which uses O( )​ queries).  Ifk
N  √N /k  

we don’t find a marked item, we can try again with a new random subset. 
 
Exercise for the reader:​ Show that, if there are ​k​ marked items and we want to find ​all​ of them, we can do 
that using O( ) queries.√Nk  



Lecture 23, Thurs April 13: BBBV, 
Applications of Grover 
 

It’s great that we can get a quadratic speedup with Grover’s algorithm, but we were able to get an 
exponential​ speedup with Shor’s algorithm…  
 
So why can’t we get a bigger speedup for unordered search? 

By now, you should have some intuition for the differences between Shor’s algorithm and 
Grover’s algorithm. 

Shor’s algorithm provided an exponential speedup by orchestrating a very “global” phenomenon: 
an interference effect that revealed the period of a black-box periodic function. 

Grover’s algorithm let us turn a little amplitude into a bigger amplitude by adding 1/  with√N  
each query.  It’s faster than classical brute-force search, but still laborious (~ time).√N  

 
We’re ​still​ hand-waving the issue though.  We haven’t ruled out the possibility of a quantum 

algorithm that beats Grover, solving unordered search in or log(​N​) queries or whatever.  For that we√3 N  
need…  

 
The BBBV Theorem​ (Bennett, Bernstein, Brassard, Vazirani 1994) 

which proved that Grover’s algorithm is indeed asymptotically optimal for the black-box 
unordered search problem. 

Note that the BBBV Theorem was published in 1994, so it actually predates Grover. 
Grover’s algorithm thus has the rare distinction of being an 

 algorithm that was proved to be optimal ​before​ it was discovered. 
Amusingly, BBBV were trying to prove that there’s no magic way to search faster using a 

quantum computer.  They were able to get a lower bound of ~ , and figured that tightening the bound√N  
to ~​N​ was a technical issue that they could leave for the future—until Grover came along and showed 
why such a tightening is impossible. 
 
While by now we know many proofs of the BBBV Theorem, the original (and still most self-contained) 
proof uses what’s called a ​Hybrid Argument​. 

Imagine we’re using an arbitrary quantum algorithm to search for a single marked item in a list of 
size ​N​.  Without loss of generality, we can say that the algorithm makes ​T ​ queries and looks like this: 

U​0​ → Q → U​1​ → Q → U​2​ → Q → …  
where each Q is a query, and each U​t​ is a unitary transformation that doesn’t depend on the list.  Now we 
do a test run of the algorithm on the all-zero list (without a marked item), and see what happens. 

We’ll argue that at least one item in the list was queried with a small amplitude, because there’s 
only so much amplitude to go around.  But now, if we change the 
value of ​that​ ​item​ from 0 to 1, then we can show that the algorithm 



wouldn’t much notice the change, by exploiting the fact that unitary transformations are linear and 
norm-preserving. 

More concretely, we’ll show that the final state of the algorithm is at most O( ) away fromt
√N  

what it would have been, had we kept the list all-zero. 
 

Note: while we’ll only consider algorithms that apply unitary transformations, exactly the same proof 
carries over to algorithms that have intermediate measurements---because we can always model a 

measurement by a unitary transformation on a larger set of qubits, just like in the Many-Worlds 
Interpretation. 

 
The argument is called “hybrid” because we’ll create hybrid oracles, which answer the first queries as if 
they’re the all-zero oracle, but then switch partway through the algorithm to having a single “1” entry. 
 
What is the state of the algorithm immediately before the ​t​th​ query? 

|Ψ​t​⟩ = α​x,w,t​ | ​x, w​⟩∑
 

x, w
      ​Assuming the all-zero input. 

x​ is whichever list item that we’re querying next. 
w​ is what’s known in quantum algorithms as “the workspace,” any qubits that the algorithm 

might use for internal purposes but that don’t participate in the query. 
In Grover’s algorithm there’s hardly any “workspace” to speak of: we do use auxiliary qubits to 

implement the diffusion operator, but those qubits are reset to their original state by the time the diffusion 
operator is finished.  But the BBBV Theorem, to be fully general, will allow for unlimited workspace. 

We’ll show that regardless of the workspace, the algorithm would require ~ queries.√N  

α​x,w,t​ is the amplitude of basis state | ​x, w​⟩ at time ​t​. 
 
Now we define the “query magnitude” of an element ​x​ ∈ {1, … , ​N​} to be 

M​x​ = |α​x,w,t​| ​2∑
T

t = 1
∑
 

w
 

I.e., the query magnitude is the sum, over all time steps ​t​, of the probability that we would find the 
algorithm querying item ​x​ if we measured at time ​t​. 
 
Observe that by doing some rearranging, we find that the sum of all the query magnitudes is 

M​x​ = |α​x,w,t​| ​2​)​ = 1 = ​T∑
N

x = 1
(∑

T

t = 1
∑
N

x = 1
∑
 

w
∑
T

t = 1
 

 
Since the sum is ​T​, the average query magnitude is .  Now, any list of numbers has at least oneT

N  
number that’s at most the average. 

This is sometimes referred to as the “Lake Wobegon Principle,” after the fictional town where everyone 
was above average. 



So let ​x*​ be a list element with query magnitude M​x*​ ≤ .T
N  

 
The idea here is that the algorithm only has so much amplitude to spread around, and thus most database 
items must not get “monitored” too closely.  So if we pick one such item, ​x​*, and make it the marked 
item, then the algorithm will mostly fail to notice the change. 
 
More formally, we have 

|α​x*,w,t​| ​2​ ≤  .∑
T

t = 1
∑
 

w

T
N  

But it would be more useful to us to have an upper bound on 

. ∑
T

t = 1√∑
 

w
|α |x ,w,t*

2  

To get from one to the other we use the Cauchy-Schwarz Inequality, which is super useful in quantum 
information (and many other fields). 
 

Given a unit vector , what is the maximal sum of the absolute values of its entries, |α​i​| ​ ​?∑
N

n = 1
 

 
The Cauchy-Schwarz Inequality says that we can maximize the sum by making all entries equal, with the 
vector , so that the sum is  = .N

√N
√N  

 
 
 
So what does the Cauchy-Schwarz Inequality say about our case? 

Well, if each of the ​T ​ terms of the form |α​x*,w,t​| ​2​ were set equal to∑
 

w

, ​then the sum of their square roots would be .  So this is the1
N

T
√N  

maximum. 
 
Why is this relevant? 

Now comes the hybrid part of the argument. 
Picture a table where each row is our database at a particular point in 

time, with time increasing upwards.  Initially the table is filled with zeros, 
meaning that the oracle answers all queries with zero. 
 

Now we’re going to change the table so that the oracle answers ​f​(​x​*) = 1 for the last query (and 
only​ for the last query).  This means that the state of the algorithm after the final query |Ψ​T​⟩, is going to 
change from what it was before---but we know it can change only in branches that were lucky enough to 
query ​x​*. 



 
So how much can things change (in Euclidean distance)?  Well, since the query flips the 
amplitude, the change is equal to the total norm with which we made the query, times 2: 

| ​|Ψ​T​⟩ – |Ψ​T​′⟩ ​| ​ = 2  √∑
 

w
|α |x,w,T

2  

Here we’re using the fact that, by assumption, the states immediately before the ​T ​th​ query 
are identical in the two situations. 
 
So what happens if the oracle treats ​x​* as marked only for the last ​two​ queries? 

The total amplitude devoted to querying ​x​* before the final amplitude is 2 , √∑
 

w
|α |x,w,T −1

2  

so we get 

| |Ψ​T–1​′⟩ – |Ψ​T–1​′′⟩ | ≤ 2 . √∑
 

w
|α |x,w,T −1

2  

 
But couldn’t the last query push these further apart? 

Here we come to a crucial point: we claim that it can’t.  For in both cases, the last query is 
applying the same unitary transformation, which means that the inner product between the states can’t 
change. 

So we get | |Ψ​T​′⟩ – |Ψ​T​′′⟩ | ≤ 2  and hence √∑
 

w
|α |x,w,T −1

2  

 | |Ψ​T ​⟩ – |Ψ​T​′′⟩ | ≤ 2  by the triangle inequality.  √∑
 

w
|α |x,w,T −1

2 + 2√∑
 

w
|α |x,w,T

2  

 
Continuing in the same way for all ​T ​ of the queries, we find that | ​ ​|Ψ​T​⟩ – |Ψ​T​′′′′′′′​…​′⟩ | is upper-bounded by 

2 .  This means, in particular, that after we measure at the end of the algorithm, we can have found theT
√N  

marked item ​x​* with probability at most O( ), precisely the success probability that Grover’sN
T 2 

 
algorithm achieves. 
 

This “BBBV Theorem” has since been enormously generalized, to a whole theory 
 about lower bounds on quantum query complexity, which unfortunately we won’t really enter into in this 

course--but see Prof. Aaronson’s graduate course for more! 
 
 
Now that we understand Grover’s algorithm, we can apply it to solve many, many problems that are not 
quite as simple as unordered search.  Our first example of this is… 
The OR’s of AND’s 

N​ input bits are arranged into a square table of size  by .√N √N  
The problem is to determine: are there any rows with all 1’s? 



 
This problem lets us encode many other problems that involve multiple quantifiers.  For example, in 

chess, we may want to know “Is there a move I 
 can make such that my opponent has no possible response that checkmates me?” 

 
Classically, it’s clear that you have to look through almost the entire table, searching each row 

until you’ve either found a 0 or found that the row is all 1’s. 
 

Quantumly, we could speed this up by searching each row for 0’s using Grover’s algorithm.  The 
running time for each row would be  =  ​N​¼​, or technically ​N​¼​ log ​N​, if we repeat the Grover search√√N  
on each row enough times to have (say) a 1/​N​ probability of error.  This means that searching the whole 
table would take time 

 ​N​¼​ log ​N​ = ​N​¾​ log ​N​.√N  
Alternatively we could do Grover’s algorithm over all the rows, such that each row is counted as 

a “marked item” if and only if a classical algorithm (which we run as an inner loop) finds a zero in that 
row.  This also has an ~​N​¾​ runtime. 
 

Naturally, the next idea is to run Grover’s algorithm recursively, ​inside of itself​, where the outer 
Grover (over the rows) will count a given row as being marked, if and only if the inner Grover failed to 
find a zero in that row.  Again, because Grover’s algorithm has some probability of error, at least naïvely 
we have to repeat the inner runs about log ​N​ times to push the error probability per row down to about .1

N  
 
So our final runtime is O( ​         ​  ​            ​ log​N​  ​          )   =         ​O( log​N​ )√√N √√N √N  

  ​outer G.A.​ ​ inner G.A.​  ​Error Avoidance the Grover speedup! 
 

With some cleverness, people have since been able to remove the log ​N​ factor. 
 
Why couldn’t we just do Grover’s algorithm once, over the whole table? 

Well, just because there’s a 0 ​somewhere​ in the table, doesn’t mean that there couldn’t be a row 
of all 1’s somewhere else. 
 

The first problem in quantum computing that Professor Aaronson worked on was 
 trying to generalize the BBBV Theorem to show that “recursive Grover” is optimal: in other words, that 

any possible quantum algorithm for the OR-of-ANDs requires at least ~  queries.  (The obvious lower√N  

bound is only ~​N​¼​.)  He spent a whole summer trying to solve this problem using the “polynomial 
method,” but couldn’t crack it.  Later, Andris Ambainis, then a PhD student at Berkeley, invented a 

totally new method for proving lower bounds on quantum query complexity, and applied it to solve this 
problem. 

 
 Which was why Prof. Aaronson decided to go to Berkeley for grad school. 

 



We could easily generalize this to evaluate (e.g.) an OR of ANDs of ORs by doing ​three​ recursive 
layers of Grover search, and so forth. 

If we allow an arbitrary number of layers, then we get the A.I. 
concept of ​game trees ​, for two-player games of alternation such as 
chess and Go.  Here the goal is to find a move you can make 
(represented by an OR over various options), which given any move 
that your opponent makes (represented by ANDs), allows for a move 
that you can make, that for any move your opponent makes, etc. … 
eventually wins you the game. 
 

The problem is that, as the game tree gets deeper and deeper, 
the advantage of Grover’s algorithm over classical search ​seems ​ to get 
weaker and weaker, for two reasons: first, the amplification that’s 
needed at each layer to prevent error buildup, and second, the constant 
factors, which multiply across the layers.  Note that each layer actually 
needs to run Grover’s algorithm on the layer below it ​twice​: 

● Once to do  | ​x​⟩ → | ​x​⟩| ​f​(​x​)⟩ 
● And once to uncompute garbage. 

For this reason, the constant factor π/4, in the running time of Grover’s algorithm, actually becomes π/2, 
and π/2 > 1. 
 

In short, none of this answers the natural question: ​“Can a quantum computer help you play 
chess?” ​  For game-tree search with a deep enough tree, Prof. Aaronson and some others conjectured that 
the diminishing returns from Grover’s algorithm would end up negating any asymptotic advantage over a 
classical computer. 

 
In 2007, however, Farhi, Goldstone, and Gutmann, and others who built on their work, 

dramatically refuted that conjecture.  The upshot of their work is that we now know how to evaluate ​any 
game tree with ​N​ leaves, no matter how deep, in ​O​( ) time on a quantum computer.  (This is also√N  
known to be asymptotically optimal.) 

 
So, yes, quantum computers probably ​would​ help you play chess! 

To put some numbers on this: Claude Shannon famously estimated the number of possible board 
positions in chess as ~10​43​, which is certainly out of range for any existing computer on earth.  But if 
quantum computers brought that down to ~10​21.5​, solving chess might ​just​ be doable. 

Though it raises a philosophical question: Have you actually “solved” chess if 
 you don’t have a solution table that anyone can examine, but only a quantum computer that always wins? 
 
In the next lecture, we’ll see some additional applications of Grover’s algorithm, to the so-called ​collision 
and ​element distinctness ​ problems. 



Lecture 24, Tues April 18: Collision and Other 
Applications of Grover  
 
We’ve seen the application of Grover’s algorithm to searching game trees.  Now let’s see another 
important application, to… 
 
The Collision Problem 
In the simplest version of this problem, we’re given quantum black-box access to a function 

f ​:{1, …, ​N​}→{1, …, ​N​} 
where ​N​ is even, and we’re promised that ​f​ is two-to-one.  The problem is to find ​x​ and ​y​ such that ​x​ ≠ ​y​, 
and ​f​(​x​) = ​f​(​y​).  So, there are lots of “collisions” to be found, and the challenge is just to find one of them. 

In another version of the problem, we’re promised that ​either ​ ​f​ is one-to-one or it’s two-to-one, 
and the problem is to decide which.  Clearly, if we could solve the “search” version, then we could also 
solve the “decision” version, by simply outputting that ​f​ is two-to-one if a collision is found, or that ​f​ is 
probably one-to-one if not.  Conversely, any lower bound for the decision version implies the same lower 
bound for the search version. 
 

The collision problem often arises in cryptography, when we’re trying to break collision resistant hash 
functions.  You can think of the collision problem as being a lot like Simon’s Problem but with less 

structure---or alternatively, as being like the Grover search problem but with ​more​ structure. 
 

With a classical randomized algorithm, if we have black-box access to ​f​, then Θ( ) queries are√N  
necessary and sufficient to solve the collision problem.  Why?  The upper bound follows from the famous 
“birthday attack”: if there are ​N​ days in the year, then you only need to ask about  people before√N  
there’s an excellent chance that you’ll find two with the same birthday, because what matters is the 
number of ​pairs ​ of people.  The lower bound can be proven using the union bound: with a random 
two-to-one function, each pair has only a ~1/​N​ chance of being a collision, so to find a collision with 
constant probability you need to look at ~  pairs or more.√N  

What about quantumly?  Well, we could of course simulate the above randomized algorithm to 
get ~ .  But there’s also a completely different way to get ~ : namely, we could first query ​f​(1), and√N √N  
then do a Grover search for an ​x​ ≠ 1 such that ​f​(​x​) = ​f​(1).  So a question arises: can we combine the two 
approaches to do even better than ~ ?√N  
 
(Brassard, Hoyer, Tapp 1997) showed how to do exactly that.  Here’s their algorithm: 

First, pick random inputs to ​f​, query them classically, and sort the results for fast lookup.√3 N  

Next, run Grover’s algorithm on ​N​⅔​ ​more​ random inputs to ​f​ (inputs that weren’t queried in the 
first step).  In this Grover search, count each input ​x​ as “marked” if and only if ​f​(​x​)=​f​(​y​) for one of the √3 N
inputs ​y​ that was already queried in the first step.  (This requires lookups to our sorted list, but no 
additional queries to ​f​.) 



 
How many pairwise comparisons do we make this way? 

N​⅔​ ✕ ​N​⅓​ = ​N 
What’s the runtime? 

N​⅓​  +  = ​O​(​N​⅓​ )√N  ⅔  
 
The centerpiece of Professor Aaronson’s PhD thesis was showing that you can’t improve on this by much. 

It was later shown by Yaoyun Shi that you can’t improve on it at all. 
 

The BHT algorithm gives a good illustration of how quantum algorithms can end up with weird running 
times.  You have two or more phases of the algorithm that you try to balance against each other, make 

about equally time-consuming, in order to minimize the total time,. 
 

At a high level, you can see why the BBBV proof that we used to prove the optimality of 
Grover’s algorithm doesn’t work for the collision problem.  In the BBBV proof, we changed a single 
element from 0 to 1, then showed that it would take many iterations for the algorithm to notice.  With the 
collision problem, by contrast, the key issue is that turning a one-to-one function into a two-to-one 
function requires changing ​half​ the elements. 

Instead, Aaronson and Shi used polynomial approximation theory (a branch of math) to rule out 
super-fast quantum algorithms for the collision problem. 

In some sense, proving a quantum lower bound for the collision problem ​should​ be harder than 
proving one for the Grover problem, because if the lower bound for collision did too much, then it would 
rule out things like Simon’s algorithm or Shor’s algorithm.  What the proof does is take advantage of the 
symmetry of the collision problem. 

Symmetry in the sense that you can arbitrarily permute the function in the 
 collision problem, and it’s still a valid input, 

 which isn’t the case for something like Simon’s problem. 
 

More broadly, after Grover published his algorithm, there was a ten-year flood of people realizing 
you can use it for speedups in all sorts of problems. 
 
For example, in addition to the collision problem, there’s also the closely related problem of … 
Element Distinctness 

Given black-box access to the function ​f​ : {1, … , N} → {1, … , N}, with no promises about ​f​. 
Determine if ​f​ is one-to-one. 

In other words: Are there any duplicates/collisions? 
 

Classically, you’d hash the elements (or sort them, or use a binary search tree, etc.), which would 
take N queries plus the amount of computation required for sorting (say, N log N steps). 
 

Quantumly, there’s an algorithm that takes only O(N​¾​) queries, as shown in a paper of Buhrman 
et al. from 2000. 



This is another cute application of Grover search. 
 

Given a list of the ​N​ values of a function, we split them 
into  blocks of  values each.  Then, by using√N √N  
Grover’s algorithm over these blocks, we produce a 
quantum algorithm that makes O( ) queries to ​f​ and√N  
finds a collision (if there is one) with probability .1

√N
 

 
So, how can we do that? 

Pick a block at random and query all elements in it. 
If you find a collision in the block, you’re already done!  If you don’t, then sort the elements in 

the block for fast lookup.  Next, do a Grover search on the other items in the list, counting an item as 
“marked” if and only if it equals an element from the collision block. 

 
As long we were lucky enough to pick a block that contains at least one element of a collision 

pair, this algorithm will find such a pair with constant probability.  Hence it succeeds with 1
√N

 

probability. 
 

We can improve on this (after all, we ​do​ have access to a quantum computer), by doing an outer 
layer of Grover search that searches through the  blocks, counting a block as “marked” if and only if√N  
the “inner” algorithm above finds a collision involving that block. 

Our final runtime is      ​        *              √√N √N             ​ =   O( ​N​¾​ ) 
    ​  Outer Grover​           ​Inner collision search Element Distinctness in ​N​¾ 

 
What’s the lower bound on Element Distinctness? 

As a baseline, we know the query complexity has to be at least that of searching a list for a given 
i​, which is ~ .  Pinning down the complexity of Element Distinctness between ~ and ~​N​¾​ was an√N √N  
open problem for several years. 

As it turns out, the answer is ~​N​⅔​. 
Yaoyun Shi noticed that an ~​N​⅔​ lower bound follows from the ~​N​⅓​ lower bound for the collision 

problem. 
That is, suppose for a contradiction that we could solve Element Distinctness in ​t​ << ​N​⅔​ queries. 

This would let us solve the collision problem in << ​N​⅓​ queries.√t  
 
How? 

Given a 2-to-1 function ​f​, pick ~ inputs uniformly at random.  Since, by the birthday paradox,√N  
we can expect to find a collision within that set of inputs (with constant probability), we now simply run 
our hypothesized Element Distinctness algorithm on that subset. 
 



Matching this lower bound, in 2003 Andris Ambainis found a quantum algorithm that solves 
Element Distinctness with O(​N​⅔​) queries.  His algorithm used “quantum walks,” which are vaguely like 
Grover’s algorithm but more sophisticated.  It also required a huge amount of workspace qubits, on the 
order of ​N​⅔​.  Whether this large number of workspace qubits is necessary remains open to this day. 
 

OK, how about one more vignette on the quantum query complexity of fundamental problems from 
computer science, which is now something we know a lot about. 

 
Parity of an ​n​-bit String 

Given ​x​ ∈ {0,1}​n​ , suppose we just want to determine ​x​1​ ⊕ ​x​2​ ⊕ …⊕ ​x​n​ ​ (i.e., whether the total 
number of 1 bits is odd or even). 
 
Classically, of course, this requires ​n​ queries.  Quantumly, we’ve seen that we can do it in  queries, by2

n  

splitting ​x​ into  pairs and then applying the Deutsch-Jozsa algorithm separately to each pair.2
n  

A beautiful result shows that this is optimal: queries are needed by any quantum algorithm for2
n  

Parity.  This can be shown using the ​polynomial method​ (Beals et al., 1998).  Just to give you a brief 
taste: 

Suppose that we have quantum algorithm ​A​, which makes ​t​ queries to an input string ​x​.  We can 
study the probability that ​A​ accepts ​x​, call it ​p​(​x​). 

For simplicity we’ll assume that ​A​ is trying to compute a Boolean function, so it either accepts or rejects. 
A critical fact proven by Beals et al. is that ​p​ : {0,1}​n​ → ℝ turns out to be a multivariate 

polynomial in the ​n​ bits of ​x​.  Furthermore, the degree of that polynomial is at most 2T. 
 
So, suppose we can show that any polynomial ​p​ that can approximate a given Boolean function ​f 

must have deg(​p​) ≥ D.  Then we can deduce that the quantum algorithm must have made at least 2
D  

queries. 
This reduces questions about quantum query complexity to purely mathematical questions about 

the degrees of real polynomials, with no further CS or quantum computing needed! 
In the case of Parity, it turns out one can show that any polynomial approximating the Parity 

function needs degree ​n​.  This implies that any quantum algorithm for Parity must make at least 2
n  

queries. 
 

As a complement to Parity, it’s also worth briefly discussing the ​n​-bit Majority function, which 
outputs 0 or 1 depending on whether the input string has more 0’s or 1’s respectively.  The quantum query 
complexity of Majority turns out to be order ​n​--i.e., there is no asymptotic quantum speedup for this 
problem--and that can also be proved using the polynomial method. 

However, there ​is ​ a quantum speedup for a problem closely related to Majority. 
 
For a poll to be accurate within ​x​ percent, how many people do you need to classically query? 



Suppose you want to approximate the Hamming weight (i.e., number of 1’s) in your ​n​-bit input string, to 
within an additive error ±ε ​n​. 

Classically, you can do this by sampling ~ uniformly random bits and taking their average, and1
ε2  

this is also tight.  (This fact is extremely useful to know when, e.g., choosing the sample size for a 
political poll, to achieve a desired margin of error like ±3%.) 

Quantumly, by contrast, via a clever application of Grover’s algorithm, it turns out that we can 
solve this problem using only ~  queries: a quadratic speedup.ε

1  
 
 
To conclude this lecture, let’s talk a bit about ​Quantum Complexity Theory​, the generalization of 
computational complexity theory to the quantum realm, so we can understand the broader context of the 
quantum algorithms we’ve seen.  Classically, we define complexity classes such as: 

P​ (Polynomial-Time), the class of decision problems solvable by a standard, deterministic digital 
computer in polynomial time. 

(examples: linear programming, connectivity of graphs) 
NP​ (Nondeterministic Polynomial-Time), the class of decision problems for which there’s a 

deterministic polynomial-time algorithm to ​verify​ yes-answers. 
(example: factoring, when suitably phrased as a yes-or-no decision problem) 

NP-hard ​ problems are, roughly speaking, problems to which every ​NP​ problem can be reduced 
in polynomial time.  So in particular, if you could solve any ​NP​-hard problem in polynomial time, then 
you’d be able to solve everything in NP in polynomial time. 

NP-complete​ problems are those that are both in ​NP​ and ​NP​-hard.  Informally, they’re “the 
hardest problems in ​NP​.” 

(examples: Traveling Salesman, 3SAT, Max Clique, Bin Packing, VLSI layout, Sudoku, 
Super Mario, and many other problems of practical and not-so-practical importance) 
 

This picture already involves an enormous mathematical unknown: famously, no one has ruled out the 
possibility that ​P​ = ​NP​, in which case all ​NP​ problems (so in particular, all ​NP​-complete problems) 

would be solvable in polynomial time. 
 
Where does quantum computing fit in? 

In 1993, Bernstein and Vazirani defined the complexity class ​BQP​ (Bounded-Error Quantum 
Polynomial-Time) as a quantum generalization of ​P​.  Loosely speaking, ​BQP​ contains all decision 
problems that can be solved in polynomial time with a quantum computer. 

How does ​BQP​ relate to classical complexity classes? 
We know that ​P​ ⊆ ​BQP​, basically because Toffoli gates can simulate AND, OR, and NOT gates, 

and hence universal classical digital computation--and hence quantum computers can simulate classical 
ones.  We also know, from Shor’s algorithm, that Factoring (when suitably phrased as a decision 
problem) is in ​BQP​, though it’s not known (to put it mildly) whether Factoring is in ​P​. 

We ​don’t​ know whether ​NP​ ⊆ ​BQP​--that is, whether quantum computers can solve all ​NP 
problems (including ​NP​-complete problems) in polynomial time.  The BBBV Theorem does tell us that 
there isn’t an easy proof of ​NP​ ⊆ ​BQP​ to be had that just treats the ​NP​ problem as a black box. 



 
“Can quantum computers solve ​NP​-complete problems in 

polynomial time?” 
is one of the big open problems of Quantum Complexity Theory. 

 
We could also ask the converse, “Is ​BQP​ ⊆ ​NP​?”  In other 

words: for every problem that a quantum computer can solve, is 
there a short proof of the answer that’s easy to verify classically? 

It’s possible that there are problems that a quantum 
computer could solve easily which can’t be classically solvable, but 
we don’t have any present examples. 
 
The last important question to ask here is, “If ​BQP​ doesn’t seem to be contained in ​P​, and maybe not 
even in ​NP​, then what ​is ​ it contained in?”  In other words: 
What classical class gives an upper bound on what a quantum computer can do? 

Well, Bernstein and Vazirani showed that it’s possible to simulate a quantum computer 
classically with exponential time and polynomial memory, basically by writing an amplitude of interest as 
a sum of exponentially many contributions, and then evaluating the contributions one by one, reusing the 
same memory each time, and adding them to a running total. 

This gives us an upper bound: ​BQP​ ⊆ ​PSPACE​, where ​PSPACE​ (Polynomial Space) is the 
class of problems solvable on a digital computer using a polynomial amount of memory, but possibly 
exponential time. 

It’s possible to get a better upper bound on ​BQP​, but it involves other complexity classes that we 
won’t define here. 

So, what would it take to prove that ​P​ is different from ​BQP​?  Of course this would follow if 
Factoring wasn’t in ​P​, but proving the latter would require showing ​P​≠​NP​!  So, is there better hope for 
proving ​P​≠​BQP​ in the near future than there is for proving ​P​≠​NP​? 

Unfortunately, not so much.  The reason is that ​BQP​ is sandwiched between ​P​ and ​PSPACE​: 
 

P​ ⊆ ​BQP​ ⊆ ​PSPACE​. 
 

For this reason, any proof of ​P​≠​BQP​ would also need to show that ​P​≠​PSPACE​, which is a big unsolved 
problem in itself. 



Lecture 25, Thurs April 20: Hamiltonians 
 
Now we’ll move on to our second-to-last unit…  
Hamiltonians and the Adiabatic Algorithm 

We’ve seen how it’s an open question whether quantum computers can solve ​NP​-complete 
problems in polynomial time.  If this turned out to be possible, it would be world-changing. 

Like, it would be time for a Manhattan Project to build scalable quantum computers... 
But if it turns out that quantum computers ​can’t​ solve ​NP​-complete problems in polynomial time, 

the question still remains, “How close can they get to solving?” 
We know from the BBBV Theorem that any approach that ignores the structure of ​NP​-complete 

problems will only yield the Grover speedup. 
There have been many papers on arXiv.org that claim 

 to solve ​NP​-complete problems in polynomial time with a quantum computer, but do so in ways that 
violate this theorem. 

 
Virtually all quantum computing papers can be found on arXiv.org, but the site has no 

 peer review. 
 

So to do better than Grover, we’d need to exploit problem structure in some way.  For example, 
with Boolean satisfiability, we could imagine devising some quantum algorithm that dealt with certain 
parts of the formula first, and worried about other parts later. 

If we managed to show that ​any​ ​NP​-complete problem was in ​BQP​ (i.e., solvable in polynomial 
time by a quantum computer), then by definition, ​all​ of ​NP​ would be in ​BQP​. 

However, if we’re talking about small speedups, then the choice of ​NP​-complete problem might 
actually matter, because the process of reduction from one ​NP​-complete problem to another might cancel 
out a speed advantage. 
 
The Adiabatic Algorithm​ (Farhi, Goldstone, Gutmann, Sipser 2000) 

is a famous attempt to do exactly the above--i.e., get a quantum speedup for ​NP​-complete 
problems (conceivably, even an exponential speedup) by actually exploiting their structure. 

It’s an extremely important quantum algorithm, but unlike (say) Shor’s or Grover’s algorithms, it 
doesn’t come with any rigorous analysis guaranteeing it will run fast in all cases--and indeed, we now 
know that it doesn’t.  To this day, no one really knows how useful this algorithm will be in practice. 
It’s something that people will eagerly experiment with, as soon as they have reliable large-scale quantum 

computers to test it on! 
For some instances of optimization problems, the adiabatic algorithm might give a huge speed 

advantage, but for other instances it gives little or no advantage, or is even outperformed by classical 
algorithms.  People are still trying to figure out for which types of instances the algorithm is most useful. 
 
To understand the adiabatic algorithm, we first need to back up, and familiarize ourselves with a central 
concept in quantum mechanics called ​Hamiltonians ​. 

In a physics course on quantum mechanics, Hamiltonians would be day-one material, 



 while we’d only get to quantum computing and information at the very end (if at all).  In this course, it’s 
exactly the opposite! 

 
Recall that unitaries are discrete linear transformations of quantum states: 

|Ψ⟩ → U|Ψ⟩ 
But a physicist would treat time as ​continuous ​, and say 
that the state |Ψ⟩ rotates continuously to U|Ψ⟩ over some 
interval of time. 
 
Hamiltonians are just the instantaneous time generators of unitary transformations.  I.e., they’re things 
that give rise to unitary transformations when you “leave them running” for some period of time.  Like 
density matrices, Hamiltonians are described by ​Hermitian matrices ​.  (But unlike density matrices, 
Hamiltonians don’t need to be positive semidefinite or to have trace 1.) 

Remember: for H to be Hermitian means that H = H​✝ 

 
From a physics perspective, the central equation of quantum mechanics is ​Schrödinger’s Equation: 

i = H|Ψ⟩dt
d|Ψ⟩ with H being some Hamiltonian. 

This equation describes the evolution of an isolated quantum pure state in continuous time. 
 

Well, the full version of Schrödinger’s equation also includes the so-called ​Planck’s constant​ ,h  
which is needed to convert between units of time and units of energy.  But unless we’re dealing with 
actual experimental data, involving meters, seconds, joules, and so forth, it’s more convenient just to set 

=1 -- the convention we’ll adopt throughout!  And for future reference: if it ever comes up, the speed ofh  
light ​c​ is also 1. 
 
We can solve Schrödinger’s equation, to find that the state after time ​t​ is 

|Ψ(​t​)⟩ = ​e​–​i​H​t​ |Ψ(0)⟩. 
Basically, we have here a whole ​system​ of linear differential equations--one for each coordinate of the 
vector |Ψ⟩--but we can formally solve it by pretending that the matrix H is a scalar. 
 
Here, though, we need to back up to address a mathematical point: 
 
What does it mean to raise ​e​ to the power of a matrix? 

The “right” definition turns out to be: you take the standard Taylor series for the exponential 
function, 

e​A​ = ,∑
∞

k = 0
k!
Ak

 

and then just plug in a matrix instead of a number, to get a matrix-valued result. 
To give some examples: 
 
 



      and  
 
 
 
 
 
More generally, we can say that  
 
 
I.e., you can exponentiate a diagonal matrix by exponentiating each diagonal term individually. 

 
That might look like a very special case, but for Hermitian matrices, in some sense it’s really all 

we need.  Suppose we’re given a matrix A, which can be written as A = UDU​–1​ where D is diagonal. 

Then to compute ​e​A​ we can write: 

e​A​ =  ​=   = U​e​D​U​–1∑
∞

k = 0
k!

(UDU )−1 k

∑
∞

k = 0
k!

UD Uk −1  

Thus we have a simple algorithm to exponentiate any diagonalizable matrix. 
 
What leverage do we get from H being Hermitian? 

For what we’ve said to make sense--and in particular, for it to be consistent with the discrete-time 
version of QM we’ve used in the rest of the course--it better be the case that the matrix ​e​–​i​H​t​ is unitary. 
Let’s now prove this to be true, by using the fact that H is Hermitian. 
 
First claim: If H is Hermitian, then all its eigenvalues are real. 

This is a special property of Hermitian matrices, although it’s not “if and only if.” 
Proof: Suppose λ is an eigenvalue.  Then by definition, there’s some eigenvector | ​v​⟩ such that 

H| ​v​⟩ = λ| ​v​⟩, 
⟨​v​|H| ​v​⟩ = λ. 

What do we get by conjugate-transposing the whole thing? 
⟨​v​|H​✝​| ​v​⟩ = λ  

But since H = H​✝​, this is equivalent to 
⟨​v​|H| ​v​⟩ = ,λ  

⟨​v​|H​✝​| ​v​⟩ = .λ  
So λ = , which means λ ∈ ℝ.λ  
 
Something stronger is also true: every Hermitian matrix is diagonalizable. 

One can prove that by induction on the dimension of the matrix.  We won’t go through the details here. 
Generalizing these facts, the Spectral Theorem says that any Hermitian matrix can be written as 

H = UDU​✝ with U being unitary and 
        D being diagonal and real 



 
Now, to show that ​e​–​i​H​t​ is unitary, just diagonalize H: 

e​–​i​H​t​ = e−itUDU✝  

        = U ​e​–​it​D​ U​✝ 
 But      ​e​–​it​D​ =  

 
 
which is a diagonal unitary matrix (since λ​1​,...,λ​n​ are real).  Hence ​e​–​i​H​t​ is a unitary matrix. 
 
Note that, if | ​v​⟩ is an eigenvector of H associated with the eigenvalue λ, 
              then | ​v​⟩ is also an eigenvector of ​e​–​i​H​t​, associated with the eigenvalue ​e​–​iλt​. 
So, eigenvectors of H give rise to eigenvectors of the unitary. 
 
Now, what about going backwards: 
Given a unitary U, can we find a Hermitian matrix H such that U = ​e​–​i​H​t​? 

Yes, this is not hard. 
First diagonalize U, to get U=VDV​✝​. 
We then just need to take a logarithm of each diagonal entry of D: 
That is, for each D​jj​, find a λ such that D ​jj​ = ​e​–​iλt​. 

 
Will the λ that we get by solving this be unique? 
No, because by Euler’s formula, we can always add 2π​i​ to the exponent and the equation will still hold. 
 
 
We saw that is a logarithm of the identity matrix.  ​What else is? 
 
 

  and so on. 
 

Thus, any given unitary can arise from infinitely many different Hamiltonians. 
 
Physicists have a special name for the eigenvalues that you get by diagonalizing a Hamiltonian.  They call 
them ​energies ​.  Note that they’re all real, and can therefore can be ordered from least to greatest: 
 
 
 
 



H = U U​✝​, with λ​1​ ≤ λ​2​ ≤ … ≤ λ​n  
 
 
To each energy λ​j​, there corresponds an ​energy eigenstate​ | ​v​j​⟩ such that H| ​v​j​⟩ = λ​j​| ​v​j​⟩. 
 
Why are they called energies? 

Because they ​are​ energies.  These values are amounts of energy that the system can have. 
 

Quantum mechanics gives us one explanation for why the concept of “energy” arises in physics: because 
unitary matrices arise by exponentiating Hamiltonians, and Hamiltonians can be diagonalized and have 

real eigenvalues. 
 
If we apply the unitary transformation ​e​–​i​H​t​ to the energy eigenstate | ​v​j​⟩, we get 

e​–​i​H​t​ | ​v​j​⟩ = | ​v​j​⟩.e−iλ tj  
Meaning that nothing happened, apart from the state picking up a global phase (unobservable by itself) 
dependent on the energy. 
 
We can write an arbitrary state as a superposition over the energy eigenstates: 

|Ψ⟩ = α​1​| ​v​1​⟩ + … + α​n​| ​v​n​⟩ 
 
From this perspective, applying the Hamiltonian H is equivalent to doing: 

e​–​i​H​t​|Ψ⟩ = α​1 | ​v​1​⟩ + … + α​n | ​v​n​⟩e−iλ t1 e−iλ tn  
 
This presents a terrifyingly boring picture of the history of universe!  It suggests that all that has ever 
happened, and all that ever ​will​ happen, is that the various energy eigenstates of the universe pick up 
phases, each rotating around the unit circle at a speed proportional to its energy. 

From the utter lack of interesting activity when we view the world in the energy eigenbasis, we conclude 
that life is a basis-dependent phenomenon. 

 
But the above picture is extremely useful.  For one thing, it suggests that we simply ​define​ energy as the 
speed at which a quantum state picks up a phase. 

It’s not obvious that this corresponds to the usual conceptions of energy in physics, but it turns out that it 
does.  You’ll have to go to the physics department for details though! 

 
One thing that ​is ​ clear, from our definition, is that “energy is conserved.”  More formally: the expectation 

value of the energy in the state |Ψ⟩, namely |α​j​| ​2​ λ​j​, stays the same over time.∑
 

j
 

 
Let’s give a few more definitions. 



The energy eigenstate | ​v​1​⟩ corresponding to the ​lowest​ energy is the ​ground state​, which as we’ll 

see plays an extremely special role.  The corresponding energy λ​1​ is the ​ground state energy​. 
The energy eigenstate | ​v​2​⟩ corresponding to the ​second-lowest​ energy is the ​first excited state​. 

The energy eigenstate | ​v​3​⟩ corresponding to the ​third-lowest​ energy is the ​second excited state​, and so 
forth. 

One detail: if λ​1​ = λ​2​, then we get what’s called a ​ground state degeneracy ​: there’s no longer a 
unique ground state, but a subspace of two or more dimensions, in which every state equally minimizes 

the energy.  We can similarly get degenerate excited states, if λ​j​ = λ​j​+1​ for some larger ​j​.  For the most 
part, though, we’ll be able to ignore this. 

 
The standard game plan for much of modern physics goes like this: 

1. Start with the Hamiltonian H of your system. 
2. Diagonalize H. 
3. Get out the energy eigenstates. 
4. Then, as a first guess, see if your system is just sitting in its ground state | ​v​1​⟩ doing nothing. 

 
Why are quantum systems often found sitting in their ground states doing nothing? 

Intuitively, because physical systems “like” to minimize their energy, so they tend to get into 
lower energy states.  And the ground state, by definition, is the lowest they can go. 
 
But since quantum mechanics is time-reversible, how is it even possible for a system to be “attracted” to a 
certain state? 

Excellent question!  You can thank the Second Law of Thermodynamics and the conservation of 
energy for this. 

 
Note that the same question arises in classical physics, which is 

time-reversible too.  If you leave a ball rolling around in a basin, then return a 
while later, you probably won’t find it in an “excited state”--i.e., continuing to 
roll around.  Whatever energy it had in its excited state, it could reach a lower 
energy by rolling downhill, slowing down, and giving off ​heat​ via ​friction​. 

When this happens, the kinetic energy that used to be in the ball dissipates away in the heat. 
In principle, it’s ​possible​ that the reverse could happen, and that the heat could coalesce back into 

the ball and make it spontaneously move.  But we essentially never observe that, and the reason comes 
down to entropy.  For all the heat to coalesce back into motion would require an absurdly finely-tuned 
“conspiracy,” whose probability of occurring by chance falls off exponentially with the number of 
particles in the ball.  But the reverse process, motion dissipating into heat, requires no similar conspiracy: 
it only requires that our universe does contain low-entropy objects like balls.  (This, in turn, can 
ultimately be traced back to the low entropy of the universe at the Big Bang--something that no one has 
satisfactorily explained in terms of anything deeper, but ​we’ll​ be content to leave it there!) 



Pretty much exactly the same story works in the quantum case, and explains why, when we find 
quantum systems in Nature, they’re often sitting in their ground states.  (Namely because, if they weren’t, 
then their interactions with surrounding systems would tend to carry away excess energy until they were.) 
 

By contrast, all the quantum algorithms and protocols that we’ve seen in this course are examples 
of quantum systems that ​don’t​ just sit in their ground states.  Stuff happens; the system evolves!  

We as people don’t just sit in ground states either. 
 

To give an example of these concepts that the physicists ​really​ love: the 
ground state of a hydrogen atom has the electron sitting in the lowest shell (the 
one closest to the nucleus). 

The first excited state has the electron in the next shell up. 
If the atom is in its first excited state, it can drop back down to its ground 

state via the electron emitting a photon.  The photon carries away an amount of energy that’s exactly 
equal to the difference between the ground and the first excited energies. 

Conversely, a hydrogen atom in its ground state can jump up to its first excited state via 
the electron ​absorbing​ a photon.  For this to happen, though, requires a photon to happen to hit the 
electron, which makes this process less likely than its reverse, for a hydrogen atom that’s just sitting by 
itself in space somewhere.  So, that’s why hydrogen atoms in Nature are often found in their ground 
states. 
 
Our final topic for this lecture is an extremely important operation that we can do with Hamiltonians, 
even though we could never do it with unitaries.  Namely, we can add them! 
 
Addition of Hamiltonians 

H = H​0​ + H​1 

 
What does this mean physically? 

Intuitively, it just means we’ve got two things going on at the same time.  For example, H​0​ and 

H​1​ could correspond to two different forces acting on our system.  To illustrate, at an ​extremely​ high 
level, we could write the Hamiltonian for the Standard Model of elementary particle physics as 
 

H​SM​ = H​Kinetic​ + H​EM​ + H​Strong​ + H​Weak  
 

Here H​Kinetic​ is the Hamiltonian that would act even if there were no forces (corresponding to Newton’s 

First Law of Motion), and H ​EM​, H​Strong​, and H​Weak​ are the Hamiltonians corresponding to 
electromagnetism and to the strong and weak nuclear forces respectively. 

Recall that the Standard Model excludes gravity. 
 
This isn’t exactly right for all sorts of reasons, but is good enough to get across the point. 
 



Once we’re adding Hamiltonians, we immediately face a mathematical question: 
If A and B are matrices, is it generally the case that ​e​A+B​ = ​e​A​e​B​? 

Alas, the answer is no.  Indeed, it’s not hard to find a 2×2 counterexample (exercise). 
On the other hand, you can check using the Taylor series definition that ​if​ A and B commute (that 

is, AB=BA), then ​e​A+B​ = ​e​A​e​B​ ​does ​ hold. 
 
We’ll care about unitary transformations like , or their counterparts with many more e−it(H +H )1 2  

than two H​i​’s.  In particular, we’ll need a way to apply these sorts of unitaries efficiently, given only the 

ability to apply H​1​ and H​2​ by themselves---even if H ​1​ and H​2​ don’t happen to commute. 
Fortunately, there’s a trick for this, known as ​Trotterization ​.  The trick is to use the following 

approximation: 
 
e​A+B​ ≈ ​e​ɛA​e​ɛB​e​ɛA​e​ɛB​ … ​e​ɛA​e​ɛB  

            
timesε

1  
 

This basically means that we can achieve the same effect as A and B occurring simultaneously, 
by repeatedly switching between doing a tiny bit of A and a tiny bit of B. 

We won’t do it here, but it’s possible to prove that the approximation improves as ɛ decreases, 
becoming an exact equality in the limit ɛ➝0. 

This is important for the question of how to simulate a real-world quantum system using a 
quantum computer.  Indeed, the straightforward approach is just: 
 

1. Discretize all the degrees of freedom (positions, momenta, etc.) that aren’t already discrete. 
2. Write the total Hamiltonian H acting on the system as a sum of “simple” terms (say, terms that act 

on only 1 or 2 particles as a time). 
3. Trotterize H, in order to simulate it by a product of “simple” unitary transformations. 

 
To flesh this out a bit more, we ought to say ​something​ about what the Hamiltonians of real physical 
systems tend to look like, at the level of abstraction relevant for this class. 

Let’s model the universe as a gigantic lattice of qubits, say in 2 or 3 
dimensions (hey, it ​is ​ a quantum computing class!).  In that case, the total 
Hamiltonian that acts on the qubits can typically be written  

H = H​j​  + H​jk∑
 

j
∑
 

j ~ k
  

 
Here H​j​ is a Hamiltonian that acts only on the qubit ​j​, and trivially on all the others, for example: 

 
 
 



 
We can achieve this by, for each qubit, tensoring a 2×2 Hamiltonian on that qubit with the identity on all 

the other qubits--similar to what’s done with unitary gates. 
Meanwhile, H​jk​ is a Hamiltonian that acts on the neighboring qubits ​j​ and​ k​, for example: 
 
 
 
 
 
 
This means that each qubit “talks” only to its immediate neighbors in the lattice, but 
evolving the Hamiltonian over time gives us effects that can propagate arbitrarily far. 

e​–​i​H​t​ = ∑
∞

k = 0
k!

(−iHt)k

  

 
As soon as we’ve written this, though, we face a puzzle: 
Won’t this lead to faster-than-light travel? 

Indeed, even when ​t​ is arbitrarily small, one can check that the unitary matrix ​e​–​i​H​t​ will 
generically contain effects from ​every​ qubit in the lattice to every other one.  Granted, the magnitude of 
these effects will fall off exponentially with distance, but causality demands that there should be literally 
zero​ effects propagating across the lattice faster than light. 

So what’s the resolution?  Basically, it’s just that the picture we’re using comes from 
non-relativistic quantum mechanics, so it yields a good approximation only if the relevant speeds are 
small compared to the speed of light.  When the speeds are larger, we need the framework of quantum 
field theory, which ​does​ entail that faster-than-light influences are exactly zero. 
 
OK, now we’re ready to set things up for the next lecture.  Suppose that H, a Hamiltonian acting on ​n 
qubits, is the sum of many “simple” Hamiltonians acting on a few qubits each: 

H = H​1​ + … + H​m​. 
Because H is a 2​n​×2​n​ matrix, figuring out its ground state (or ground states) by brute force could be 
extremely time-consuming.  Which leads to a question: 
 
If I know the ground state of the H​j​’s individually, can I combine them in some simple way to get the 
ground state of H itself? 
 

Alas, the answer is almost certainly “no.”  More precisely, we claim that finding the ground state 
of a Hamiltonian of this form is an ​NP​-hard problem.  To prove this, we’ll show how to take any instance 
of the famous 3SAT problem, and encode it into the ground state problem.  Thus, suppose we have a 
Boolean formula in ​n​ variables, 

 



where each clause ​c​i​ acts on at most 3 variables. 
We can now define a Hamiltonian H as follows: H will act on ​n​ qubits, and will contain one term 

H​i​ for each clause ​c​i​.  The term H​i​ will act on at most 3 qubits, corresponding to the bits acted on by ​c​i​, 
and will impose an “energy penalty,” say of 1, if and only if the qubits are set in such a way that ​c​i​ is 

violated.  For example, you could encode the clause (​v​1​ ​∨ ​v​2​ ​∨​ ​v​3​) ​as the Hamiltonian 
 
 
 
 
 
 
 
 
 
This Hamiltonian will yield 0 (no energy penalty) unless all three qubits are set to​ 0, which corresponds to 
the case where the clause is not satisfied. 

It’s not hard to see that, to minimize the energy for such a Hamiltonian, without loss of generality 
you just set all the variables classically, and see which setting leads to the smallest energy. 

In other words: you solve 3SAT! 
In particular, H’s ground-state energy will be 0 if is satisfiable, or positive if  is unsatisfiable. 

So not only is this problem ​NP​-hard, it’s ​NP​-hard for reasons that have nothing to do with 
quantum mechanics. 
 
Could this observation somehow let Nature solve ​NP​-hard problems in polynomial time?  For more, tune 

in next time! 



 

Lecture 26, Tues April 25: Adiabatic Algorithm 
 
At the end of the last lecture, we saw that the following problem is ​NP​-hard: 

Given as input an ​n​-qubit Hamiltonian H of the special form H = H​1​ + … + H​m​, with each H​i 
acting on at most 3 of the ​n ​qubits, estimate H’s ground state energy. 

 
This is a quantum generalization of the 3SAT problem, one that arises very naturally in condensed matter 

physics.  Building a complicated Hamiltonian by summing local terms could also be seen as somewhat 
analogous to building a complicated quantum circuit by composing 1- and 2-qubit gates. 

 
But how do you “give” someone a Hamiltonian like that? 

Providing the full 2​n​ × 2​n​ Hermitian matrix would be wasteful.  Instead, you can simply list the 

local terms H​1​,…,H​m​ (to some suitable precision), together with the qubits to which they’re applied. 
 
Is this problem ​NP​-complete? 

Since we know it’s ​NP​-hard, what we’re asking here is whether it has polynomial-time 
verification.  In other words, when we claim that the ground-state energy of some Hamiltonian is at most 
(say) 5, can we prove it by giving a short witness? 

It turns out that we can---but as far as anyone knows today, only by giving a ​quantum ​ witness!  A 
quantum witness that works is simply the ​n​-qubit ground state itself. 

Thus, the Local Hamiltonians problem is not known to be in ​NP​: it’s only known to be in the 
quantum analogue of ​NP​, which for reasons we won’t go into is called ​QMA​ (Quantum Merlin-Arthur) 

An important theorem from around 1999 says that Local Hamiltonians is actually ​complete​ for 
QMA​, just like 3SAT is complete for ​NP​. 
 

For the specific Hamiltonian H we constructed in the last lecture---the one that encoded 3SAT---there 
would​ be a short classical witness, because that H was a diagonal matrix, so its ground state is always just 
a classical basis state.  But what if H is non-diagonal, and its ground state is some complicated entangled 

state? 
 
So if natural quantum systems like to settle into their ground states, and if finding the ground state is 
NP​-hard, does this mean that we could use quantum systems to solve ​NP​-hard problems in polynomial 
time “naturally”? 

People talked about such questions even before the concept of 
quantum computing was in place. 

But there’s a serious problem: it’s not ​always​ true that natural 
quantum systems quickly settle into their ground states.  And starting from 
hard instances of 3SAT might produce complicated and exotic Hamiltonians, 
far from physicists’ usual experience.  Those complicated Hamiltonians might 
often be ones for which it’s hard to reach the ground state. 
 



 

In the hillside (above), will the ball get to the point that minimizes its gravitational potential energy? 
Probably not anytime soon! 
If we wait a million years, maybe a thunderstorm will push the ball up over the hill in the middle. 

But for the foreseeable future, it’s much more likely for the ball to rest at the ​local optimum​ on the left. 
 

In hard real-world optimization problems, you’d have a very bumpy 1000-dimensional landscape 
or whatever with plenty of local optima to get trapped in.  You might wonder if quantum computing could 
help us wade through these local optima—and that certainly seems plausible.  In fact, the hope that this 
would be true was a central starting point for today’s topic: 
 
The Adiabatic Algorithm 

This is the last quantum algorithm we’ll cover in this course.  To this day, it remains a source of 
significant research and discussion. 
 
There’s a physics theorem from the 1920s called the ​Adiabatic Theorem​: 
“Adiabatic” is a term from thermodynamics; we won’t really need to understand what it means in order to 

discuss the adiabatic algorithm. 
Anyway, here’s what the theorem says: suppose you prepare the ground state of some initial Hamiltonian 
H​i​, with H​i​ being applied to that ground state.  You then slowly and continuously change H ​i​ into some 

final Hamiltonian H​f​ , until at the end you’re applying exactly H ​f​.  Then provided that the transition was 

slow enough, you’ll end up at (or extremely close to) the ground state of H​f​. 
Assuming a few fine-print conditions that we won’t go into. 

 
So, gradual change from one ground state brings us to another ground state.  
In the minds of Farhi, Goldstone, and other physicists, this suggested the following plan to solve 

NP​-hard problems using Hamiltonians. 
 
 
We know that is a one-qubit Hamiltonian with |+⟩ as its unique ground state. 

 
Its eigenstates are  |+⟩ and  |–⟩. 

The energy of  |+⟩ is 0 and the energy of  |–⟩ is 2, so |+⟩ is the ground state. 
 
So we can create an initial Hamiltonian H ​i​ (where here the ​i​ means “initial”) by applying H to each qubit 
individually: 

 
 
The state |+⟩​⊗n​: 

● is easy to prepare in a quantum computer 



 

● would stay put forever if we continued to apply H​i​ forever. 
 
But then, we gradually change H​i​ to another Hamiltonian H​f​ , which encodes some ​n​-bit 3SAT instance 
that we’d like to solve: 
 

    Parameterizing time as ​t​ ∈ [0, 1] 
 
 
 
 

 
In the simplest version, at any point in time ​t​, we apply the Hamiltonian 

H​t​ = (1–​t​)H​i​  + ​t​H​f​. 
 
Since each H​t​ is a sum of terms acting on a few qubits only, we can efficiently apply these H​t​’s 

using Trotterization (discussed in the last lecture). 
If everything goes according to plan, we’ll end up in the ground state of H ​f​ ---in other words, the 

optimal solution to our 3SAT instance (!!). 
 
So what’s the catch?  Well, the crux of the matter is that the transition from H ​i​ to H​f​ must be 

sufficiently slow​. 
 
How slow? 

To answer that question, let’s plot the eigenvalues of H​t​ as a 
function of the time parameter ​t​ (example shown on the right). 

H​t​ could have as many as 2​n​ eigenvalues (all real numbers). 
But we’re especially interested in the ​smallest​ eigenvalue (the ground 
energy) and the ​one right above that​ (the first excited energy). 

Our goal is to stay in the ground state throughout. 
 
The eigenvalues, also called ​energy levels ​, can change 

continuously over time. 
Sometimes two energy levels can even cross each other. 

Physicists call that a ​level crossing​. 
When they ​almost​ cross, it’s an ​avoided level crossing​. 

If the two lowest energies cross each other, then we leave the 
ground state.  Even if the two lowest energies ​nearly​ cross each other, there’s a significant risk that we’ll 
leave the ground state.  The closer together the two lowest energies get, the slower we have to run the 
algorithm to avoid confusing them. 
 



 

We define the ​Minimum Eigenvalue Gap ​, ​g​, as the smallest the gap ever gets between the first excited 
energy and the ground energy, as we vary the time ​t​. 

 ​g​ = min​t​ ∈ [0, 1]​ (         ​–        )λ2
(t) λ1

(t)  
  ​First excited energy​    ​Ground energy 
 

In the statement of the adiabatic theorem, one of the “fine print” conditions that we didn’t mention earlier 
is ​g​ > 0. 

 
g​ turns out to be a crucial quantity for determining how long the adiabatic algorithm will take to 

solve a given problem instance.  Roughly speaking: in order to ensure that we remain in the ground state 
throughout, as we pass the value of ​t​ where the gap is ​g​, we need to vary ​t​ at a speed of only ~​g​2​,  which 
takes ~  computation steps.1

g2  

 
So in particular: ​if​ we could show that ​g​ was always lower-bounded by 1/​n​O(1)​ for 3SAT (or some 

other ​NP​-complete problem), then we’d get ​NP​ ⊆ ​BQP​: quantum computers would be able to solve all 
NP​ problems in polynomial time. 
An early paper about this, which was published in ​Science​ in 2001, basically said, “Well… this looks like 

it could work.” 
 

Note: In reality we’re approximating the Hamiltonians with discrete-time unitary transformations, 
so we’d end up with something ​close​ to the ground state of H​f​ , not the ground state itself.  But that would 
still be good enough to solve our ​NP​-hard problem. 
 
So the question boils down to: 
What is the behavior of ​g​, the minimum spectral gap, for the problem instances that we want to solve? 

Farhi once went to an expert in condensed matter physics and said: this is the system we’re 
looking for, do you think that ​g​ will decrease polynomially or exponentially as a function of​ n​? 

The expert says: I think it will decrease exponentially. 
That’s not the answer Farhi wants to hear.  So Farhi asks: why?  What’s the physical reason? 
After thinking about it some more, the expert responds: because if it only decreased 

polynomially, then your algorithm would work. 
 

What emerged after a couple of years is that, for hard instances 
of 3SAT (or even 2SAT, for that matter), the ground energy and the first 
excited energy often ​do​ get exponentially close to touching.  At the point 
where that happens--i.e., the avoided level crossing--you’d need to run 
the algorithm for an exponential amount of time in order to remain in the 
ground state, and thereby solve your SAT instance. 

But the story doesn’t end here.  The physicists regrouped and 
said, “Okay, so maybe this technique doesn’t ​always ​ work, but it might 
still give big advantages for ​some​ types of optimization problems!” 
 



 

By now there’s been lots of research on classifying the types of solution landscapes where the adiabatic 
algorithm performs well and those where it performs poorly.  Some encouraging results came from: 
 
(Farhi, Goldstone, Gutmann 2002) 

These authors constructed fitness landscapes that had a global minimum 
at the bottom of a wide basin, but also a tall thin spike blocking the way to that 
minimum.  Starting from the far left, a classical algorithm based on ​Steepest 
Descent​ would get stuck forever at the base of the spike (i.e., at a local 
minimum), and would never reach the global minimum. 

OK, but before we examine the performance of the adiabatic algorithm 
on this sort of landscape, shouldn’t we first look at better classical algorithms? 

Indeed: ​Simulated Annealing​ is a better classical optimization 
algorithm--one that, much like the adiabatic algorithm, will always ​eventually 
reach the global minimum, if you run it for long enough. 
 

In fact, simulated annealing can be thought of as a classical 
 counterpart to the adiabatic algorithm. 

 
The basic idea of ​Simulated Annealing​ is to evaluate the fitness function around the current point and 
then: 

● Make a move that improves fitness       (Most of the time) 
● Make a move that worsens fitness       (Some of the time) 

 
The probability of making a move that worsens fitness is time-dependent, and decreases as time goes on. 

Trading off exploration for exploitation. 
 

The name “simulated annealing” comes from a 7000-year old technology.  ​Annealing​ is the process of 
making a metal stronger by heating it up and then slowly cooling it.  This gives the atoms in the metal a 

chance to bounce around, escape from a local optimum that might be causing brittleness, and then slowly 
settle into a better optimum. 

 
On the fitness landscape with the spike (pictured above), simulated annealing would ​eventually 

get over the spike despite how energetically unfavorable it is. 
However ​, if the spike is tall enough, then it would take an exponential amount of time. 

We’d be waiting for the thunderstorm, so to speak. 
 
On the other hand, if the spike is thin enough, then Farhi et al. showed that the adiabatic 

algorithm can get over it in only polynomial time.  It does so by exploiting a well-known quantum 
phenomenon called ​tunneling​. 

Popular articles explain tunneling by saying that a quantum particle can get through barriers that a 
classical particle could never get through.  But it would probably be more accurate to say: “in places that 
a classical particle would need exponential time to get through, ​sometimes​ a quantum particle can get 
through in polynomial time.” 



 

In terms of interference, we can say, “The paths that involve the particle not going over the spike 
interfere destructively and cancel each other out, leaving only paths where the particle does get over it.” 
 
The phenomenon of tunneling is important in many places in physics.  For one thing, it’s why the sun can 
shine. 

Nuclear fusion requires hydrogen atoms to get ​super​ close for them to 
realize that it’s energetically favorable for them to fuse.  The trouble is, when 
they’re not quite so close, they also have strong repulsion (because both nuclei 
are positive). 

When quantum mechanics came along, it explained that while the energy 
barrier would prevent fusion classically, it still happens because the nuclei are 
able to tunnel past the barrier. 

 
Anyway, the 2002 paper of Farhi et al. was good news for the prospects of using the adiabatic algorithm, 
but tunneling only helps if the spike is sufficiently thin. 

Since then, we’ve learned more about the types of fitness landscapes for which the adiabatic 
algorithm is expected to help. 

 
In a landscape like the one pictured on the left, simulated annealing and the 

adiabatic algorithm would both have trouble and would both take an exponential amount 
of time. 
 
 

Or consider the fitness landscape on the right (we can only draw 1 
dimension, but imagine that all of the 2​n​ solutions in an ​n​-dimensional 
hypercube have equal values except for the one good solution).  This 
would also take exponential time for both simulated annealing and the 
adiabatic algorithm to traverse. 

 
We actually already know this by the BBBV Theorem---because in this 

 case, we’re effectively just querying a black box in an attempt to find a unique marked item. 
 

 
It turns out that if you’re clever about how you run the adiabatic 

algorithm, you can achieve the Grover speedup in the case above, but not 
anything faster. 
 
Indeed, the BBBV Theorem tells us that ​Ω(2​n​/2​)​ steps are needed, using the 
adiabatic algorithm or any other quantum algorithm. 
 
What’s cool is that just by knowing BBBV (without any physics), you can say 
that this decrease has to be exponential. 



 

Just like the expert who Farhi consulted was alluding to with his wisecrack, physicists can use knowledge 
from quantum algorithms to learn new things about spectral gaps. 

 
OK, here’s a subtler question: 
 
Suppose the adiabatic algorithm had worked to solve 3SAT in polynomial time.  Would that have violated 
the BBBV Theorem? 

It turns out the answer is no. 
 
The BBBV Theorem applies only to ​black-box​ search--which, in the context of the adiabatic 
algorithm, would mean a diagonal Hamiltonian like the one on the left. 
 
 

While the Hamiltonian encoding a 3SAT instance (right) is also diagonal, 
it contains richer information than the black box considered by BBBV.  In 
particular, it encodes not merely whether each possible solution is satisfying or 

unsatisfying, but the ​number ​ of clauses that it violates.  And a 2002 paper of van Dam, 
Mosca, and Vazirani showed that that information, alone, is enough to reconstruct the 
3SAT instance in polynomial time---and hence also to ​solve​ the instance in polynomial 
time, if we assumed (for example) that ​P​=​NP​!  This means that there’s no hope of proving a black-box 
lower bound a la BBBV in this setting. 
 

We also know classical algorithms that can solve 3SAT in less than 2​n/2​ time---indeed, about O(1.3​n​). 
 This is another way of seeing that the BBBV Theorem can’t encompass everything that it’s possible to do 

on 3SAT. 



 

OK, let’s consider one more type of fitness landscape.  A funny thing happens with landscapes like the 
one pictured below: simulated annealing gets into the local 
minimum, but the algorithm then escapes it, crosses the plateau, and 
reaches the global minimum in polynomial time.  Meanwhile, the 
adiabatic algorithm just keeps returning to the local minimum, and 
takes exponential time to reach the global minimum! 
 

Sometimes a classical algorithm performs better. 
 
 

But there’s even a further problem with establishing quantum speedups for adiabatic optimization, which 
is that “classical computing is a moving target.”  A classical computer is not limited to simulated 
annealing or any other specific algorithm.  Thus, even if we established that the adiabatic algorithm was 
exponentially faster than simulated annealing for some class of “real-world” fitness landscapes, we’d still 
need to compare against ​other ​ classical algorithms, which might exploit detailed knowledge about the 
landscapes in question.  Particularly relevant here is ​Quantum Monte Carlo (QMC)​---which, despite its 
name, is a quantum-inspired algorithm that runs on a classical computer, and which is widely used in 
many-body physics.  We won’t explain QMC in any detail, but will simply say that, even in the artificial 
cases where the adiabatic algorithm exponentially outperforms simulated annealing, recent work suggests 
that QMC can typically match the adiabatic algorithm’s asymptotic performance classically (albeit, often 
with a much larger constant prefactor). 
 
So, what about the fitness landscapes that arise in real-world, industrial applications?  Do there or don’t 
there exist any that the adiabatic algorithm can traverse exponentially faster than any classical algorithm? 

The truth is, we really don’t know yet.  Reaching a consensus on this might require building a 
scalable quantum computer and then testing the algorithm out! 
 

Which brings us to our final point about the adiabatic algorithm.  We’ve talked about 
implementing the adiabatic algorithm on a conventional, gate-based quantum computer, by using 
Trotterization to approximate Hamiltonians by discrete sequences of gates.  But you might complain that 
that approach seems roundabout.  Since the underlying physics that describes our qubits is based on 
Hamiltonians anyway, why not just directly map the adiabatic algorithm onto the continuous-time 
evolution of the qubits, and skip the Trotterization part? 

Indeed, the adiabatic algorithm could be seen not only as an algorithm, but also as a proposal for 
the physical implementation of quantum computers.  An important 2004 result of Aharonov et al. says 
that adiabatic quantum computers would be universal for quantum computation: that is, able to solve all 
BQP​ problems efficiently. 
 

There’s a venture-capital-backed startup called D-Wave that’s been building special-purpose 
devices to implement a noisy approximation to the adiabatic algorithm (called quantum annealing), using 
physical Hamiltonians themselves.  D-Wave’s latest model has about 2000 superconducting qubits.  You 
can encode an optimization problem of your choice onto their chip, by choosing the interaction 
Hamiltonian for each pair of neighboring qubits. 



 

D-Wave was all over the press because they actually sold a few of their machines, to companies like 
Google and Lockheed Martin, and were notorious for claiming that quantum computing is “already useful 

in practice.”  They were even on the cover of ​Time ​magazine! 
Professor Aaronson has been to D-Wave’s headquarters. 

Funnily enough, their machine is ​literally​ a room-sized black box (most of the hardware inside the box is 
devoted to cooling; the actual qubits are on a chip no larger than an ordinary computer chip). 

 
So what’s the verdict?  Experimental data shows that the D-Wave device is indeed able to solve 

optimization problems encoded in its special format, at a speed that’s often competitive with the best 
known classical algorithms.  Unfortunately, results over the past five years do not clearly show any 
quantum ​speedup​ over the best classical algorithms. 

 
Why not? 
Roughly speaking, there are three main possible causes for the lack of speedup on D-Wave’s current 
devices.  As far as we know today, the truth might be any combination of them. 
 
1) ​Inherent limitations of the adiabatic algorithm. 

Even if we had a perfect quantum computer, running at absolute zero, the minimum spectral gaps 
might simply be exponential small for almost all interesting optimization problems---in which case, the 
adiabatic algorithm could only provide limited speedups, even in theory. 
 
2) ​Limitations in the quality of D-Wave’s qubits ​. 

Even if the minimum spectral gap were inverse-polynomial, it still probably wouldn’t be 
constant​: that is, it would presumably shrink to zero as a function of the input size.  And this is a problem 
for the following reason.  It turns out that, if the ​temperature​ of the qubits exceeds the minimum spectral 
gap, then we’ll typically see level crossings even if we run the adiabatic algorithm at the “right” speed.  

The D-Wave qubits are cooled to about 10 milliKelvin.  By normal standards, that sounds 
extremely cold, but it might not be cold ​enough​ to avoid level crossings on instances of interesting sizes! 
What one really wants here is absolute zero---but of course, the cost would increase enormously as one 
approached that, eventually becoming prohibitive. 

 
3) ​Stoquastic Hamiltonians. 

A Hamiltonian H is called ​stoquastic​ if all its off-diagonal terms are real and non-positive.  One 
can show that, if H is stoquastic, then H has a ground state involving nonnegative real amplitudes only.  It 
turns out that, for reasons stemming from that fact, stoquastic Hamiltonians are often much easier than 
arbitrary Hamiltonians to simulate on a classical computer.  For example, the QMC algorithm mentioned 
earlier tends to work extremely well for approximating the ground states of stoquastic Hamiltonians, and 
less well for non-stoquastic Hamiltonians. 

Unfortunately, D-Wave’s hardware is currently limited to applying stoquastic Hamiltonians only. 
Thus, even if quantum annealing were able to yield an exponential speedup at a fixed nonzero 
temperature (like 10 milliKelvin), it might be that it could only do so with non-stoquastic Hamiltonians. 
 



 

This sounds pretty bad!  Given, especially, the temperature issue, why is anyone optimistic that 
quantum computing could scale even in principle?  We’ll see why in the next lecture, when we explore 
the basics of ​quantum error-correction​: a technique that D-Wave is not currently using, but that many 
researchers expect will ultimately be necessary for scalable QC. 



 

Lecture 27, Thurs April 27: Quantum Error 
Correction 
 
At the end of the last lecture, we discussed some of the difficulties with achieving a quantum speedup 
using currently available quantum computing devices, like D-Wave’s.  We saw how D-Wave’s devices 
are cooled to 10 milliKelvin, but even that might be too hot, and lead to too much decoherence and error! 
(Which, in the setting of adiabatic QC, shows up mostly as unwanted level crossings.) 

You might have wondered: 
 
If even 10 milliKelvin isn’t cold enough---if nothing short of absolute zero and perfect isolation seem to 
suffice---then why should building a scalable quantum computer (one that achieves actual quantum 
speedups) be possible at all? 

We need to separate two issues.  First, there’s the “engineering challenge” of building a scalable 
QC.  Everyone agrees that, at a bare minimum, it will be ​staggeringly hard​ to achieve the required degree 
of isolation for thousands or millions of qubits, when those qubits also need to interact with each other in 
a carefully choreographed way.  Maybe various practical problems will prevent human beings from doing 
it in the next 50 or 100 years.  Maybe it will be too expensive.  Theory alone can’t answer such questions. 

But then separately, there’s the question of whether anything prevents scalable QC ​even in 
principle​.  Of course, if quantum mechanics itself were to break down, that could certainly prevent 
QC---but it would also represent a much more revolutionary development for physics than a “mere 
success” in building QC! 
 
So, short of a breakdown of QM, on what grounds have people argued that scalable QCs aren’t possible? 
 
1) Large entangled states are inherently fragile, so they might be impossible to maintain. 

If only one qubit in the computer decoheres, then the entire system could decohere. 
If only one qubit in a “Schrödinger cat” type state leaks out into the environment, the quantum 

coherence between the |Alive⟩ and |Dead⟩ components is destroyed. 
 
2) Applying unitary gates may produce lots of errors, which will snowball over time. 

Maybe your Hadamard gate rotates by 46° instead of 45°.  If so, then over many applications of 
the gate, the errors would pile up. 

If you pick up a CS textbook from the 1950’s, you’ll see plenty of discussion 
 surrounding “analog vs digital computers”.  The disappearance of analog computers from  

the scene had much to do with the difficulty of correcting continuous errors.  Is a quantum computer 
simply another kind of analog computer? 

 
3) The No-Cloning Theorem limits us. 

Classically we deal with error by repetition (which implicitly means repeated measurements), but 
because of the No-Cloning Theorem, it seems that we can’t do the same with quantum computers. 
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However, there were fundamental discoveries in the mid-1990s that addressed all three of these 
concerns, and that convinced most physicists and computer scientists that, short of some revolutionary 
change to known physics, the difficulties of building a scalable QC are “merely” difficulties of 
engineering, and not of principle.  The first of these discoveries was the theory of… 

 
Quantum Error Correction 
 
Before discussing quantum error correction, let’s briefly review how error correction works classically. 

You could take a whole course about this subject. 
We’ll do the 5-minute version here. 

 
The 3-bit Repetition Code 

is a way to encode one ​logical bit​ using 3 ​physical bits ​. 
, the logical 0 is encoded as “000”0  

      and , the logical 1 is encoded as “111”.1  
We claim that this code lets us both ​detect​ and ​correct​ an error in any one physical bit. 
 

We do ​error detection ​ by checking whether ​x​ = ​y​ = ​z ​.  Assuming at most one incorrect bit, we’ll 
be able to identify it.  If we detect an error (say in ​x​), we can do ​error correction ​ by setting ​x​ := 
MAJ(​x​,​y​,​z ​). 
As an exercise, show that any code that can both detect and correct a single bit-flip error must use at least 

3 bits.  By contrast, if we just want to detect a single bit-flip error, and not correct it, show that 2 bits 
suffice. 

More sophisticated codes are able to encode many logical bits at once, not just a single bit, while 
detecting and correcting a large number of errors (say, any 10% of the physical bits being flipped).  In this 

lecture, though, we’ll focus on encoding just a single bit (or qubit) and protecting against just a single 
error, in order to get the main conceptual points across. 

 
Here’s a useful geometric picture for why the 3-bit repetition code works. 

 
Essentially, the code simply picks two points on the Hamming cube 
{0,1}​3​ that are maximally far from each other, and declares one to 
be the encoding of 0 and the other to be the encoding of 1. 
 
000 and 111 can each get corrupted to any point in their respective 
clouds, but since the two clouds don’t overlap we’re able to correct 
the error. 

We’ll seek to replicate this behavior in the quantum case. 
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In the early days of classical computing there were skeptics who doubted that the technology 
would ever scale.  “Obviously,” they said, “once the machine has enough vacuum tubes, some of them 
will fail, and that will cause the entire computer to fail.” 
 
John von Neumann was annoyed by this line of reasoning, so he went off and proved…  
 
The Classical Fault-Tolerance Theorem 

Von Neumann showed that, even given logic gates (like AND, OR, and NOT) every one of which 
fails with some independent probability ε, as long as ε is sufficiently small, it’s possible to build a reliable 
circuit for any Boolean function ​f​.  Moreover, the circuit only needs to be a small factor larger than a 
circuit for ​f​ built of perfect gates.  Informally, you can build a reliable computer out of unreliable parts. 
Admittedly, if the output of the circuit is just a single bit, then that bit can’t possibly take the correct value 

with probability greater than 1-ε---for what if the very last gate is erroneous?  However, one way to deal 
with this issue is to let the output be a long string of bits, which is then processed by (say) a simple 

majority to get the value of ​f​.  This final majority computation is assumed to be error-free.  
How did von Neumann prove the classical fault-tolerance theorem?  We won’t go through all the 

details, but the basic idea is to use the 3-bit repetition code recursively---pushing the probability of a 
catastrophic error down further and further with a majority of majorities (on 9 bits), a majority of 
majorities of majorities (on 27 bits), and so on. 

Now, this seems to raise a conceptual puzzle: 
 
Our error-correction circuits will themselves be subject to error.  So when we compute these recursive 
majorities, won’t we simply be introducing more errors than we correct? 

Fortunately, von Neumann found that, as long as the physical error probability ε is small enough, 
each round of error-correction will be a “net win,” making things better rather than worse. 
 
Anyway, von Neumann’s whole idea ended up being mostly unnecessary when transistors replaced 
vacuum tubes, since transistors err with such minuscule probabilities (in your entire computer, with its 
billions of transistors, perhaps one transistor will output a wrong result per year when it’s hit by a cosmic 
ray). 
 

Could such a thing happen with quantum computing: that is, a “QC transistor,” which implements 1- and 
2-qubit gates so reliably that error-correction is then superfluous? 

Maybe!  In the last lecture, we’ll discuss topological quantum computing, which some physicists think 
could get us part of the way towards this dream.  For now, though, we seem to be stuck in von Neumann’s 

situation, with quantum gates that ​do​ have significant probabilities of error. 
 

Since we discussed D-Wave in the last lecture: a potentially fateful decision that D-Wave made, 
early on, was that they weren’t going to do any error correction.  However, even D-Wave might now be 
coming around to the view that some degree of error correction is necessary. 

 
Crucially, ​until​ you get over the hurdle of error correction, it may not look like your QC is doing 

much of anything useful.  This is the main reason why progress in experimental quantum computing has 
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often seemed slow (with the world record for Shor’s algorithm remaining the factorization of 21 into 3฀7, 
etc.).  Some people believe that practically important speedups will come only after we’ve overcome this 
hurdle. 
 

You might worry that nothing like the 3-bit repetition code could possibly work in the quantum 
case, because quantum errors form a continuum: it’s not a yes-or-no question whether an error has 
happened.  So for example, we might get the error 

|0⟩ → |0⟩ + ε|1⟩.√1 − ε2   
 
 
It’s said, only half-jokingly, that “80% of the work of building a quantum 
computer is reliably implementing the identity transformation,” to keep the qubits 
steady. 

 
Early in this course, though, we saw that the Watched Pot Effect (also called the Quantum Zeno Effect) 
was a way to keep a drifting qubit in check. 
The trick is just to keep measuring the qubit in the {|0⟩,|1⟩} basis. 

If you get |0⟩: “Was there an error?” “Well, ​now​ there’s not!” 
It’s like the joke where someone calls 911 to report a dead body, and the operator asks the caller to check 

if the person is actually dead.  Gunshots are heard; then the caller says, “OK, now what?” 
If you get |1⟩, correct it to |0⟩. 

 
But the Watched Pot Effect only solves the problem of quantum error-correction if 
(1) the ​only​ thing we’re worried about is continuous drift (rather than, e.g., discrete bit-flips), and 
(2) we know a basis in which our qubit is supposed to be one of the basis vectors. 
So how can we go further? 
 
If we only needed to correct bit-flip errors, we could just use the obvious quantum analogue of the 3-bit 
repetition code, namely: 

 and ⟩ 000⟩  |0 → | 111⟩.  |1⟩ → |  
 
But bit-flip errors aren’t the only things we’re worried about! 
 
For an example of what else could go wrong, let’s look at the encodings of |+⟩ and |–⟩ under the above 
3-bit repetition code: 

and +⟩  | →
√2

|000⟩ + |111⟩ −⟩  | →
√2

|000⟩ − |111⟩  
 
Question​: How many qubits of do we need to act on to convert it to ?+⟩  | −⟩  |  
Answer​: Only one!  (It suffices to apply a phase gate to any qubit.) 

I.e., we don’t have separate clouds. 
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But you might think the problem is even worse.  Suppose we ​did​ manage to design a code that 
could correct both bit-flip errors and phase-flip errors.  Even then, aren’t there infinitely many ​other ​ ways 
for a qubit to err?  So won’t we need to add an infinite amount of additional redundancy to our code? 

Here’s where a little piece of magic comes in and saves us.  It turns out that, if a quantum 
error-correcting code protects against both bit-flip and phase-flip errors, then that’s automatically enough 
to protect against ​all possible​ 1-qubit errors. 
 
Why? 
Without loss of generality, let’s assume that we have an error on the first qubit of the entangled state ​| ​Ψ​0​⟩: 

| ​Ψ​0​⟩ = α| ​0​⟩| ​v​⟩ + β| ​1​⟩| ​w​⟩ 
A bit-flip error on the first qubit would result in 

| ​Ψ​1​⟩ = α| ​1​⟩| ​v​⟩ + β| ​0​⟩| ​w​⟩ 
A phase-flip on the first qubit would result in 

| ​Ψ​2​⟩ = α| ​0​⟩| ​v​⟩ – β| ​1​⟩| ​w​⟩ 
And both would result in 

| ​Ψ​3​⟩ = α| ​1​⟩| ​v​⟩ – β| ​0​⟩| ​w​⟩ 
 
The key observation is now that these four states constitute an orthogonal ​basis ​ for the 4-dimensional 
subspace of all possible states that you could reach from | ​Ψ​0​⟩ by transformations on the first qubit. 

This is extremely similar to Superdense Coding: in both cases, entanglement doubles the number of 
independent transformations that we can apply to a given qubit, leaving a perfect record of the fact that 

the transformation was applied, from 1 to 2, . 
 
So, the simplest possible goal of quantum error-correction is now as follows: ​assuming​ that the error was 
in the first qubit only, get us back to | ​Ψ​0​⟩ from wherever we might happen to be in this 4-dimensional 
“error subspace.” 
 
Measuring all the qubits would be a really bad idea--since even if that told us where we were in the 
subspace, it would be a “pyrrhic victory” that destroyed our quantum state in the process. 
 
Instead, maybe we can do a measurement that just projects onto one of the four basis vectors we saw. 

If the outcome is | ​Ψ​0​⟩, we do nothing. 

If the outcome is | ​Ψ​1​⟩, we get back to | ​Ψ​0​⟩ by doing a bit-flip. 

If the outcome is | ​Ψ​2​⟩, we get back to | ​Ψ​0​⟩ by doing a phase-flip. 

 If the outcome is | ​Ψ​3​⟩, we get back to | ​Ψ​0​⟩ by doing both. 
 
But what’s a code that can detect and correct a bit-flip or a phase-flip error on ​any​ qubit? 
Well, for starters, if we just wanted to detect and correct phase-flip errors, we could do so using the 
following code, namely “the 3-qubit repetition code except in the Hadamard basis”: 
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 |+​⟩​|+​⟩​|+​⟩+⟩  | →  
 |–​⟩​|–​⟩​|–​⟩  |–⟩ →  

OK, but just like the other 3-qubit code failed to protect against phase-flip erros, this code fails to protect 
against bit-flip errors.  For by linearity, 

  |–⟩ |0⟩  | + ⟩ +  =   
  |–⟩ |1⟩ ,  | + ⟩ −  =   

and this means (if you work it out) that applying a bit-flip to any qubit can change to  or vice  |0⟩  |1⟩  
versa. 

 
This observation brings us to our first serious quantum error-correcting code: 
 
The Shor 9-qubit code (1995) 

yes, it’s the same Shor 
Shor’s proposal was simply to ​combine​ the two codes we’ve seen.  He encodes each logical qubit as a 
3฀3 square of physical qubits, in such a way that each row corresponds to a 3-qubit repetition code to 
protect against bit-flip errors, and each column corresponds to a 3-qubit repetition code to protect against 
phase-flip errors. 
 

Thus we encode​ as ⊗3  |0⟩ )( √2
|000⟩ + |111⟩   

       and as ⊗3  |1⟩ )( √2
|000⟩ − |111⟩   

We claim that this code lets us detect and correct a bit flip ​or ​ a phase flip (and hence, any possible error) 
on any one of the 9 qubits. 
 
Why does this detect and correct bit-flip errors? 

We just need build a little quantum circuit that checks whether all 3 of the qubits in a given row 
have the same value (​|0​⟩ or ​|1​⟩), and if they don’t, sets the wayward qubit equal to the majority of all 3 
qubits in the row.  We then apply that circuit to each of the 3 rows separately. 
 
More interestingly… 
Why does this code ​also​ detect and correct phase-flip errors? 

Because we can build a quantum circuit that computes the relative phase between ​|000​⟩ and ​|111​⟩ 
within each row (+ or -), checks whether all 3 phases have the same value, and if they don’t, sets the 
wayward phase equal to the majority of all 3 phases. 

 
You can check that both of the operations above work, not just for and but for arbitrary  |0⟩  ,  |1⟩  

superpositions of the form α   |0⟩ + β  .  |1⟩  
 
So, the above will fix any stray unitary transformations that get applied to any one qubit.  But 

what about errors that involve decoherence or measurement? 
We claim that once we’ve handled all possible unitary transformations, we’ve automatically 

handled ​all​ possible errors---because an arbitrary error might turn pure states into mixed states, but it still 
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keeps us within the same 4-dimensional subspace.  So a measurement of the error syndrome still projects 
us down to one of the same four orthogonal states | ​Ψ​0​⟩, | ​Ψ​1​⟩, | ​Ψ​2​⟩, | ​Ψ​3​⟩, and we can still get back to our 

original state | ​Ψ​0​⟩ by applying bit flips and phase flips as needed. 
 
What if it’s not just one qubit, but ​all​ qubits that are a little bit off? 

A key observation: if all qubits are a little bit off, then that’s the same thing with having a 
superposition over many different configurations, in almost all of which only a few qubits are off 
(possibly a lot off).  So we just apply a standard quantum error-correcting code that’s able to deal with a 
few qubits being a lot off, and that lets us return our state ​almost​ to what it was before the errors 
happened. 
 
Shor’s 9-qubit code was the first quantum error-correcting code.  Not long afterward, Andrew ​Steane 
found a shorter code that could also detect and correct any error on 1 qubit.  Steane’s code encoded 1 
logical qubit into only 7 physical qubits.  Then Raymond Laflamme and others found codes that used only 
5 qubits. 

5 qubits turns out to be the least possible if you want to detect and correct an arbitrary 1-qubit error, just 
like 3 bits is the least possible for a classical error-correcting code.  We won’t prove this. 

 
In the next lecture, we’ll discuss the ​stabilizer formalism​, which gives us an amazingly compact and 
efficient notation for manipulating these sorts of quantum error-correcting codes. 
 
So we can encode a qubit, let the qubit sit around passively, and protect it against a single physical error. 
How about doing a full fault tolerant quantum computation? 
That’s the subject of the famous…. 
 
Quantum Fault-Tolerance Theorem 

Also known as the ​Threshold Theorem 
Proved independently by several groups (Aharonov & Ben-Or / Zurek et al. ~1996 ) 
 
The theorem says the following: suppose that, in your quantum computer, each qubit fails at each time 
step with independent probability ε.  (Where “fails” could mean, e.g., gets swapped out for the maximally 
mixed state.) 
Even then, assuming we’re able to: 

● apply gates to many qubits in parallel 
● measure and discard bad qubits 
● pump in fresh ​|0​⟩ qubits 
● do extremely fast and reliable classical computation 

we can ​still​ solve any problem in ​BQP​, so long as ε is sufficiently small 
Moreover, with only polylog(n) overhead of number of gates. 

(The initial estimates for ε were ~10​-6​.  That’s since been improved, depending on the assumptions.) 
Since its discovery, the Fault-Tolerance Theorem has set much of the research agenda for 

experimental quantum computing.  For it says that, once we can decrease error below a certain threshold, 
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we’ll effectively be able to make it arbitrarily small, by applying multiple recursive layers of 
error-correction. 
 

Journalists often try to gauge progress in experimental quantum computing by asking about the 
number of qubits, but at least as important is the ​reliability ​of the qubits.  It’s reliability that will 
determine when (if ever) we cross the threshold that would let us get to arbitrarily small error, and add as 
many additional qubits as we liked. 
 
We’re not there yet, but lots of progress is being made on two fronts: 
 

1. Making physical qubits more reliable 
Initially, the probability of failure per qubit per time step was of order 1, meaning that the 

quantum state would barely hold at all.  But over the last twenty years, in multiple architectures (including 
superconducting qubits and trapped ions), there were improvements by several orders of magnitude. 
Today, anyone can access a 5-qubit superconducting device over the Internet (IBM’s “Quantum 
Experience”) that has decoherence rates that wouldn’t have been achievable a decade ago. 

Meanwhile, a few years ago the group of John Martinis at Google demonstrated decoherence 
rates, for one or two qubits in isolation, that are ​already​ below the fault-tolerance threshold (say, ~0.1%). 
So is the problem solved?  Unfortunately, it’s a bit misleading, because integrating more qubits on a 
single chip pushes the decoherence rate back up.  So the challenge now is to figure out how to scale up to 
50 or 100 or 300 qubits while still keeping the error rate down. 

 
2. Inventing better error-correcting codes and fault-tolerance schemes 

There are many tradeoffs here: to take one example, between the distance of a code (i.e., the rate 
of error it can handle) and the number of physical qubits it requires per logical qubit.  At least 
heuristically, it’s now known how to handle error rates of up to 3-5%, but only via fault-tolerance 
schemes that use thousands of physical qubits for every logical qubit.  So one big challenge is to invent 
schemes that can handle large error and ​also​ have low overheads.  Topological qubits, to be discussed two 
lectures from now, could also help with this tradeoff. 
 

Here’s one milestone that hasn’t ​quite​ been achieved yet, but that you should look out for in the 
relatively near future: the use of a quantum error-correcting code to keep a logical qubit alive for longer 

that the physical qubits comprising it. 
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Lecture 28, Tues May 2: Stabilizer Formalism 
 
Today we’ll see a beautiful formalism that was originally invented to describe quantum-error correcting 
codes, but now plays many different roles in quantum computation.  First, some definitions: 
 
Stabilizer Gates ( 1 0 ) 

are the gates CNOT, Hadamard, and P = ( 0  ​i​ )  (also called the “phase gate”) 
Stabilizer Circuits 

are quantum circuits made entirely of stabilizer gates 
Stabilizer States 

are states that a stabilizer circuit can generate, starting from ​|00…0⟩ 
 
We briefly met stabilizer gates earlier in the course, when we discussed universal quantum gate 

sets, and needed to include a warning that the set ​S​={CNOT,Hadamard,P} is ​not​ universal.  At first, this 
failure of universality might be surprising.  After all, the set ​S​ seems to have everything: the Hadamard 
gate can create superpositions, CNOT acts on two qubits and (in concert with Hadamard) can create 
complicated entangled states, and P can even add complex phases. 

What’s more, many of the weird quantum effects and protocols that we saw in this course can be 
demonstrated entirely using stabilizer gates.  Examples include superdense coding, quantum teleportation, 
BB84 quantum key distribution, Wiesner’s quantum money, the Deutsch-Jozsa and Bernstein-Vazirani 
algorithms, and the Shor 9-qubit code. 
 

So then what prevents ​S​ from being universal?  Well, if you try playing around with the CNOT, 
Hadamard, and Phase gates, you’ll notice that you tend to reach certain discrete states, but never anything 
between them.  You’ll also notice that, whenever you can create an ​n​-qubit superposition that assigns 
nonzero amplitudes to the strings in some set ​A​∈{0,1}​n​, it’s always an ​equal​ superposition over ​A 
(possibly with +1,-1,+​i​,-​i​ phases), ​and furthermore ​A​ is always an affine subspace of F​2​n​ (so in particular, 
| ​A​| is always a power of 2). 
 
With only 1 qubit, the H and P gates can only get us to 6 
states in total (ignoring global phases), via the 
reachability diagram shown on the right.  These 6 
states--​| ​0⟩,|1⟩,​| ​+⟩,|-⟩,​| ​i​⟩,|-​i​⟩--are the 1-qubit stabilizer 
states. 
 
What about with two qubits? 

Now you can reach some more interesting states, like or .  ​But these√2
|00⟩ + i |11⟩

√2
|01⟩ − i |10⟩  

always follow certain patterns, as mentioned above.  For example, they’re always equal superpositions 
over power-of-2 numbers of strings, and a measurement of a given qubit in the {| ​0⟩,​| ​1⟩​} basis always 
produces either 
(1) always | ​0⟩, 



(2) always ​| ​1⟩, or 
(3) ​| ​0⟩ and ​| ​1⟩ with equal probabilities.  
 
So what gives? 
To answer that question, it will help to define a few concepts. 
 
We say that a unitary U ​stabilizes ​ a pure state ​| ​Ψ⟩ if U​| ​Ψ⟩ = ​| ​Ψ⟩. 

In other words, if |Ψ⟩ is an eigenstate of U with eigenvalue +1.  Crucially, global phase matters 
here!  If U|Ψ⟩ = –|Ψ⟩, then U ​does not​ stabilize |Ψ⟩. 

 
Notice that if U and V both stabilize ​| ​Ψ⟩, then any product of them, like UV or VU, ​also​ stabilizes 

| ​Ψ⟩, as do their inverses U ​-1​ and V​-1​.  Also, the identity matrix, I, stabilizes everything. 
This means that the set the unitaries that stabilize ​| ​Ψ⟩ form a ​group​ under multiplication. 

We already know that unitaries have inverses and are associative. 
 
The next ingredient we need is the ​Pauli Matrices ​. 

These four matrices come up a lot in quantum physics.  They are: 
  

  ​I ​ = ( 1 0 )       ​X​ = ( 0 1 )       ​Y​ = ( 0 -​i​ )       ​Z​ = ( 1  0 ) 
        ( 0 1 )              ( 1 0 )              ( ​i​  0 )              ( 0 -1 ) 

 
Notice that these matrices match up with the errors we need to worry about in quantum error-correction: 
 
No error ( 1 0 ) ( 0 ) = ( 0 ) Bit flip ( 0 1 ) ( 0 ) = ( 1 )  
I ​|1⟩ = |1⟩ ( 0 1 ) ( 1 )    ( 1 ) X​|1⟩ = |0⟩ ( 1 0 ) ( 1 )    ( 0 )  
 
Phase flip ( 1  0 ) ( 0 ) = (  0 ) and Both ( 0 -​i​ ) ( 0 ) = ( -​i​ )  
Z​|1⟩ = -|1⟩ ( 0 -1 ) ( 1 )    ( -1 ) Y​|1⟩ = -​i​|0⟩ ( ​i​  0 ) ( 1 )     ( 0 ) 
 
That’s not a coincidence! 
 
The Pauli matrices satisfy several beautiful identities: 

X​2​ = Y​2​ = Z​2​ = I XY = ​i​Z YX = –​i​Z 
YZ = ​i​X ZY = –​i​X 
ZX = ​i​Y XZ = –​i​Y 

If you’ve seen the quaternions, you might recall that they’re defined using the same kinds of relations. 
This is also not a coincidence! Nothing is a coincidence in math! 
 
Also, all four Pauli matrices are both unitary and Hermitian. 
 
So what does each Pauli matrix stabilize? 

   I stabilizes everything 
 –I stabilizes nothing Remember: global phase matters, so –I|Ψ⟩ ≠ |Ψ⟩. 



  X stabilizes ​| ​+⟩ 
–X stabilizes ​| ​–⟩ 
  Z stabilizes ​| ​0⟩ 
–Z stabilizes ​| ​1⟩ 
  Y stabilizes ​| ​i​⟩ 
–Y stabilizes ​| ​–​i​⟩ 

So each of the six 1-qubit stabilizer states corresponds to a Pauli matrix that stabilizes it. 
 
Next, given an ​n​-qubit pure state ​| ​Ψ⟩, we define ​| ​Ψ⟩’s ​stabilizer group​ as: 

The group of all tensor products of Pauli matrices that stabilize ​| ​Ψ⟩. 
 
We know this is a group since being a Pauli matrix is closed under multiplication, and so is stabilizing 
| ​Ψ⟩.  As you can check, stabilizer groups have the additional interesting property of being abelian. 
 
For example, the stabilizer group of ​| ​0⟩ is { I, Z } closed because Z​2​ = I 
            while the stabilizer group of | ​+⟩ is { I, X } 
 
The stabilizer group of ​| ​0⟩⊗​| ​+⟩ will be the Cartesian product of those two groups: 

{ I⊗I, I⊗X, Z⊗I, Z⊗X }  
as a convention, from now on we omit the ⊗’s, so that for example the above is just { II, IX, ZI, ZX} 

 
For a slightly more interesting example, what’s the stabilizer group of a Bell pair? 

We know XX is in it because = = .√2
X |0⟩⊗X |0⟩ +  X |1⟩⊗X |1⟩

√2
|11⟩ +  |00⟩

√2
|00⟩ +  |11⟩  

A similar argument can be made for –YY. 
We can get another element by doing component-wise multiplication: XX ⋅ –YY = –(​i​Z)(​i​Z) = ZZ 
So the stabilizer group of contains { II, XX, –YY, ZZ }.  And you can check that it doesn’t√2

|00⟩ +  |11⟩  

contain anything else. 
You can similarly compute the stabilizer group of to be { II, –XX, YY, ZZ }.√2

|00⟩ −  |11⟩  

 
Now, here’s an amazing fact, which we won’t give a proof of: 
 

The ​n​-qubit stabilizer states are exactly the ​n​-qubit states that have a stabilizer group of size 2​n​. 
 

So the 1-qubit stabilizer states are those states with a 2-element stabilizer group, the 2-qubit stabilizer 
states are those states with a 4-element stabilizer group, and so on. 

This is a completely different characterization of stabilizer states, a structural one.  It makes no 
mention of stabilizer circuits, but tells us something about the invariant that stabilizer circuits are 
preserving. 
 
OK, so suppose we have an ​n​-qubit stabilizer state, which (by the above) has a 2​n​-element stabilizer group 
G​.  Then here’s the next thing we might want to know: 



 
How can we succinctly specify ​G ​?  Does ​G​ always have a small generating set--that is, a few elements 
from which we can get all the others by multiplication? 
 
While we again won’t prove it, the answer turns out to be yes.  Given any n-qubit stabilizer state, its 
stabilizer group is always generated by only ​n​ elements (i.e., ± tensor products of Pauli matrices).  So, to 
specify a stabilizer group (and hence, a stabilizer state), you only need to specify ​n​ such generators. 
 
Let’s see an example.  To specify the Bell pair, which has stabilizer group { II, XX, –YY, ZZ }, it’s 
enough to give the following generating set: 

( X X) 
( Z Z ) 

Or we could also give a different generating set, like 
  ( X X ) 
-( Y Y ) 

 
Now we come to a crucial point: 
How many bits does it take to store such a generating set in your computer? 
Well, there are ​n​ generators, and each one takes 2​n​+1 bits to specify: 2 bits for each of the ​n​ Pauli 
matrices, plus 1 additional bit for the ± sign.  So the total number of bits is 

n​(2​n​+1) = 2​n​2​ + ​n​ = O(​n​2​). 
 
Naïvely writing out the entire amplitude vector, or the entire stabilizer group, would have taken ~2​n​ bits, 
so we’ve gotten an exponential savings.  We’re already starting to see the power of the stabilizer 
formalism. 
 
But that power turns out to go much further.  Around 1998, Daniel Gottesman and Manny Knill proved 
the... 
 
Gottesman-Knill Theorem 

which says that there’s a polynomial-time classical algorithm to simulate any stabilizer circuit 
that acts on a stabilizer initial state like | ​00…0⟩. 

Here, “simulate” means pretty much anything you could ask for: you can compute the probability 
of any possible sequence of measurement outcomes, or you can ​simulate​ the measurement outcomes if 
given access to a random bit source. 

A more negative interpretation is:  
stabilizer states and gates, by themselves, are useless for producing superpolynomial quantum speedups. 

 
So, how does the classical simulation work?  Just by keeping track, at each point in time, of a list 

of generators for the current state’s stabilizer group!  And updating the list whenever a CNOT, Hadamard, 
Phase, or measurement gate is applied. 

Almost the only time that Professor Aaronson (being a theorist) ever wrote code that other people 
 actually used, was when he did a project in grad school for a Computer Architecture course. 



 He wrote a fast simulator for stabilizer circuits called CHP, which could handle 
 thousands of qubits on a normal laptop (limited only by the available RAM).  He was only trying to pass 
the class, but the challenge of actually implementing the Gottesman-Knill algorithm in an optimized way 

led to the discovery of an ​even faster ​ classical algorithm for simulating stabilizer circuits, so Aaronson 
ended up publishing a paper with Gottesman about this. 

 
Truth be told, this project had very little to do with Computer Architecture. 

He’s still not sure why the professor accepted it. 
 
So how does the Gottesman-Knill algorithm work? 
For simplicity, let’s assume the initial state is ​| ​00…0⟩.  Then the first step is to find a stabilizer 
representation (that is, a list of generators) for ​| ​00…0⟩. 

We know the stabilizer group contains II…I, but we won’t put that into the generating set: it’s 
implied.  Since ​| ​0⟩ is a +1 eigenstate of Z, you can check that the following generating set works: 

ZIII…I 
IZII…I 
IIZI…I 
      : 
IIII…Z 

 
For purposes of the algorithm, it’s useful to write these lists of generators in a slightly different way: 
 
Tableau Representation 

Here we’ll keep track of two ​n​×​n​ matrices of 1’s and 0’s (as well as ​n​ signs).  The two matrices 
can be combined entrywise to produce an {I,X,Y,Z} matrix like the one above.  We call them: 
 

 ​The X Matrix​     and    ​The Z Matrix 
+ ( ​0 0 0 0​ | ​ 1 0 0 0​ ) 
+ ( ​0 0 0 0​ | ​ 0 1 0 0​ ) ← Each row represents one generator of the stabilizer group 
+ ( ​0 0 0 0​ | ​0 0 1 0 ​) 
+ ( ​0 0 0 0​ | ​0 0 0 1​ ) 
       ​↑ ↑ 
1 if X or Y 1 if Z or Y 
0 otherwise 0 otherwise 

 
Thus, the first row of the above tableau represents the generator +ZIII, the second +IZII, the third +IIZI, 
and the fourth +IIIZ.  So this is just another way to represent the generating set {ZIII, IZII, IIZI, IIIZ} for 
the state ​| ​0000⟩. 
 

We’re now going to provide rules for updating this tableau representation whenever a CNOT, 
Hadamard, or phase gate is applied.  We won’t prove that the rules are correct, but you should examine 
them one by one and see if you can convince yourself. 



We’re also going to cheat a little.  Keeping track of the +’s and –’s is tricky and not particularly 
illuminating, so we’ll just ignore them.  What do we lose by ignoring them?  Well, whenever measuring a 
qubit has a definite outcome (either |0⟩ or |1⟩), we need the +’s and -’s to figure out ​which​ of the two it is. 
On the other hand, if we only want to know whether measuring a qubit will give a definite outcome or a 
random outcome (and not ​which​ definite outcome, in the former case), then we can ignore the signs. 

 
So what are the rules? 
The gates available to us are CNOT, H, and P, so we need to figure out how to update the tableau for 
each. 

● To apply H to the ​i​th​ qubit: 
○ Swap the ​i​th​ column of the X matrix with the ​i​th​ column of the Z matrix. 

This should be pretty intuitive: the whole point of the Hadamard gate is to “swap the X and Z bases.” 
● To apply P to the ​i​th​ qubit: 

○ Bitwise XOR the ​i​th​ column of the X matrix into the ​i​th​ column of the Z matrix. 
Note that P has no effect on the tableau representation of |00…0⟩. 

Coincidence?  I think not. 
● To apply CNOT from the ​i​th​ qubit to the ​j​th​ qubit: 

○ Bitwise XOR the ​i​th​ column of the X matrix into the ​j​th​ column of the X matrix. 
That seems reasonable enough, ​but ...​ remember how a CNOT from ​i​ to ​j​ is equivalent, when 

viewed in the Hadamard basis, to a CNOT from ​j​ to ​i​? 
That means we also have to… 

○ Bitwise XOR the ​j​th​ column of the Z matrix into the ​i​th​ column of the Z matrix. 
 
Finally, whenever the ​i​th​ qubit is measured in the {|0⟩,|1⟩} basis: the measurement will have a determinate 
outcome ​if and only if​ the ​i​th​ column of the X matrix is all 0’s.  (Can you figure out why?) 

There are also rules for updating the tableau in the case that the measurement outcome is not 
determinate, but we won’t cover them here. 
 
Here’s another cool fact: in our state, the number of basis states that have nonzero amplitudes is just 2​k​, 
where ​k​ is the rank of the X matrix. 

In the above example, rank(X) = 0, corresponding to the fact that our “superposition” only contains a 
single basis state, namely​ |0000⟩. 

 
Let’s test this out, by keeping track of the tableau for the circuit on the 
right.  We start with 

( 0 0 | 1 0 ) 
( 0 0 | 0 1 ) 

 
After the Hadamard we get (swap 1​st​ columns of X and Z) 

( 1 0 | 0 0 ) You could convert this back into Pauli notation by saying that the current state is  
( 0 0 | 0 1 ) the one generated by +XI and +IZ. 

That makes sense, since those do indeed generate the stabilizer group for |0⟩⊗|+⟩ 
 



After the CNOT: (In X: XOR 1​st​ column into 2​nd​.  In Z: XOR 2​nd​ column into 1​st​) 
( 1 1 | 0 0 ) This is ( X X ), the stabilizer generator for a Bell pair. 
( 0 0 | 1 1 )            ​ ( Y Y ) 

 
After the phase gate: (XOR 1​st​ column of X into 1​st​ column of Z) 

( 1 1 | 1 0 )  
( 0 0 | 1 1 ) 

This corresponds to the state .√2
|00⟩ +  i|11⟩  

 
A ​stabilizer code​ is a quantum error-correcting code in which the encoding and decoding (at least 

if there are no errors!) can be done entirely by stabilizer circuits.  In particular, this means that all the code 
states are stabilizer states. 

In quantum computing research, most of the error-correcting codes that have been seriously 
considered are stabilizer codes.  The reason for this is similar to why linear codes play such a central role 
in classical error correction: namely, 

(1) it makes everything ​much​ easier to calculate and reason about, and 
(2) by insisting on it, we don’t seem to give up any of the error-correcting properties we want. 

As a result, the stabilizer formalism is the lingua franca of quantum error-correction; it’s 
completely indispensable there. 

 
To take an example: with Shor’s 9-qubit code, we were dealing with states of the form

( )√2
|000⟩ ±  |111⟩ ⊗3   

We claim that a generating set for the above state’s stabilizer group is as follows: 
 

{ Z Z I I I I I I I, 

 I Z Z I I I I I I, 

 I I I Z Z I I I I, 

 I I I I Z Z I I I, 

 I I I I I I Z Z I, 

 I I I I I I I Z Z, 

 X X X X X X I I I, 

 I I I X X X X X X, 

  ± X X X X X X X X X   ​} 

The last line can have either a + or –, encoding or  respectively.0⟩  | 1⟩  |  



Why are the above elements in the stabilizer group?  Well, phase-flips applied to any pair of 
qubits in the same block cancel each other out.  Bit-flips also take us back to where we started, except 
possibly with the addition of a global -1 phase. 

You then just need to check that these 9 elements are linearly independent of each other, meaning 
that there aren’t any more to be found. 
 

Now that we know the stabilizer formalism, we’re finally ready to see an “optimal” (5-qubit) 
code for detecting and correcting an error in any one qubit.  The codeword states would be a mess if we 
wrote them out explicitly--superpositions over 32 different 5-bit strings!  But everything is much more 
compact if we use the stabilizer formalism.  Here’s the code: 

{ XZZXI, 
   IXZZX, 

    XIXZZ, 
   ZXIXZ, 

            ±​ XXXXX } 
Once again, the sign on the last generator is + if we want the logical  state, ​or - if we want the logical0⟩  |  

 state.1⟩  |  
One can check (we won’t prove it here) that this code can indeed correct either a bit-flip or a 

phase-flip error on any one of the five qubits. 
 
To conclude this lecture, let’s say a tiny bit about doing actual quantum ​computations ​ on qubits that are 
encoded using stabilizer codes. 

Thus, suppose we have ​n​ logical qubits, each encoded with a stabilizer code, and we want to 
apply a gate to one or two of the logical qubits.  The “obvious” way to do this would be: 

1. Decode the qubits. 
2. Apply the desired gate to the “bare,” unencoded qubits. 
3. Re-encode the result. 

 
But doing all that is expensive, and creates lots of new opportunities for error!  (E.g., while the 

qubits are unencoded, there’s “nothing to protect them” from decoherence.) 
So it would be awesome if we had a code where applying gates to encoded qubits was hardly 

more complicated than applying them to unencoded qubits.  This motivates the following definition: 
 
The gate G is ​transversal​ for the code C, if in order to apply G to qubits encoded using C, all you 

need to do is: 
● Apply G to the first qubits of the codewords 
● Apply G to the second qubits of the codewords 
● etc.  

 
So for example, the Hadamard gate is transversal if you can Hadamard a logical qubit by just 

separately Hadamarding each physical qubit in the codeword. 
You should check that the Hadamard gate is transversal for Shor’s 9-qubit code. 



 
It turns out that there are quantum error-correcting codes for which the CNOT, Hadamard, and Phase 
gates are ​all​ transversal.  Thus, if you use one of these codes, then applying ​any​ stabilizer circuit to the 
encoded qubits is extremely cheap and easy. 
 

Unfortunately, we already saw that the stabilizer gates are non-universal---and there’s a theorem 
that says that non-stabilizer gates ​can’t​ all be transversal. 

This means that, if we want universal quantum computer, we’re going to need non-stabilizer gates 
like Toffoli or R​π/8​ that ​can’t​ be implemented transversally, but only via sequences of gates that are much 
more expensive. 

 
So the quantum computer engineers tend to adopt a worldview wherein stabilizer gates are 

“free”---they’re so cheap to implement that you might as well not even count them---and the 
“complexity” of a quantum circuit equals the number of non-stabilizer gates.  The non-stabilizer gates are 

so much more expensive that they completely dominate the running time. 
 

In practice, a lot of quantum computer engineering has boiled down to designing improved methods for 
getting non-stabilizer gates into a circuit.  There are various tricks, a famous example being ​Magic State 

Distillation​. 
The idea there is that, if you can just produce certain non-stabilizer states like cos(π/8)|0⟩ + sin(π/8)|1⟩ -- 

those are the “magic states” -- then applying stabilizer operations to those states, together with 
measurements (and adapting based on the outcome of the measurements), is enough to ​simulate​ the effect 
of non-stabilizer gates.  In other words, with help from magic states, stabilizer operations can break out of 
the Gottesman-Knill prison and get all the way up to universal quantum computation.  On the other hand, 

actually realizing this idea seems to require building a quantum computer where the ​overwhelming 
majority​ of the work would happen in “magic state factories,” with the actual quantum computation on 

the magic states almost an afterthought. 
 

There’s a different way to understand the importance of non-stabilizer states for quantum computation. 
The paper by Aaronson and Gottesman from 2004, mentioned earlier, also proved the following result: 
 

Suppose we have a quantum circuit on ​n​ qubits, which contains mostly stabilizer gates---say, ​n​O(1) 
of them---but also a small number ​T ​ of non-stabilizer gates.  Then there’s a classical algorithm to 
simulate the circuit in time that’s polynomial in ​n​ and exponential in ​T​. 

 
This tells us that, if we want an exponential quantum speedup, then not only do we need non-stabilizer 
gates in our circuit, we need a polynomial ​number ​ of such gates. 


