
Lecture 8, Thurs Feb 9: More on Quantum 
Money, BB84 QKD 
Guest Lecture by Supartha Podder 
 
Continuation of Quantum Money 

Last time we discussed how classical money is copyable and 
described a scheme for making money uncopyable through an 
application of the No-Cloning Theorem. 
 

Let’s consider a counterfeiter who wants to take a copy of a 
legitimate bill  and submit it for verification. 

 
Say the counterfeiter decides to measure all qubits in the |​basis. 

Their new bill becomes: 
●  gets copied 

○ (classical information) 
● Puts |​or |​as each qubit. 

 
 
 
So the bank will measure each qubit.  The ones that should be in the  basis are correct all of the 

time.  But the ones that should be in the  basis are correct in both bills only  of the time. 

Thus the probability that the counterfeiter succeeds (i.e., that both bills pass verification) is . 
As we mentioned last time, it was recently shown that any 

such attack succeeds with probability at most  .  
 
Interactive Attack 

There’s a clever attack on Wiesner’s scheme based around the assumption that verification 
involves giving the bank a bill, and then the bank ​returns the bill whether or not it passed verification​. 

We can start with a legitimate bill, then repeatedly go to the bank and ask them to verify it—but 
manipulating the qubits of the bill one at a time. 

For example, if we set the first qubit to |​and the bill still passes verification each and every 
time, then we’ve learned that the first qubit ​should​ be . Otherwise, we can successively try setting the 
first qubit to , , , and see which choice makes the bank consistently happy.  Then, once we 
know, we move on to toggling the second qubit, and so on. 
 
OK, but surely the bank wouldn’t be so naïve as to return the bill even if it fails verification!  We should 
assume instead that if verification fails (or fails often enough), then the bank alerts the police or 
something. 
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Can we come up with an attack that works even then?  A recent paper by Nagaj and Sattath points out that 
we can! 

Recall the ​Elitzur Vaidman Bomb​.  The general idea is that by making a succession of 
measurements, none of which reveals that much by itself, we can with a high probability of success learn 
whether a system is a certain state, without triggering a “bad event” that would happen if the system were 
actually measured to be in that state (such as a bomb going off).  Applying a similar idea to quantum 
money gives us an… 
 
Attack Based on the Elitzur Vaidman Bomb 
Set |​to  
Let |​be the qubit of the banknote we’re trying to learn 
Repeat  times: 

Apply the rotation |​to  
Apply a cNOT gate to  
Send the bill to the bank for verification. 

 
Suppose .  Then each time we apply cNOT, we get 

 
Most of the time |​will stay at . 
At each step, the probability of getting caught (i.e. failing verification) is . 
Thus Prob[getting caught at all] is upper-bounded by  

A similar analysis can be done if |​is |​or : we’re unlikely to get caught, ​and​ the |​qubit keeps 
“snapping back” to . 
But if , then something different happens: the |​qubit gradually rotates from |​to . 
 
So when we measure at the end, we can distinguish |​from the other states, because it’s the only one 
that causes the |​qubit to rotate to . 
By symmetry, we can give analogous procedures to recognize the other three possible states for . 
So then we just iterate over all  qubits in the bill, learning them one by one, just like in the previous 
attack on Wiesner’s scheme. 
 
Can Wiesner’s scheme be fixed to patch this vulnerability? 

Yes!  The bank can just give the customer a ​new​ bill (of the same value) after each verification, 
instead of the bill that was verified. 
 

There’s an additional problem with Wiesner’s scheme, as we’ve seen it.  Namely, it requires the 
bank to hold a huge amount of information: one secret for every bill in circulation.  However, the paper 
(Bennett Brassard Breidbart Wiesner 82) points out how to circumvent this, by basically saying: let |​be a 
pseudorandom function with a secret key , so that for any serial number , the bank can compute 
for itself, rather than needing to look it up. 
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Of course the bank had better keep  itself secret: if it leaks out, the entire money system 
collapses!  But assuming that  remains a secret, why is this secure? 

We use a reduction argument. Suppose that the counterfeiter can copy money by some means. 
What does that say about ?  If it were truly random, then the counterfeiter wouldn’t have succeeded. 
So by checking whether the counterfeiter succeeds, we can distinguish |​from a random function.  So 
wasn’t very good at being pseudorandom! 

Note that with this change, we give up on provable security, of the sort we had with Wiesner’s 
original scheme.  Now we “only” have security assuming that |​is computationally intractable to 
distinguish from random.  (And a recent result by Prof. Aaronson shows that some computational 
assumption is necessary, if we don’t want the bank to have to store a giant database.) 
 
However, even after we make the improvements above, Wiesner’s scheme still has a fundamental 
problem, which is that to verify a bill, you need to go to the bank.  And if you have to go to the bank, then 
arguably you might as well have used a credit card or something instead!  The point of cash is supposed 
to be that we don’t need a bank to complete a transaction.  Which brings us to...  
 
Public-Key Quantum Money 

This is quantum money that ​anyone​ can verify using a “public key,” but that can only be 
produced or copied using a “private key” known only to the bank. 

For formal definitions see (Aaronson 2009), (Aaronson, Christiano 2012). 
With this sort of scheme, you’ll ​always​ need computational assumptions on the counterfeiter, in addition 
to quantum mechanics.  Why?  Because a counterfeiter with infinite computational power could always 
just try ​every​ possible quantum state (or an approximation thereof) on the appropriate number of qubits, 
until it found one that made the public verification procedure accept. 
 
Quantum Key Distribution 
 
Now we’ll discuss something closely related to quantum money, but that doesn’t require storing quantum 
states for long times—and that, for that reason, is actually practical today (though so far there’s only a 
small market for it). 
 
Key distribution​ is a fundamental task in cryptography.  It just means causing two agents, Alice and Bob, 
to share a secret key (without loss of generality, a uniformly random string), when they didn’t have one 
before. 
 
Once Alice and Bob share a long enough key, they can then exchange secret messages, using the central 
technique in cryptography called the ​One-Time Pad​. 

Given a shared key  
Alice has a secret message  

Alice sends the ciphertext , where  denotes bitwise XOR 
Bob decodes the message  as  
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As its name implies, the One-Time Pad can only be used once securely with a given key , so it 
requires a large amount of sharing of keys.  In fact, in the classical world, it’s been proven that if they 
want to communicate securely, Alice and Bob either need initial secret information in common, or else 
they must make computational assumptions on the eavesdropper Eve. 

The great discovery of Quantum Key Distribution was that quantum mechanics lets us get 
encryption with no computational assumptions!  (But we do need communication channels capable of 
sending quantum states.) 

In cryptography, besides secrecy, an equally important goal is authentication.  
However, we’re only going to deal with secrecy. 

 
BB84 

We’ll describe the BB84 scheme, the first full quantum key distribution scheme.  This scheme 
was proposed by Bennett and Brassard in 1984, though it was partly anticipated in Wiesner’s paper (the 
same one that introduced quantum money!).  It circumvents the issues we’ve seen in maintaining a qubit, 
because it only requires coherence for the time it takes for communication between Alice and Bob. 

There are companies that are already doing quantum key distribution through fiber optic cables 
over up to about 10 miles.  In addition, just this year a team from China demonstrated QKD over 

distances of thousands of miles, by sending photons to and from a satellite that was launched into space 
for that express purpose. 

 
Here’s a diagram from the original paper that shows how BB84 works. 

The basic idea is that you’re trying to establish some shared secret knowledge and you want to 
know for certain that no eavesdroppers on the channel can uncover it.  You’ve got a channel in which to 
transmit quantum information, and a channel in which to transmit classical information.  In both, 
eavesdroppers may be able to listen in (no secrecy).  But in the classical channel, we’ll assume you at 
least have ​authenticity​: Bob knows that any messages really come from Alice and vice versa. 

● So Alice chooses a string  of random bits  
● And another string |​of random bits , which she uses to decide which basis to encode 

each bit from  in. 
● She then encodes each bit of  in the |​basis (in the diagram it’s ), if the 

corresponding bit of |​is , or the |​basis ( ), if the corresponding bit of |​is  
● Then she sends over the qubits to Bob. 
● Bob picks his own random string |​and uses |​to decide in which basis 
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to decode the th​ qubit sent over (picking again between  and ) 
 
Now Alice and Bob share which bases they picked to encode and measure the bits of  (the strings |​and 

).  They discard any bits of  for which they didn’t pick the same basis (which will be about half the 
bits). 
 
At this point we consider an eavesdropper Eve​ who was watching the qubits as they were were sent over. 
The whole magic of using qubits is that if Eve tries to measure the qubits, then she inherently changes 
what Bob receives!  Sure, if she measures a |​qubit in the |​basis, then the qubit 
doesn’t change.  But what if she’s unlucky, and measures a |​qubit in the |​basis? 
And eventually, she almost certainly ​will​ be unlucky. 

In more detail: suppose Alice sent , then Eve measured |​and passed that along to Bob. 
Then even if Bob measures in the |​basis (i.e., the “right” basis), he has a 50% chance of 
measuring |​and a 50% chance of measuring .  In the latter case, Alice and Bob will be able to see 
that the channel was tampered with. 

So Alice and Bob can verify that no one listened in to their qubit transmission by making sure 
that some portion of their qubits that ​should​ match, do match.  Of course, after Alice and Bob discuss 
those qubits over the channel, they aren’t going to be secret anymore!  But they’ve still got all the others. 

If any of the qubits didn’t match, then Alice and Bob deduce that Eve eavesdropped.  So then 
they can just keep trying again and again until they can get a batch where no one listened in.  At worst, 
Eve can prevent Alice and Bob from ever communicating by listening in constantly.  But we can prevent 
a situation where Alice and Bob ​think​ their shared key is secure even though it isn’t. 
 
Again, once Alice and Bob share a secret key, they can then use some classical encryption scheme, like 
the One-Time Pad. 
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