
Lecture 7, Tues Feb 7: Bloch Sphere, 
No-Cloning, Wiesner’s Quantum Money 

 
 
The Bloch Sphere 

is a geometric representation of all possible states of a qubit. 
We’ve often drawn the state of qubits as a circle, which is already a little 
awkward: half of the circle is going to waste since   (both represent 
the same density matrix). 
 
Instead, what if vectors that pointed in opposite directions were orthogonal? 
We get the Bloch Sphere... 

 
We can see that  and  should be between |and . Then we can 
add |and |as a new dimension. 
 

In this representation, points on the surface of the sphere are pure 
states, such that 
 if they’re  apart, they’re orthogonal,  

and if they’re  apart, they’re conjugate. 
 

 
What about mixed states? 

Well we know that the maximally mixed state, , can be defined as , , or . 
The sum of any two of these vectors on the sphere is the origin. 

We can in this way represent any mixed state as a point inside of the sphere. 
 
The mixture of any states |and , represented as points on the surface of the sphere, will be a point 
on the line segment connecting the two. 

We can show geometrically that every mixed state can be written as a mixture of only two pure 
states.  Why?  Because you can always draw a line that connects any pure state you want to some point in 
the sphere representing a mixed state, and then see which other pure state that the line intersects on its 
way out.  By some vector math, the point can be described as some linear combination of the vectors 
representing the pure states. 

Experimentalists love the Bloch sphere, because it works almost identically to how spin works 
with electrons and other spin-½ particles. 

With these things, you can measure the particle’s “spin”—a qubit attached to the particle, 
basically—relative to any axis of the sphere.  You see if the electron is spinning clockwise or 
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counterclockwise relative to the axis.  And it behaves just like a qubit, in that the measurement collapses a 
more complex behavior into a binary result.  

The weird part about spin-½ particles is that you could have asked the direction of the spin 
relative to any other axis. So what’s really going on: what’s the real spin direction?  Well, the actual state 
is just some point on the Bloch sphere.  So if the state of the electron is that it’s spinning clockwise 
around the |axis, we can say that it’s in the |state, and if it’s spinning clockwise around the 

|axis, we can say that it’s in the  state, and so forth.  The crazy part here is how the 
three-dimensionality of the Bloch sphere “perfectly syncs up” with the three-dimensionality of actual 
physical space. 

 

 
 

Visualizing the actions of gates on the Bloch sphere: 
Applying gates , ,  or  is the same as doing a half turn on their respective axis. 

 corresponds to a quarter turn around . [in the  to  direction] 
, so  corresponds to an eighth turn around . 

 corresponds to a quarter turn (i.e. ) on . 
 

https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7D%7C%2B%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=X%0
https://www.codecogs.com/eqnedit.php?latex=Y%0
https://www.codecogs.com/eqnedit.php?latex=Z%0
https://www.codecogs.com/eqnedit.php?latex=H%0
https://www.codecogs.com/eqnedit.php?latex=S%0
https://www.codecogs.com/eqnedit.php?latex=Z%0
https://www.codecogs.com/eqnedit.php?latex=%7C%2B%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%7C1%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=T%5E2%20%3D%20S%0
https://www.codecogs.com/eqnedit.php?latex=T%0
https://www.codecogs.com/eqnedit.php?latex=Z%0
https://www.codecogs.com/eqnedit.php?latex=%5Ctfrac%7B%5Cpi%7D%7B4%7D%0
https://www.codecogs.com/eqnedit.php?latex=Y%0


 
The No-Cloning Theorem 

We’ve seen how entanglement seems to lead to “non-local effects,” like for the state , 
where if Alice measures her qubit then she learns the state of Bob’s.  The reason that Alice isn’t 
communicating faster than light boils down to Bob not being able to tell if his qubit’s state is in the ,

 basis or the ,  basis. 
But what if Bob could make unlimited copies of his qubit? He could figure it out through repeated 

measurements, and so he’d be able to tell what basis Alice measured in.  Faster than light communication! 
Learning a classical description of a quantum state, given lots of copies 

 of the state, is called Quantum State Tomography, 
  
 

It turns out that we can prove that a procedure to reliably copy an unknown quantum state cannot exist. 
It’s fairly easy to prove, but it’s a fundamental fact about quantum mechanics. 
 
In effect, we already saw one proof: namely, cloning would imply superluminal communication, which 
would violate the No-Communication Theorem that you proved in the homework!  But let’s see more 
directly why cloning is impossible. 
 
Let’s try to clone a single qubit,  
 
In our quantum circuit we want to apply some unitary 
transformation that takes  and a  ancilla as input, and 
produces two copies of  as output. 
 
Algebraically, a cloner would need to do: 

 

         
 
 
The cloner would need to look like: 

 
 
The problem: this transformation isn’t linear so it can’t be unitary! 
To clarify, a procedure that outputs some  can be rerun to get  repeatedly. What the No Cloning 
Theorem says is that if  is given to you but is otherwise unknown, then  
you can’t make a copy of it. 
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Another clarification: 
cNOT seems like a copying gate [as it maps ] 
So why doesn’t it violate the No Cloning Theorem? 

Because it only copies if the input state is |or . 
Classical information CAN be copied.  Just ask Richard Stallman! 

 
 
 
Doing cNOT on produces the Bell Pair: . Which sort of copies the first  
 
qubit in an entangled way, but that’s different making a copy of . 

Having two qubits be ,  is not the same as . 
 
In general, for any orthonormal basis you can clone the basis vectors, if you know 
that your input state is one of them. 
 
Since the No Cloning Theorem is so important, we’ll present another proof of it: 

A unitary transformation can be defined as a linear transformation that 
preserves inner product. Which is to say that the angle between |and |is the same as the one 
between |and . 

Thus . 
 
What would a cloning map do to this inner product? 

Let  

Then  
 

 only ever equals  if the inner product is  or : so the transformation can only copy if  and  
belong to the same orthonormal basis. 
 
 
There’s a fact in classical probability that provides a nice analog to the No-Cloning Theorem. 

If we’re given the outcome of a coin flip—from a coin that lands heads with some unknown 
probability —can we simulate a second, independent flip of the same coin, without having access to the 
coin? 
 
 
You’d need -to be true for some stochastic matrix . 
 
 
But once again, this transformation isn’t stochastic, because it’s not linear. 
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The No Cloning Theorem has all sorts of applications to science fiction, because you can’t make arbitrary 

copies of a physical system (say for teleporting yourself) if any of the relevant information (say, in your 
brain) were encoded in quantum states that didn’t belong to a known orthogonal basis. 

 
Quantum Money 

is an application of the No Cloning Theorem.  In some sense it was the first idea in quantum 
information, and was involved in the birth of the field. The original quantum money scheme was 
proposed by Wiesner in 1969, though it was only published in the 80s. 

Wiesner had left research by then, and had become a manual laborer. 
Wiesner realized that the quantum No-Cloning Theorem--though it wasn’t yet called that—could 

be useful to prevent counterfeiting of money.  In practice, mints use special ink, watermarks, etc., but all 
such devices basically just lead to an arms race with the counterfeiters.  So Wiesner proposed using qubits 
to make money that would be physically impossible to counterfeit. 

The immediate problem is that a money scheme needs not only unclonability but also 
verifiability.  How did Wiesner solve this problem? 
 
Wiesner’s Scheme 
The bank prints quantum bills (we’ll assume for simplicity that they’re all same denomination).  Each bill 
has: 

● A classical serial number  
● A quantum state |(of  qubits) 

○ The qubits in this state are unentangled, and each will always be in one of four states: 
 

 
The bank maintains a giant database that stores, for each bill in circulation, the classical serial number , 
as well as a string |that encodes what the quantum state attached to bill  is supposed to be. 

  
  
  

 
Wiesner’s scheme has an important practical problem though: you need to ensure that the qubits in a bill 

don’t lose their state (coherence).  With current technology, qubits in a lab decohere in like an hour, tops. 
Qubits stored in a wallet would decohere much faster! 

 
To verify a bill, you bring it back to the bank.  The bank verifies the bill by looking at the serial 

number, and then measuring each qubit in the bill in the basis in which it was supposed to be prepared. 
E.g., if the qubit was supposed to be |or , then measure in the |basis.  For each 
measurement, check that you get the expected outcome. 

Consider a counterfeiter who doesn’t know which basis each qubit is supposed to be in, so they 

guess the bases uniformly at random.  They only have a  chance of making all  guesses correctly. 
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Of course one could imagine a more sophisticated counterfeiter---but it’s possible to prove that, 
regardless of what the counterfeiter does, if they map a single input bill to two output bills, then the 

output bills will both pass verification with probability at most . 
 

Wiesner didn’t actually prove the security of this scheme at the time he proposed it.  
Professor Aaronson asked about it on Stack Exchange a few years ago which prompted 

Molina, Vidick, and Watrous to write a paper that formally proved the scheme’s security. 
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