
 

Lecture 26, Tues April 25: Adiabatic Algorithm 
 
At the end of the last lecture, we saw that the following problem is ​NP​-hard: 

Given as input an ​n​-qubit Hamiltonian H of the special form H = H​1​ + … + H​m​, with each H​i 
acting on at most 3 of the ​n ​qubits, estimate H’s ground state energy. 

 
This is a quantum generalization of the 3SAT problem, one that arises very naturally in condensed matter 

physics.  Building a complicated Hamiltonian by summing local terms could also be seen as somewhat 
analogous to building a complicated quantum circuit by composing 1- and 2-qubit gates. 

 
But how do you “give” someone a Hamiltonian like that? 

Providing the full 2​n​ × 2​n​ Hermitian matrix would be wasteful.  Instead, you can simply list the 

local terms H​1​,…,H​m​ (to some suitable precision), together with the qubits to which they’re applied. 
 
Is this problem ​NP​-complete? 

Since we know it’s ​NP​-hard, what we’re asking here is whether it has polynomial-time 
verification.  In other words, when we claim that the ground-state energy of some Hamiltonian is at most 
(say) 5, can we prove it by giving a short witness? 

It turns out that we can---but as far as anyone knows today, only by giving a ​quantum​ witness!  A 
quantum witness that works is simply the ​n​-qubit ground state itself. 

Thus, the Local Hamiltonians problem is not known to be in ​NP​: it’s only known to be in the 
quantum analogue of ​NP​, which for reasons we won’t go into is called ​QMA​ (Quantum Merlin-Arthur) 

An important theorem from around 1999 says that Local Hamiltonians is actually ​complete​ for 
QMA​, just like 3SAT is complete for ​NP​. 
 

For the specific Hamiltonian H we constructed in the last lecture---the one that encoded 3SAT---there 
would​ be a short classical witness, because that H was a diagonal matrix, so its ground state is always just 
a classical basis state.  But what if H is non-diagonal, and its ground state is some complicated entangled 

state? 
 
So if natural quantum systems like to settle into their ground states, and if finding the ground state is 
NP​-hard, does this mean that we could use quantum systems to solve ​NP​-hard problems in polynomial 
time “naturally”? 

People talked about such questions even before the concept of 
quantum computing was in place. 

But there’s a serious problem: it’s not ​always​ true that natural 
quantum systems quickly settle into their ground states.  And starting from 
hard instances of 3SAT might produce complicated and exotic Hamiltonians, 
far from physicists’ usual experience.  Those complicated Hamiltonians might 
often be ones for which it’s hard to reach the ground state. 
 



 

In the hillside (above), will the ball get to the point that minimizes its gravitational potential energy? 
Probably not anytime soon! 
If we wait a million years, maybe a thunderstorm will push the ball up over the hill in the middle. 

But for the foreseeable future, it’s much more likely for the ball to rest at the ​local optimum​ on the left. 
 

In hard real-world optimization problems, you’d have a very bumpy 1000-dimensional landscape 
or whatever with plenty of local optima to get trapped in.  You might wonder if quantum computing could 
help us wade through these local optima—and that certainly seems plausible.  In fact, the hope that this 
would be true was a central starting point for today’s topic: 
 
The Adiabatic Algorithm 

This is the last quantum algorithm we’ll cover in this course.  To this day, it remains a source of 
significant research and discussion. 
 
There’s a physics theorem from the 1920s called the ​Adiabatic Theorem​: 
“Adiabatic” is a term from thermodynamics; we won’t really need to understand what it means in order to 

discuss the adiabatic algorithm. 
Anyway, here’s what the theorem says: suppose you prepare the ground state of some initial Hamiltonian 
H​i​, with H​i​ being applied to that ground state.  You then slowly and continuously change H​i​ into some 

final Hamiltonian H​f​ , until at the end you’re applying exactly H​f​.  Then provided that the transition was 

slow enough, you’ll end up at (or extremely close to) the ground state of H​f​. 
Assuming a few fine-print conditions that we won’t go into. 

 
So, gradual change from one ground state brings us to another ground state.  
In the minds of Farhi, Goldstone, and other physicists, this suggested the following plan to solve 

NP​-hard problems using Hamiltonians. 
 
 
We know that is a one-qubit Hamiltonian with |+⟩ as its unique ground state. 

 
Its eigenstates are  |+⟩ and  |–⟩. 

The energy of  |+⟩ is 0 and the energy of  |–⟩ is 2, so |+⟩ is the ground state. 
 
So we can create an initial Hamiltonian H​i​ (where here the ​i​ means “initial”) by applying H to each qubit 
individually: 

 
 
The state |+⟩​⊗n​: 

● is easy to prepare in a quantum computer 



 

● would stay put forever if we continued to apply H​i​ forever. 
 
But then, we gradually change H​i​ to another Hamiltonian H​f​ , which encodes some ​n​-bit 3SAT instance 
that we’d like to solve: 
 

    Parameterizing time as ​t​ ∈ [0, 1] 
 
 
 
 

 
In the simplest version, at any point in time ​t​, we apply the Hamiltonian 

H​t​ = (1–​t​)H​i​  + ​t​H​f​. 
 
Since each H​t​ is a sum of terms acting on a few qubits only, we can efficiently apply these H​t​’s 

using Trotterization (discussed in the last lecture). 
If everything goes according to plan, we’ll end up in the ground state of H​f​ ---in other words, the 

optimal solution to our 3SAT instance (!!). 
 
So what’s the catch?  Well, the crux of the matter is that the transition from H​i​ to H​f​ must be 

sufficiently slow​. 
 
How slow? 

To answer that question, let’s plot the eigenvalues of H​t​ as a 
function of the time parameter ​t​ (example shown on the right). 

H​t​ could have as many as 2​n​ eigenvalues (all real numbers). 
But we’re especially interested in the ​smallest​ eigenvalue (the ground 
energy) and the ​one right above that​ (the first excited energy). 

Our goal is to stay in the ground state throughout. 
 
The eigenvalues, also called ​energy levels​, can change 

continuously over time. 
Sometimes two energy levels can even cross each other. 

Physicists call that a ​level crossing​. 
When they ​almost​ cross, it’s an ​avoided level crossing​. 

If the two lowest energies cross each other, then we leave the 
ground state.  Even if the two lowest energies ​nearly​ cross each other, there’s a significant risk that we’ll 
leave the ground state.  The closer together the two lowest energies get, the slower we have to run the 
algorithm to avoid confusing them. 
 



 

We define the ​Minimum Eigenvalue Gap​, ​g​, as the smallest the gap ever gets between the first excited 
energy and the ground energy, as we vary the time ​t​. 

 ​g​ = min​t​ ∈ [0, 1]​ (         ​–        )λ2
(t) λ1

(t)  
  ​First excited energy​    ​Ground energy 
 

In the statement of the adiabatic theorem, one of the “fine print” conditions that we didn’t mention earlier 
is ​g​ > 0. 

 
g​ turns out to be a crucial quantity for determining how long the adiabatic algorithm will take to 

solve a given problem instance.  Roughly speaking: in order to ensure that we remain in the ground state 
throughout, as we pass the value of ​t​ where the gap is ​g​, we need to vary ​t​ at a speed of only ~​g​2​,  which 
takes ~  computation steps.1

g2  

 
So in particular: ​if​ we could show that ​g​ was always lower-bounded by 1/​n​O(1)​ for 3SAT (or some 

other ​NP​-complete problem), then we’d get ​NP​ ⊆ ​BQP​: quantum computers would be able to solve all 
NP​ problems in polynomial time. 
An early paper about this, which was published in ​Science​ in 2001, basically said, “Well… this looks like 

it could work.” 
 

Note: In reality we’re approximating the Hamiltonians with discrete-time unitary transformations, 
so we’d end up with something ​close​ to the ground state of H​f​ , not the ground state itself.  But that would 
still be good enough to solve our ​NP​-hard problem. 
 
So the question boils down to: 
What is the behavior of ​g​, the minimum spectral gap, for the problem instances that we want to solve? 

Farhi once went to an expert in condensed matter physics and said: this is the system we’re 
looking for, do you think that ​g​ will decrease polynomially or exponentially as a function of​ n​? 

The expert says: I think it will decrease exponentially. 
That’s not the answer Farhi wants to hear.  So Farhi asks: why?  What’s the physical reason? 
After thinking about it some more, the expert responds: because if it only decreased 

polynomially, then your algorithm would work. 
 

What emerged after a couple of years is that, for hard instances 
of 3SAT (or even 2SAT, for that matter), the ground energy and the first 
excited energy often ​do​ get exponentially close to touching.  At the point 
where that happens--i.e., the avoided level crossing--you’d need to run 
the algorithm for an exponential amount of time in order to remain in the 
ground state, and thereby solve your SAT instance. 

But the story doesn’t end here.  The physicists regrouped and 
said, “Okay, so maybe this technique doesn’t ​always​ work, but it might 
still give big advantages for ​some​ types of optimization problems!” 
 



 

By now there’s been lots of research on classifying the types of solution landscapes where the adiabatic 
algorithm performs well and those where it performs poorly.  Some encouraging results came from: 
 
(Farhi, Goldstone, Gutmann 2002) 

These authors constructed fitness landscapes that had a global minimum 
at the bottom of a wide basin, but also a tall thin spike blocking the way to that 
minimum.  Starting from the far left, a classical algorithm based on ​Steepest 
Descent​ would get stuck forever at the base of the spike (i.e., at a local 
minimum), and would never reach the global minimum. 

OK, but before we examine the performance of the adiabatic algorithm 
on this sort of landscape, shouldn’t we first look at better classical algorithms? 

Indeed: ​Simulated Annealing​ is a better classical optimization 
algorithm--one that, much like the adiabatic algorithm, will always ​eventually 
reach the global minimum, if you run it for long enough. 
 

In fact, simulated annealing can be thought of as a classical 
 counterpart to the adiabatic algorithm. 

 
The basic idea of ​Simulated Annealing​ is to evaluate the fitness function around the current point and 
then: 

● Make a move that improves fitness       (Most of the time) 
● Make a move that worsens fitness       (Some of the time) 

 
The probability of making a move that worsens fitness is time-dependent, and decreases as time goes on. 

Trading off exploration for exploitation. 
 

The name “simulated annealing” comes from a 7000-year old technology.  ​Annealing​ is the process of 
making a metal stronger by heating it up and then slowly cooling it.  This gives the atoms in the metal a 

chance to bounce around, escape from a local optimum that might be causing brittleness, and then slowly 
settle into a better optimum. 

 
On the fitness landscape with the spike (pictured above), simulated annealing would ​eventually 

get over the spike despite how energetically unfavorable it is. 
However​, if the spike is tall enough, then it would take an exponential amount of time. 

We’d be waiting for the thunderstorm, so to speak. 
 
On the other hand, if the spike is thin enough, then Farhi et al. showed that the adiabatic 

algorithm can get over it in only polynomial time.  It does so by exploiting a well-known quantum 
phenomenon called ​tunneling​. 

Popular articles explain tunneling by saying that a quantum particle can get through barriers that a 
classical particle could never get through.  But it would probably be more accurate to say: “in places that 
a classical particle would need exponential time to get through, ​sometimes​ a quantum particle can get 
through in polynomial time.” 



 

In terms of interference, we can say, “The paths that involve the particle not going over the spike 
interfere destructively and cancel each other out, leaving only paths where the particle does get over it.” 
 
The phenomenon of tunneling is important in many places in physics.  For one thing, it’s why the sun can 
shine. 

Nuclear fusion requires hydrogen atoms to get ​super​ close for them to 
realize that it’s energetically favorable for them to fuse.  The trouble is, when 
they’re not quite so close, they also have strong repulsion (because both nuclei 
are positive). 

When quantum mechanics came along, it explained that while the energy 
barrier would prevent fusion classically, it still happens because the nuclei are 
able to tunnel past the barrier. 

 
Anyway, the 2002 paper of Farhi et al. was good news for the prospects of using the adiabatic algorithm, 
but tunneling only helps if the spike is sufficiently thin. 

Since then, we’ve learned more about the types of fitness landscapes for which the adiabatic 
algorithm is expected to help. 

 
In a landscape like the one pictured on the left, simulated annealing and the 

adiabatic algorithm would both have trouble and would both take an exponential amount 
of time. 
 
 

Or consider the fitness landscape on the right (we can only draw 1 
dimension, but imagine that all of the 2​n​ solutions in an ​n​-dimensional 
hypercube have equal values except for the one good solution).  This 
would also take exponential time for both simulated annealing and the 
adiabatic algorithm to traverse. 

 
We actually already know this by the BBBV Theorem---because in this 

 case, we’re effectively just querying a black box in an attempt to find a unique marked item. 
 

 
It turns out that if you’re clever about how you run the adiabatic 

algorithm, you can achieve the Grover speedup in the case above, but not 
anything faster. 
 
Indeed, the BBBV Theorem tells us that ​Ω(2​n​/2​)​ steps are needed, using the 
adiabatic algorithm or any other quantum algorithm. 
 
What’s cool is that just by knowing BBBV (without any physics), you can say 
that this decrease has to be exponential. 



 

Just like the expert who Farhi consulted was alluding to with his wisecrack, physicists can use knowledge 
from quantum algorithms to learn new things about spectral gaps. 

 
OK, here’s a subtler question: 
 
Suppose the adiabatic algorithm had worked to solve 3SAT in polynomial time.  Would that have violated 
the BBBV Theorem? 

It turns out the answer is no. 
 
The BBBV Theorem applies only to ​black-box​ search--which, in the context of the adiabatic 
algorithm, would mean a diagonal Hamiltonian like the one on the left. 
 
 

While the Hamiltonian encoding a 3SAT instance (right) is also diagonal, 
it contains richer information than the black box considered by BBBV.  In 
particular, it encodes not merely whether each possible solution is satisfying or 

unsatisfying, but the ​number​ of clauses that it violates.  And a 2002 paper of van Dam, 
Mosca, and Vazirani showed that that information, alone, is enough to reconstruct the 
3SAT instance in polynomial time---and hence also to ​solve​ the instance in polynomial 
time, if we assumed (for example) that ​P​=​NP​!  This means that there’s no hope of proving a black-box 
lower bound a la BBBV in this setting. 
 

We also know classical algorithms that can solve 3SAT in less than 2​n/2​ time---indeed, about O(1.3​n​). 
 This is another way of seeing that the BBBV Theorem can’t encompass everything that it’s possible to do 

on 3SAT. 



 

OK, let’s consider one more type of fitness landscape.  A funny thing happens with landscapes like the 
one pictured below: simulated annealing gets into the local 
minimum, but the algorithm then escapes it, crosses the plateau, and 
reaches the global minimum in polynomial time.  Meanwhile, the 
adiabatic algorithm just keeps returning to the local minimum, and 
takes exponential time to reach the global minimum! 
 

Sometimes a classical algorithm performs better. 
 
 

But there’s even a further problem with establishing quantum speedups for adiabatic optimization, which 
is that “classical computing is a moving target.”  A classical computer is not limited to simulated 
annealing or any other specific algorithm.  Thus, even if we established that the adiabatic algorithm was 
exponentially faster than simulated annealing for some class of “real-world” fitness landscapes, we’d still 
need to compare against ​other​ classical algorithms, which might exploit detailed knowledge about the 
landscapes in question.  Particularly relevant here is ​Quantum Monte Carlo (QMC)​---which, despite its 
name, is a quantum-inspired algorithm that runs on a classical computer, and which is widely used in 
many-body physics.  We won’t explain QMC in any detail, but will simply say that, even in the artificial 
cases where the adiabatic algorithm exponentially outperforms simulated annealing, recent work suggests 
that QMC can typically match the adiabatic algorithm’s asymptotic performance classically (albeit, often 
with a much larger constant prefactor). 
 
So, what about the fitness landscapes that arise in real-world, industrial applications?  Do there or don’t 
there exist any that the adiabatic algorithm can traverse exponentially faster than any classical algorithm? 

The truth is, we really don’t know yet.  Reaching a consensus on this might require building a 
scalable quantum computer and then testing the algorithm out! 
 

Which brings us to our final point about the adiabatic algorithm.  We’ve talked about 
implementing the adiabatic algorithm on a conventional, gate-based quantum computer, by using 
Trotterization to approximate Hamiltonians by discrete sequences of gates.  But you might complain that 
that approach seems roundabout.  Since the underlying physics that describes our qubits is based on 
Hamiltonians anyway, why not just directly map the adiabatic algorithm onto the continuous-time 
evolution of the qubits, and skip the Trotterization part? 

Indeed, the adiabatic algorithm could be seen not only as an algorithm, but also as a proposal for 
the physical implementation of quantum computers.  An important 2004 result of Aharonov et al. says 
that adiabatic quantum computers would be universal for quantum computation: that is, able to solve all 
BQP​ problems efficiently. 
 

There’s a venture-capital-backed startup called D-Wave that’s been building special-purpose 
devices to implement a noisy approximation to the adiabatic algorithm (called quantum annealing), using 
physical Hamiltonians themselves.  D-Wave’s latest model has about 2000 superconducting qubits.  You 
can encode an optimization problem of your choice onto their chip, by choosing the interaction 
Hamiltonian for each pair of neighboring qubits. 



 

D-Wave was all over the press because they actually sold a few of their machines, to companies like 
Google and Lockheed Martin, and were notorious for claiming that quantum computing is “already useful 

in practice.”  They were even on the cover of ​Time ​magazine! 
Professor Aaronson has been to D-Wave’s headquarters. 

Funnily enough, their machine is ​literally​ a room-sized black box (most of the hardware inside the box is 
devoted to cooling; the actual qubits are on a chip no larger than an ordinary computer chip). 

 
So what’s the verdict?  Experimental data shows that the D-Wave device is indeed able to solve 

optimization problems encoded in its special format, at a speed that’s often competitive with the best 
known classical algorithms.  Unfortunately, results over the past five years do not clearly show any 
quantum ​speedup​ over the best classical algorithms. 

 
Why not? 
Roughly speaking, there are three main possible causes for the lack of speedup on D-Wave’s current 
devices.  As far as we know today, the truth might be any combination of them. 
 
1) ​Inherent limitations of the adiabatic algorithm. 

Even if we had a perfect quantum computer, running at absolute zero, the minimum spectral gaps 
might simply be exponential small for almost all interesting optimization problems---in which case, the 
adiabatic algorithm could only provide limited speedups, even in theory. 
 
2) ​Limitations in the quality of D-Wave’s qubits​. 

Even if the minimum spectral gap were inverse-polynomial, it still probably wouldn’t be 
constant​: that is, it would presumably shrink to zero as a function of the input size.  And this is a problem 
for the following reason.  It turns out that, if the ​temperature​ of the qubits exceeds the minimum spectral 
gap, then we’ll typically see level crossings even if we run the adiabatic algorithm at the “right” speed.  

The D-Wave qubits are cooled to about 10 milliKelvin.  By normal standards, that sounds 
extremely cold, but it might not be cold ​enough​ to avoid level crossings on instances of interesting sizes! 
What one really wants here is absolute zero---but of course, the cost would increase enormously as one 
approached that, eventually becoming prohibitive. 

 
3) ​Stoquastic Hamiltonians. 

A Hamiltonian H is called ​stoquastic​ if all its off-diagonal terms are real and non-positive.  One 
can show that, if H is stoquastic, then H has a ground state involving nonnegative real amplitudes only.  It 
turns out that, for reasons stemming from that fact, stoquastic Hamiltonians are often much easier than 
arbitrary Hamiltonians to simulate on a classical computer.  For example, the QMC algorithm mentioned 
earlier tends to work extremely well for approximating the ground states of stoquastic Hamiltonians, and 
less well for non-stoquastic Hamiltonians. 

Unfortunately, D-Wave’s hardware is currently limited to applying stoquastic Hamiltonians only. 
Thus, even if quantum annealing were able to yield an exponential speedup at a fixed nonzero 
temperature (like 10 milliKelvin), it might be that it could only do so with non-stoquastic Hamiltonians. 
 



 

This sounds pretty bad!  Given, especially, the temperature issue, why is anyone optimistic that 
quantum computing could scale even in principle?  We’ll see why in the next lecture, when we explore 
the basics of ​quantum error-correction​: a technique that D-Wave is not currently using, but that many 
researchers expect will ultimately be necessary for scalable QC. 


