
Lecture 24, Tues April 18: Collision and Other 
Applications of Grover  
 
We’ve seen the application of Grover’s algorithm to searching game trees.  Now let’s see another 
important application, to… 
 
The Collision Problem 
In the simplest version of this problem, we’re given quantum black-box access to a function 

f :{1, …, N}→{1, …, N} 
where N is even, and we’re promised that f is two-to-one.  The problem is to find x and y such that x ≠ y, 
and f(x) = f(y).  So, there are lots of “collisions” to be found, and the challenge is just to find one of them. 

In another version of the problem, we’re promised that either f is one-to-one or it’s two-to-one, 
and the problem is to decide which.  Clearly, if we could solve the “search” version, then we could also 
solve the “decision” version, by simply outputting that f is two-to-one if a collision is found, or that f is 
probably one-to-one if not.  Conversely, any lower bound for the decision version implies the same lower 
bound for the search version. 
 

The collision problem often arises in cryptography, when we’re trying to break collision resistant hash 
functions.  You can think of the collision problem as being a lot like Simon’s Problem but with less 

structure---or alternatively, as being like the Grover search problem but with more structure. 
 

With a classical randomized algorithm, if we have black-box access to f, then Θ( ) queries are√N  
necessary and sufficient to solve the collision problem.  Why?  The upper bound follows from the famous 
“birthday attack”: if there are N days in the year, then you only need to ask about  people before√N  
there’s an excellent chance that you’ll find two with the same birthday, because what matters is the 
number of pairs of people.  The lower bound can be proven using the union bound: with a random 
two-to-one function, each pair has only a ~1/N chance of being a collision, so to find a collision with 
constant probability you need to look at ~  pairs or more.√N  

What about quantumly?  Well, we could of course simulate the above randomized algorithm to 
get ~ .  But there’s also a completely different way to get ~ : namely, we could first query f(1), and√N √N  
then do a Grover search for an x ≠ 1 such that f(x) = f(1).  So a question arises: can we combine the two 
approaches to do even better than ~ ?√N  
 
(Brassard, Hoyer, Tapp 1997) showed how to do exactly that.  Here’s their algorithm: 

First, pick random inputs to f, query them classically, and sort the results for fast lookup.√3 N  

Next, run Grover’s algorithm on N⅔ more random inputs to f (inputs that weren’t queried in the 
first step).  In this Grover search, count each input x as “marked” if and only if f(x)=f(y) for one of the √3 N
inputs y that was already queried in the first step.  (This requires lookups to our sorted list, but no 
additional queries to f.) 



 
How many pairwise comparisons do we make this way? 

N⅔ ✕ N⅓ = N 
What’s the runtime? 

N⅓  +  = O(N⅓ )√N  ⅔  
 
The centerpiece of Professor Aaronson’s PhD thesis was showing that you can’t improve on this by much. 

It was later shown by Yaoyun Shi that you can’t improve on it at all. 
 

The BHT algorithm gives a good illustration of how quantum algorithms can end up with weird running 
times.  You have two or more phases of the algorithm that you try to balance against each other, make 

about equally time-consuming, in order to minimize the total time,. 
 

At a high level, you can see why the BBBV proof that we used to prove the optimality of 
Grover’s algorithm doesn’t work for the collision problem.  In the BBBV proof, we changed a single 
element from 0 to 1, then showed that it would take many iterations for the algorithm to notice.  With the 
collision problem, by contrast, the key issue is that turning a one-to-one function into a two-to-one 
function requires changing half the elements. 

Instead, Aaronson and Shi used polynomial approximation theory (a branch of math) to rule out 
super-fast quantum algorithms for the collision problem. 

In some sense, proving a quantum lower bound for the collision problem should be harder than 
proving one for the Grover problem, because if the lower bound for collision did too much, then it would 
rule out things like Simon’s algorithm or Shor’s algorithm.  What the proof does is take advantage of the 
symmetry of the collision problem. 

Symmetry in the sense that you can arbitrarily permute the function in the 
 collision problem, and it’s still a valid input, 

 which isn’t the case for something like Simon’s problem. 
 

More broadly, after Grover published his algorithm, there was a ten-year flood of people realizing 
you can use it for speedups in all sorts of problems. 
 
For example, in addition to the collision problem, there’s also the closely related problem of … 
Element Distinctness 

Given black-box access to the function f : {1, … , N} → {1, … , N}, with no promises about f. 
Determine if f is one-to-one. 

In other words: Are there any duplicates/collisions? 
 

Classically, you’d hash the elements (or sort them, or use a binary search tree, etc.), which would 
take N queries plus the amount of computation required for sorting (say, N log N steps). 
 

Quantumly, there’s an algorithm that takes only O(N¾) queries, as shown in a paper of Buhrman 
et al. from 2000. 



This is another cute application of Grover search. 
 

Given a list of the N values of a function, we split them 
into  blocks of  values each.  Then, by using√N √N  
Grover’s algorithm over these blocks, we produce a 
quantum algorithm that makes O( ) queries to f and√N  
finds a collision (if there is one) with probability .1

√N
 

 
So, how can we do that? 

Pick a block at random and query all elements in it. 
If you find a collision in the block, you’re already done!  If you don’t, then sort the elements in 

the block for fast lookup.  Next, do a Grover search on the other items in the list, counting an item as 
“marked” if and only if it equals an element from the collision block. 

 
As long we were lucky enough to pick a block that contains at least one element of a collision 

pair, this algorithm will find such a pair with constant probability.  Hence it succeeds with 1
√N

 

probability. 
 

We can improve on this (after all, we do have access to a quantum computer), by doing an outer 
layer of Grover search that searches through the  blocks, counting a block as “marked” if and only if√N  
the “inner” algorithm above finds a collision involving that block. 

Our final runtime is              *              √√N √N              =   O( N¾ ) 

      Outer Grover           Inner collision search Element Distinctness in N¾ 
 
What’s the lower bound on Element Distinctness? 

As a baseline, we know the query complexity has to be at least that of searching a list for a given 
i, which is ~ .  Pinning down the complexity of Element Distinctness between ~ and ~N¾ was an√N √N  
open problem for several years. 

As it turns out, the answer is ~N⅔. 

Yaoyun Shi noticed that an ~N⅔ lower bound follows from the ~N⅓ lower bound for the collision 
problem. 

That is, suppose for a contradiction that we could solve Element Distinctness in t << N⅔ queries. 

This would let us solve the collision problem in << N⅓ queries.√t  
 
How? 

Given a 2-to-1 function f, pick ~ inputs uniformly at random.  Since, by the birthday paradox,√N  
we can expect to find a collision within that set of inputs (with constant probability), we now simply run 
our hypothesized Element Distinctness algorithm on that subset. 
 



Matching this lower bound, in 2003 Andris Ambainis found a quantum algorithm that solves 
Element Distinctness with O(N⅔) queries.  His algorithm used “quantum walks,” which are vaguely like 
Grover’s algorithm but more sophisticated.  It also required a huge amount of workspace qubits, on the 
order of N⅔.  Whether this large number of workspace qubits is necessary remains open to this day. 
 

OK, how about one more vignette on the quantum query complexity of fundamental problems from 
computer science, which is now something we know a lot about. 

 
Parity of an n-bit String 

Given x ∈ {0,1}n , suppose we just want to determine x1 ⊕ x2 ⊕ …⊕ xn  (i.e., whether the total 
number of 1 bits is odd or even). 
 
Classically, of course, this requires n queries.  Quantumly, we’ve seen that we can do it in  queries, by2

n  

splitting x into  pairs and then applying the Deutsch-Jozsa algorithm separately to each pair.2
n  

A beautiful result shows that this is optimal: queries are needed by any quantum algorithm for2
n  

Parity.  This can be shown using the polynomial method (Beals et al., 1998).  Just to give you a brief 
taste: 

Suppose that we have quantum algorithm A, which makes t queries to an input string x.  We can 
study the probability that A accepts x, call it p(x). 

For simplicity we’ll assume that A is trying to compute a Boolean function, so it either accepts or rejects. 
A critical fact proven by Beals et al. is that p : {0,1}n → ℝ turns out to be a multivariate 

polynomial in the n bits of x.  Furthermore, the degree of that polynomial is at most 2T. 
 
So, suppose we can show that any polynomial p that can approximate a given Boolean function f 

must have deg(p) ≥ D.  Then we can deduce that the quantum algorithm must have made at least 2
D  

queries. 
This reduces questions about quantum query complexity to purely mathematical questions about 

the degrees of real polynomials, with no further CS or quantum computing needed! 
In the case of Parity, it turns out one can show that any polynomial approximating the Parity 

function needs degree n.  This implies that any quantum algorithm for Parity must make at least 2
n  

queries. 
 

As a complement to Parity, it’s also worth briefly discussing the n-bit Majority function, which 
outputs 0 or 1 depending on whether the input string has more 0’s or 1’s respectively.  The quantum query 
complexity of Majority turns out to be order n--i.e., there is no asymptotic quantum speedup for this 
problem--and that can also be proved using the polynomial method. 

However, there is a quantum speedup for a problem closely related to Majority. 
 
For a poll to be accurate within x percent, how many people do you need to classically query? 



Suppose you want to approximate the Hamming weight (i.e., number of 1’s) in your n-bit input string, to 
within an additive error ±ε n. 

Classically, you can do this by sampling ~ uniformly random bits and taking their average, and1
ε2  

this is also tight.  (This fact is extremely useful to know when, e.g., choosing the sample size for a 
political poll, to achieve a desired margin of error like ±3%.) 

Quantumly, by contrast, via a clever application of Grover’s algorithm, it turns out that we can 
solve this problem using only ~  queries: a quadratic speedup.ε

1  
 
 
To conclude this lecture, let’s talk a bit about Quantum Complexity Theory, the generalization of 
computational complexity theory to the quantum realm, so we can understand the broader context of the 
quantum algorithms we’ve seen.  Classically, we define complexity classes such as: 

P (Polynomial-Time), the class of decision problems solvable by a standard, deterministic digital 
computer in polynomial time. 

(examples: linear programming, connectivity of graphs) 
NP (Nondeterministic Polynomial-Time), the class of decision problems for which there’s a 

deterministic polynomial-time algorithm to verify yes-answers. 
(example: factoring, when suitably phrased as a yes-or-no decision problem) 

NP-hard problems are, roughly speaking, problems to which every NP problem can be reduced 
in polynomial time.  So in particular, if you could solve any NP-hard problem in polynomial time, then 
you’d be able to solve everything in NP in polynomial time. 

NP-complete problems are those that are both in NP and NP-hard.  Informally, they’re “the 
hardest problems in NP.” 

(examples: Traveling Salesman, 3SAT, Max Clique, Bin Packing, VLSI layout, Sudoku, 
Super Mario, and many other problems of practical and not-so-practical importance) 
 

This picture already involves an enormous mathematical unknown: famously, no one has ruled out the 
possibility that P = NP, in which case all NP problems (so in particular, all NP-complete problems) 

would be solvable in polynomial time. 
 
Where does quantum computing fit in? 

In 1993, Bernstein and Vazirani defined the complexity class BQP (Bounded-Error Quantum 
Polynomial-Time) as a quantum generalization of P.  Loosely speaking, BQP contains all decision 
problems that can be solved in polynomial time with a quantum computer. 

How does BQP relate to classical complexity classes? 
We know that P ⊆ BQP, basically because Toffoli gates can simulate AND, OR, and NOT gates, 

and hence universal classical digital computation--and hence quantum computers can simulate classical 
ones.  We also know, from Shor’s algorithm, that Factoring (when suitably phrased as a decision 
problem) is in BQP, though it’s not known (to put it mildly) whether Factoring is in P. 

We don’t know whether NP ⊆ BQP--that is, whether quantum computers can solve all NP 
problems (including NP-complete problems) in polynomial time.  The BBBV Theorem does tell us that 
there isn’t an easy proof of NP ⊆ BQP to be had that just treats the NP problem as a black box. 



 
“Can quantum computers solve NP-complete problems in 

polynomial time?” 
is one of the big open problems of Quantum Complexity Theory. 

 
We could also ask the converse, “Is BQP ⊆ NP?”  In other 

words: for every problem that a quantum computer can solve, is 
there a short proof of the answer that’s easy to verify classically? 

It’s possible that there are problems that a quantum 
computer could solve easily which can’t be classically solvable, but 
we don’t have any present examples. 
 
The last important question to ask here is, “If BQP doesn’t seem to be contained in P, and maybe not 
even in NP, then what is it contained in?”  In other words: 
What classical class gives an upper bound on what a quantum computer can do? 

Well, Bernstein and Vazirani showed that it’s possible to simulate a quantum computer 
classically with exponential time and polynomial memory, basically by writing an amplitude of interest as 
a sum of exponentially many contributions, and then evaluating the contributions one by one, reusing the 
same memory each time, and adding them to a running total. 

This gives us an upper bound: BQP ⊆ PSPACE, where PSPACE (Polynomial Space) is the 
class of problems solvable on a digital computer using a polynomial amount of memory, but possibly 
exponential time. 

It’s possible to get a better upper bound on BQP, but it involves other complexity classes that we 
won’t define here. 

So, what would it take to prove that P is different from BQP?  Of course this would follow if 
Factoring wasn’t in P, but proving the latter would require showing P≠NP!  So, is there better hope for 
proving P≠BQP in the near future than there is for proving P≠NP? 

Unfortunately, not so much.  The reason is that BQP is sandwiched between P and PSPACE: 
 

P ⊆ BQP ⊆ PSPACE. 
 

For this reason, any proof of P≠BQP would also need to show that P≠PSPACE, which is a big unsolved 
problem in itself. 


