
Lecture 23, Thurs April 13: BBBV, 
Applications of Grover 
 

It’s great that we can get a quadratic speedup with Grover’s algorithm, but we were able to get an 
exponential speedup with Shor’s algorithm…  
 
So why can’t we get a bigger speedup for unordered search? 

By now, you should have some intuition for the differences between Shor’s algorithm and 
Grover’s algorithm. 

Shor’s algorithm provided an exponential speedup by orchestrating a very “global” phenomenon: 
an interference effect that revealed the period of a black-box periodic function. 

Grover’s algorithm let us turn a little amplitude into a bigger amplitude by adding 1/  with√N  
each query.  It’s faster than classical brute-force search, but still laborious (~ time).√N  

 
We’re still hand-waving the issue though.  We haven’t ruled out the possibility of a quantum 

algorithm that beats Grover, solving unordered search in or log(N) queries or whatever.  For that we√3 N  
need…  

 
The BBBV Theorem (Bennett, Bernstein, Brassard, Vazirani 1994) 

which proved that Grover’s algorithm is indeed asymptotically optimal for the black-box 
unordered search problem. 

Note that the BBBV Theorem was published in 1994, so it actually predates Grover. 
Grover’s algorithm thus has the rare distinction of being an 

 algorithm that was proved to be optimal before it was discovered. 
Amusingly, BBBV were trying to prove that there’s no magic way to search faster using a 

quantum computer.  They were able to get a lower bound of ~ , and figured that tightening the bound√N  
to ~N was a technical issue that they could leave for the future—until Grover came along and showed 
why such a tightening is impossible. 
 
While by now we know many proofs of the BBBV Theorem, the original (and still most self-contained) 
proof uses what’s called a Hybrid Argument. 

Imagine we’re using an arbitrary quantum algorithm to search for a single marked item in a list of 
size N.  Without loss of generality, we can say that the algorithm makes T queries and looks like this: 

U0 → Q → U1 → Q → U2 → Q → …  
where each Q is a query, and each Ut is a unitary transformation that doesn’t depend on the list.  Now we 
do a test run of the algorithm on the all-zero list (without a marked item), and see what happens. 

We’ll argue that at least one item in the list was queried with a small amplitude, because there’s 
only so much amplitude to go around.  But now, if we change the 
value of that item from 0 to 1, then we can show that the algorithm 



wouldn’t much notice the change, by exploiting the fact that unitary transformations are linear and 
norm-preserving. 

More concretely, we’ll show that the final state of the algorithm is at most O( ) away fromt
√N  

what it would have been, had we kept the list all-zero. 
 

Note: while we’ll only consider algorithms that apply unitary transformations, exactly the same proof 
carries over to algorithms that have intermediate measurements---because we can always model a 

measurement by a unitary transformation on a larger set of qubits, just like in the Many-Worlds 
Interpretation. 

 
The argument is called “hybrid” because we’ll create hybrid oracles, which answer the first queries as if 
they’re the all-zero oracle, but then switch partway through the algorithm to having a single “1” entry. 
 
What is the state of the algorithm immediately before the tth query? 

|Ψt⟩ = αx,w,t |x, w⟩∑
 

x, w
      Assuming the all-zero input. 

x is whichever list item that we’re querying next. 
w is what’s known in quantum algorithms as “the workspace,” any qubits that the algorithm 

might use for internal purposes but that don’t participate in the query. 
In Grover’s algorithm there’s hardly any “workspace” to speak of: we do use auxiliary qubits to 

implement the diffusion operator, but those qubits are reset to their original state by the time the diffusion 
operator is finished.  But the BBBV Theorem, to be fully general, will allow for unlimited workspace. 

We’ll show that regardless of the workspace, the algorithm would require ~ queries.√N  

αx,w,t is the amplitude of basis state |x, w⟩ at time t. 
 
Now we define the “query magnitude” of an element x ∈ {1, … , N} to be 

Mx = |αx,w,t|
2∑

T

t = 1
∑
 

w
 

I.e., the query magnitude is the sum, over all time steps t, of the probability that we would find the 
algorithm querying item x if we measured at time t. 
 
Observe that by doing some rearranging, we find that the sum of all the query magnitudes is 

Mx = |αx,w,t|
2) = 1 = T∑

N

x = 1
(∑

T

t = 1
∑
N

x = 1
∑
 

w
∑
T

t = 1
 

 
Since the sum is T, the average query magnitude is .  Now, any list of numbers has at least oneT

N  
number that’s at most the average. 

This is sometimes referred to as the “Lake Wobegon Principle,” after the fictional town where everyone 
was above average. 



So let x* be a list element with query magnitude Mx* ≤ .T
N  

 
The idea here is that the algorithm only has so much amplitude to spread around, and thus most database 
items must not get “monitored” too closely.  So if we pick one such item, x*, and make it the marked 
item, then the algorithm will mostly fail to notice the change. 
 
More formally, we have 

|αx*,w,t|
2 ≤  .∑

T

t = 1
∑
 

w

T
N  

But it would be more useful to us to have an upper bound on 

. ∑
T

t = 1√∑
 

w
|α |x ,w,t*

2  

To get from one to the other we use the Cauchy-Schwarz Inequality, which is super useful in quantum 
information (and many other fields). 
 

Given a unit vector , what is the maximal sum of the absolute values of its entries, |αi|
 ?∑

N

n = 1
 

 
The Cauchy-Schwarz Inequality says that we can maximize the sum by making all entries equal, with the 
vector , so that the sum is  = .N

√N
√N  

 
 
 
So what does the Cauchy-Schwarz Inequality say about our case? 

Well, if each of the T terms of the form |αx*,w,t|
2 were set equal to∑

 

w

, then the sum of their square roots would be .  So this is the1
N

T
√N  

maximum. 
 
Why is this relevant? 

Now comes the hybrid part of the argument. 
Picture a table where each row is our database at a particular point in 

time, with time increasing upwards.  Initially the table is filled with zeros, 
meaning that the oracle answers all queries with zero. 
 

Now we’re going to change the table so that the oracle answers f(x*) = 1 for the last query (and 
only for the last query).  This means that the state of the algorithm after the final query |ΨT⟩, is going to 
change from what it was before---but we know it can change only in branches that were lucky enough to 
query x*. 



 
So how much can things change (in Euclidean distance)?  Well, since the query flips the 
amplitude, the change is equal to the total norm with which we made the query, times 2: 

| |ΨT⟩ – |ΨT′⟩ | = 2  √∑
 

w
|α |x,w,T

2  

Here we’re using the fact that, by assumption, the states immediately before the Tth query 
are identical in the two situations. 
 
So what happens if the oracle treats x* as marked only for the last two queries? 

The total amplitude devoted to querying x* before the final amplitude is 2 , √∑
 

w
|α |x,w,T −1

2  

so we get 

| |ΨT–1′⟩ – |ΨT–1′′⟩ | ≤ 2 . √∑
 

w
|α |x,w,T −1

2  

 
But couldn’t the last query push these further apart? 

Here we come to a crucial point: we claim that it can’t.  For in both cases, the last query is 
applying the same unitary transformation, which means that the inner product between the states can’t 
change. 

So we get | |ΨT′⟩ – |ΨT′′⟩ | ≤ 2  and hence √∑
 

w
|α |x,w,T −1

2  

 | |ΨT⟩ – |ΨT′′⟩ | ≤ 2  by the triangle inequality.  √∑
 

w
|α |x,w,T −1

2 + 2√∑
 

w
|α |x,w,T

2  

 
Continuing in the same way for all T of the queries, we find that | |ΨT⟩ – |ΨT′′′′′′′

…′⟩ | is upper-bounded by 

2 .  This means, in particular, that after we measure at the end of the algorithm, we can have found theT
√N  

marked item x* with probability at most O( ), precisely the success probability that Grover’sN
T 2 

 
algorithm achieves. 
 

This “BBBV Theorem” has since been enormously generalized, to a whole theory 
 about lower bounds on quantum query complexity, which unfortunately we won’t really enter into in this 

course--but see Prof. Aaronson’s graduate course for more! 
 
 
Now that we understand Grover’s algorithm, we can apply it to solve many, many problems that are not 
quite as simple as unordered search.  Our first example of this is… 
The OR’s of AND’s 

N input bits are arranged into a square table of size  by .√N √N  
The problem is to determine: are there any rows with all 1’s? 



 
This problem lets us encode many other problems that involve multiple quantifiers.  For example, in 

chess, we may want to know “Is there a move I 
 can make such that my opponent has no possible response that checkmates me?” 

 
Classically, it’s clear that you have to look through almost the entire table, searching each row 

until you’ve either found a 0 or found that the row is all 1’s. 
 

Quantumly, we could speed this up by searching each row for 0’s using Grover’s algorithm.  The 
running time for each row would be  =  N¼, or technically N¼ log N, if we repeat the Grover search√√N  
on each row enough times to have (say) a 1/N probability of error.  This means that searching the whole 
table would take time 

 N¼ log N = N¾ log N.√N  
Alternatively we could do Grover’s algorithm over all the rows, such that each row is counted as 

a “marked item” if and only if a classical algorithm (which we run as an inner loop) finds a zero in that 
row.  This also has an ~N¾ runtime. 
 

Naturally, the next idea is to run Grover’s algorithm recursively, inside of itself, where the outer 
Grover (over the rows) will count a given row as being marked, if and only if the inner Grover failed to 
find a zero in that row.  Again, because Grover’s algorithm has some probability of error, at least naïvely 
we have to repeat the inner runs about log N times to push the error probability per row down to about .1

N  
 
So our final runtime is O(                         logN            )   =         O( logN )√√N √√N √N  

  outer G.A.  inner G.A.  Error Avoidance the Grover speedup! 
 

With some cleverness, people have since been able to remove the log N factor. 
 
Why couldn’t we just do Grover’s algorithm once, over the whole table? 

Well, just because there’s a 0 somewhere in the table, doesn’t mean that there couldn’t be a row 
of all 1’s somewhere else. 
 

The first problem in quantum computing that Professor Aaronson worked on was 
 trying to generalize the BBBV Theorem to show that “recursive Grover” is optimal: in other words, that 

any possible quantum algorithm for the OR-of-ANDs requires at least ~  queries.  (The obvious lower√N  

bound is only ~N¼.)  He spent a whole summer trying to solve this problem using the “polynomial 
method,” but couldn’t crack it.  Later, Andris Ambainis, then a PhD student at Berkeley, invented a 

totally new method for proving lower bounds on quantum query complexity, and applied it to solve this 
problem. 

 
 Which was why Prof. Aaronson decided to go to Berkeley for grad school. 

 



We could easily generalize this to evaluate (e.g.) an OR of ANDs of ORs by doing three recursive 
layers of Grover search, and so forth. 

If we allow an arbitrary number of layers, then we get the A.I. 
concept of game trees, for two-player games of alternation such as 
chess and Go.  Here the goal is to find a move you can make 
(represented by an OR over various options), which given any move 
that your opponent makes (represented by ANDs), allows for a move 
that you can make, that for any move your opponent makes, etc. … 
eventually wins you the game. 
 

The problem is that, as the game tree gets deeper and deeper, 
the advantage of Grover’s algorithm over classical search seems to get 
weaker and weaker, for two reasons: first, the amplification that’s 
needed at each layer to prevent error buildup, and second, the constant 
factors, which multiply across the layers.  Note that each layer actually 
needs to run Grover’s algorithm on the layer below it twice: 

● Once to do  |x⟩ → |x⟩|f(x)⟩ 
● And once to uncompute garbage. 

For this reason, the constant factor π/4, in the running time of Grover’s algorithm, actually becomes π/2, 
and π/2 > 1. 
 

In short, none of this answers the natural question: “Can a quantum computer help you play 
chess?”  For game-tree search with a deep enough tree, Prof. Aaronson and some others conjectured that 
the diminishing returns from Grover’s algorithm would end up negating any asymptotic advantage over a 
classical computer. 

 
In 2007, however, Farhi, Goldstone, and Gutmann, and others who built on their work, 

dramatically refuted that conjecture.  The upshot of their work is that we now know how to evaluate any 
game tree with N leaves, no matter how deep, in O( ) time on a quantum computer.  (This is also√N  
known to be asymptotically optimal.) 

 
So, yes, quantum computers probably would help you play chess! 

To put some numbers on this: Claude Shannon famously estimated the number of possible board 
positions in chess as ~1043, which is certainly out of range for any existing computer on earth.  But if 
quantum computers brought that down to ~1021.5, solving chess might just be doable. 

Though it raises a philosophical question: Have you actually “solved” chess if 
 you don’t have a solution table that anyone can examine, but only a quantum computer that always wins? 
 
In the next lecture, we’ll see some additional applications of Grover’s algorithm, to the so-called collision 
and element distinctness problems. 


