
Lecture 21, Thurs April 6: Continued Fractions, 
Shor Wrap-Up  
 
Today we’ll finish Shor’s algorithm and then discuss some of its implications. 
 

Last we saw our protagonists, they were in a superposition of the form 
|r⟩ + |r+s⟩ + |r+2s⟩ + …, 

and we were trying to use the Quantum Fourier Transform (QFT) to extract the period s.  Our first order 
of business was to give a polynomial-size quantum circuit to implement the QFT.  Our second order of 
business was to understand what we observe after we apply the QFT and then measure in the 
computational basis. 

Recall that there were two cases: 
If s divides Q, then each possible measurement outcomes has either perfectly constructive or 

perfectly destructive interference.  And the outcomes with constructive interference---i.e., the ones that 
we could see---are all integer multiples of Q/s.  From a few random such outcomes, it’s easy to recover s 
itself, given our knowledge of Q. 

If s doesn’t divide Q, then the pattern of constructive and destructive interference is no longer 
perfect, but has some noise to it. 

That’s because k  is no longer generally an integer, but the algorithm’s output still needss
Q

 
 to be an integer.  So we effectively get a rounding effect, where the nearest 

 integers to k  have the strongest constructive interference.s
Q

 
 

So we run the algorithm once and get an integer, let’s say l1 = ⌊k
⌉

, then run it again to get l2, l3, etc.s
Q

 

And the question is then: given these integers, almost all of which are close to integer multiples of Q/s, 
how do we use them to deduce s itself? 
 
This brings us to the final step of Shor’s algorithm, which is another piece of classical number theory 
called the… 
The Continued Fraction Algorithm 

Whenever an outcome l is observed, we’d like to determine whether it’s close to an integer 
multiple of Q/s, and if so what the multiple is.  This is where we use continued fractions. 

It’s easiest to illustrate with an example.  Let’s look at the continued fraction expansion of an 
approximation of π, 3.14. 
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The idea is that we keep pulling out the largest integer we can and rewriting, until we have an 
approximation of Q/j to within an accuracy of about 1/Q2. 



The reason why the method works is that s is a relatively small integer, so is not only rational but has as
Q

 
relatively small denominator. 
 

In more detail, let’s write l = k  ± ε, where ε is some small value.s
Q

 

Then we divide the above equation through by Q, to get =  ± .l
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We’ll exploit the key inequality above, along with: 

● the fact that we know l 
● the fact that we know Q (because we picked it: it’s at most ~N2) 
● the fact that we know that s isn’t too large 

s ≤ N because the order of the multiplicative group is less than N, and 
the order of any element in the group is at most the number of elements. 

So isn’t just close to any rational number , it’s close to a rational number with a prettyl
Q s
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small denominator, and that doesn’t happen by random chance.  
There’s math that backs this up. 

This is the reason why we set Q to be ~N2 in the first place.  Doing so ensures that the rational 
approximation to  is more-or-less unique, and moreover that there’s an efficient algorithm to find it.s

k l
Q  

 
Suppose I give you a rational number, say 0.25001, and I tell you that it’s close to a rational 

number with an unusually small denominator.  How could you figure out which such rational number it’s 
close to, without having to try all possible small denominators, of which there might still be too many? 

In this particular example, you just stare at the thing, and immediately see ¼ is the answer!  OK, 
but what would be a more systematic way of doing it? 
 
The more systematic way is to expand the input number as a continued fraction, until the leftover part is 
so small that we can safely discard it.  To illustrate: 
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Now we’ve reached , a number small enough for us to discard, which leaves us with4
24997  
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So now we have a way to find . Are we done?s
k  

Well, we still have the same difficulty that we encountered in the s divides Q case, namely that k 
and s might share a nontrivial divisor.  If, for example, k and s were even, then we’d have no possible way 
to tell  apart from .s

k
s/2
k/2  



We solve this using exactly the same approach as before: we repeat the algorithm several times to 

generate , , , etc.s1

k1
s2

k2
s3

k3  

One can then show that the least common multiple of the si’s will be s itself, with a sufficiently 
high probability. 
 

Today, half of pop-science articles still say that “quantum computers would factor numbers by trying all 
the possible divisors in parallel.” 

If you’ve taken anything away from our discussion of how Shor’s algorithm works, I hope you now agree 
that it’s more subtle than that! 

 
In the next lecture, we’ll see how a quantum speedup for “pure, brute-force search” does exist, but it’s not 

exponential, but “merely” quadratic. 
 
The ink wasn’t dry on Shor’s paper before people started asking… 
What else might Shor’s algorithm be good for, besides factoring? 
 
For starters, as we mentioned a couple lectures ago, and as Shor showed in his original paper, it also gives 
exponential speedup for Discrete Log: 

Given a prime p, and an integer g such that gx = a (mod p).  Find x. 
This is how Shor’s algorithm breaks the Diffie-Hellman cryptosystem. 

 
And it was noted shortly afterward that Shor’s algorithm can also be modified to break Elliptic Curve 
Cryptosystems. Indeed, people quickly figured out that Shor’s algorithm can be modified to solve pretty 
much any problem related to finding hidden structures in abelian groups. 

Almost all the public-key cryptosystems that we currently use involve finding such hidden structures. 
 
In the years after Shor’s algorithm, a lot of research in quantum algorithms was directed towards 
answering the question: 
           “To what extent can we generalize Shor’s algorithm to solve problems about non-abelian groups?” 

By now, though, many people have given up on this direction.  It’s very, very hard. 
 
Why did people care about non-abelian groups?  Well, if Shor’s algorithm could be generalized to handle 
them, there are two famous problems that would help us solve. 
 

1. Graph Isomorphism 
This is where you’re given two graphs, and need to decide whether they’re isomorphic.  It’s a problem 
that no one yet knows how to solve in polynomial time, but that famously seems to have “too much 
structure” to be NP-complete. 
In the early 1970s, when Leonid Levin co-discovered the theory of NP-completeness, legend has it that he 

sat on his discovery for more than a year because he was trying to show that Graph Isomorphism is 
NP-complete---something that we now believe is impossible. 



People quickly realized that if you could generalize Simon’s and Shor’s algorithms to a situation 
where the underlying group is the symmetric group Sn, instead of an abelian group like ℤ2

n or ℤN
×, then it 

would solve Graph Isomorphism in quantum polynomial time. 
In 2016, though, Babai (who’s been studying Graph Isomorphism for forty years) found a 

classical algorithm to solve Graph Isomorphism in quasipolynomial time, meaning npolylog(n). 
Many people suspect that Graph Isomorphism is in P, for one thing because the problem is easy in 

practice almost all of the time.  In any case, since we now know that Graph Isomorphism is at worst 
quasipolynomial classically, there’s no longer any possibility of getting an exponential quantum speedup 

for the problem. 
 

2. Lattice-Based Cryptography 
There’s a set of public-key cryptosystems based on lattices, which are becoming increasingly 

important theoretically and even practically, and we don’t know how to break (yet) even with a quantum 
computer. 

Given a collection {z1,...,zn} of vectors in Rn, the lattice spanned by the collection is the set of all 
integer linear combinations of the vectors: 

L = {a1z1 + … + anzn : a1 , …, an ϵ ℤ } 
A typical problem would be: “given {z1,...,zn}, find the shortest nonzero vector in L---or at least, a 

vector that’s within a √n factor of being the shortest.” 
It turns out that you can create entire public-key cryptosystems around these sorts of problems. 

 
There was an important result by Regev (2005), which says that we could break lattice-based 
cryptosystems if we could generalize Shor’s algorithm to work for a nonabelian group called the dihedral 
group. 

Needless to say---because otherwise I would’ve told you!---no one has yet succeeded in doing so. 
So, lattice-based crypto is an attractive alternative to RSA and Diffie-Hellman for those who are 

paranoid about quantum computers.  But it’s also attractive for other reasons, including the prospect of 
Fully Homomorphic Encryption: the ability to do arbitrary computations on encrypted data without ever 
decrypting it.  This would let people submit their data to cloud computing servers, and then get back the 
results, without the cloud server ever learning what computation it did.  In 2009 Craig Gentry proposed 
the first Fully Homomorphic Encryption scheme using lattice-based crypto; since then other schemes 
have been proposed.  These are not schemes that we know how to break even using a quantum computer. 
There’s still a practical problem with these schemes: the key sizes, message sizes, and computation times 

tend to be huge.  But the schemes have been steadily improving, and many of them are now either 
practical or nearing practicality. 


