
Lecture 18, Tues March 28: Bernstein-Vazirani,
Simon

We ended last time with the Deutsch-Jozsa problem. Today we’ll start with another black-box problem
for which quantum algorithms provide an advantage:
The Bernstein-Vazirani Problem

We’re given access to a black box function
We’re promised that |for some secret string

The problem is to find s.

Classically, you could get an answer one bit at a time by querying all the strings of Hamming
weight one: for example,

But no classical algorithm can do better than this, since each query can only provide one bit of
information about .

The Bernstein-Vazirani algorithm, however, solves the problem quantumly using only one query (!).

The Bernstein-Vazirani Algorithm

We start with qubits all in the |state.
We then Hadamard them all (what else?).
Next we query |(using the ‘phase’ type of query).

The question is:
How do we measure the resulting state in a way that gives
us information about the secret string s?
We can reuse work from the last lecture…
We know that Hadamard gate maps |to |and |to |(and vice versa)

i.e. it does

and so Hadamarding a string of bits gets us

 We pick up a –1 factor only when si|and xi|are both 1.

Now, note that we can write the current state of the Bernstein-Vazirani algorithm as

https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=%7Cs_1%2C%20%5Cdots%20%2C%20s_n%5Crangle%20%5Cleftrightarrow%20%20%5Cfrac%7B%7C0%5Crangle%20%2B%20(-1)%5E%7Bs_1%7D%20%7C1%5Crangle%7D%7B%5Csqrt%7B2%7D%7D%20%5Cbigotimes%20%5Cdots%20%5Cbigotimes%20%5Cfrac%7B%7C0%5Crangle%20%2B%20(-1)%5E%7Bs_n%7D%20%7C1%5Crangle%7D%7B%5Csqrt%7B2%7D%7D%0

But this means that if we Hadamard all the qubits again, we’ll change:

● The qubits that picked up a phase (i.e., for which) from |to .
● The qubits that didn’t pick up a global phase (i.e., for which) from |to .

So from here we can simply measure the qubits in the |basis to retrieve .

You can see that Bernstein and Vazirani designed their problem around what a quantum computer would
be able to do!

Don’t tell anyone, but: this is actually pretty common in this field
So, only for |are all contributions to the amplitude of a measurement outcome pointing the same
way. For all the other outcomes, the contributions interfere destructively, with equally many positive and
negative terms (all of the same magnitude), so the total amplitude for each of those outcomes is 0.

With pretty much every quantum algorithm, a similar story can be told, about the contributions to
the amplitude reinforcing each other only for the outcomes that we want.

On that note, let’s next see…
Simon’s Problem (1994)

The story goes that Simon looked at the quantum algorithms coming out, and he didn’t believe
that any of them would give a real speedup. Even the Bernstein-Vazirani problem is easy classically: a
classical computer can find the bits of with queries. Sure, the quantum algorithm needs only one
query, but it also requires |gates, so maybe it’s not that impressive.

Simon believed there was a limit that would prevent you from getting a “true” exponential
speedup from a quantum computer, and he set out to prove it. What he ended up finding, instead, was
that there is a true exponential speedup, at least for an artificial black-box problem. As we’ll see, this
then played a central role in subsequent progress in quantum algorithms: particularly Shor’s algorithm,
which came shortly afterward.

In Simon’s problem, we’re once again given an oracle function, this time mapping bits to bits:

We’re promised that there’s a secret string , such that

for all inputs , , where the symbol denotes bitwise XOR. The problem is to find the secret string s,
by querying f|as few times as possible.

Compared to Bernstein-Vazirani, here there’s more freedom in the choice of function . In Simon’s
problem, all we require is that |has a “hidden XOR mask”: that is, a subset of bits such that when you
flip the bits in that subset (but only when you do so), the output is unaffected.

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5En%7D%7D%20%5Csum_%7Bx%5Cepsilon%20%5C%7B0%2C1%5C%7D%7D%20(-1)%5E%7Bs%20%5Ccdot%20x%7D%20%7Cx%5Crangle%20%3D%20%5Cfrac%7B%7C0%5Crangle%20%2B%20(-1)%5E%7Bs_1%7D%7C1%5Crangle%7D%7B%5Csqrt%7B2%7D%7D%20%5Cbigotimes%20%5Cdots%20%5Cbigotimes%20%20%5Cfrac%7B%7C0%5Crangle%20%2B%20(-1)%5E%7Bs_n%7D%7C1%5Crangle%7D%7B%5Csqrt%7B2%7D%7D%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=2%5En%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=%5Coplus%0

What does this mean?
Let’s do an example with 3-bit inputs, and with secret string .

Let’s say we query |a few times and get…

We’re given no information about how to interpret the outputs themselves, so it doesn’t really
matter whether we think of them as strings, integers, or whatever. The only thing that does matter is
whether two inputs map to the same output.

Since , we know that .

This is simple enough with 3 bits, but we’re more interested in ’s with, say, 1000-bit inputs. In
that case, we claim that finding the secret string is prohibitively expensive classically. How expensive?
Well, it’s not hard to show that any deterministic algorithm needs to query |at least |times, by
an argument similar to the one that we used for Deutsch-Jozsa. But once again, the more relevant
question is how many queries are needed for a randomized algorithm.

We claim that we can do a little bit better in that case, getting down to |queries. This is
related to the famous Birthday Paradox, which isn’t really a paradox, it’s more of a “birthday fact.”

It says that, if you gather merely 23 people in a room, that’s enough to have a ~50% probability
of getting at least one pair of people who share a birthday. More generally, if there were days in the
year, then you’d need about |people in the room for a likely birthday collision. (At least, assuming
birthdays are uniformly distributed, which they’re not exactly: e.g., there are clusters of them about 9
months after major holidays.)

The takeaway here is that the number of pairs of people is what’s important, and that scales
quadratically with the number of people. Similarly, with Simon’s problem, the number of pairs of inputs
that could collide is what’s important, and that grows quadratically with the number of inputs we check.

The Birthday Paradox is useful in cryptanalysis.
For example, cryptographic hash functions need to make it intractable to find any two inputs ,

 with the same hash value, . But by using a “birthday attack”—i.e., repeatedly choosing
 a random input , then comparing |against |for every previously queried input y, looking
 for a match—we can find a collision pair using a number of queries to |that scales only like the square
 root of the size of ’s range. This is quadratically faster than one might have expected naïvely.

Whatever other structure it has, Simon’s problem involves a two-to-one function in which we’re looking
for a collision pair—so it also admits a birthday attack. Roughly speaking, given two randomly-chosen
inputs and , we’ll observe |with probability , and while these events aren’t
quite independent between the various |pairs, they’re nearly so. Doing the calculation carefully, we
find that we’ll observe a collision with high probability after querying |values of .

https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BRoyalBlue%7Ds%20%3D%20110%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7D%20x%0
https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7D%20x%0
https://www.codecogs.com/eqnedit.php?latex=x%0

Is there a better classical algorithm?
Let’s prove that the answer is no. We’ll use an Adversary Argument: basically,

“If my worst enemy got to choose f, what would he do?”
Presumably, he’d choose a secret string |uniformly at random among all possible ’s, to

make it as hard as possible to find an underlying structure in . And then, perhaps, choose a random
among all those consistent with that .

Now, once we fix such a strategy of the adversary, we can assume without loss of generality that
the algorithm is deterministic. This is because a randomized algorithm is just a probabilistic mixture of
deterministic algorithms, and there must be at least one algorithm in the mixture that does at least as well
as the average! (This observation—together with the complementary observation that all randomized
lower bounds can be proved in this way—is sometimes referred to as Yao’s minimax principle.)

So the upshot is that we can view an optimal strategy as just a deterministic sequence of queries. Let the
queried inputs be x1, x2, etc. Then the question is:
What information can we derive about s after the first t queries?

If we’ve found a collision pair, |for some , then we’re done; we now know
that . So let’s assume that hasn’t happened yet. Then all we can conclude about is that

|for every . At most this rules out possible values of , with all the other
possibilities remaining equally consistent with what we’ve seen (i.e., having equal posterior probabilities).
It follows that, unless we observe a collision, narrowing the possibilities down to a single requires

|queries. And the probability that we do observe a collision in the th query is only —so

by the union bound, with high probability we won’t observe any collisions at all in the first ~ queries.

And that’s the adversary argument: examining a “worst-case” distribution over ’s gives us a lower
bound of |queries for any randomized algorithm solving Simon’s problem.
i.e. the birthday attack yields a quadratic speedup, but the problem still takes exponential time classically.

Quantumly, by contrast, we can solve Simon’s problem with only |queries to , by using...
Simon’s Algorithm!
The algorithm follows a now-familiar pattern:

1. Start with qubits all in the |state.
2. Hadamard them all.
3. Query .

This yields the state

This time the function |has a large output, so we
need to write out its values in a separate -qubit

https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=t%5E2%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=t%0
https://www.codecogs.com/eqnedit.php?latex=2%5E%7Bn%2F2%7D%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5En%7D%7D%20%5Csum_%7Bx%20%5Cepsilon%20%5C%7B0%2C1%5C%7D%5En%7D%20%7Cx%5Crangle%7Cf(x)%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=n%0

answer register, rather than just encoding it into the phase.
But even though we’re giving more space to write out the answers , it’s important to note

that the answers themselves aren’t what we care about!

Instead, we’re only writing them out because by doing so, we create a desired interference pattern
in the register. Indeed at this point in the algorithm we could simply discard the |qubits, or do
anything else we liked with them.

So for pedagogical simplicity, let’s assume we now measure the |qubits. And let’s assume
that the result of the measurement is .

Keeping track of all of the ’s we could have seen would’ve resulted in a mixed state.
Instead, we’re just conditioning on a particular .

Now how many different values are superposed in the input register?
By the partial measurement rule, we’re left with an equal superposition over all the different ’s that are
consistent with the |value that we observed, namely . In Simon’s problem, there are necessarily

two such ’s. In other words, we’re left with a superposition -such that .

By the Simon promise, this means in particular that .

So what is this state good for?

First, observe that if we could just measure -twice, then with high probability we’d first

get and then —so then bitwise-XORing the two strings would give us the secret string , and we’d
be done! Alas, in quantum mechanics we only get one chance to measure a state, so we’ll see either |x〉
or
|y〉, |which tells us nothing about . We could of course repeat the whole algorithm from the
beginning. But if we did, then with overwhelming probability we’d get a different , corresponding to a
new pair.

So we’ll need to be more clever—although not that much more! In particular, let’s see what

happens if we measure the qubits of |in the Hadamard basis.

What’s the effect of Hadamarding all the qubits on ?

Well for starters, we saw in the last lecture that Hadamarding all qubits maps the basis state |to

and maps |to

By linearity, this means that doing the same thing to an equal superposition of |and |must

give

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7Dw%0
https://www.codecogs.com/eqnedit.php?latex=%5Ccolor%7BGray%7Dw%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=w%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=w%0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5En%7D%7D%20%5Csum_%7Bz%20%5Cepsilon%20%5C%7B%200%2C1%5C%7D%5En%7D%20(-1)%5E%7Bx%20%5Ccdot%20z%7D%20%7Cz%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5En%7D%7D%20%5Csum_%7Bz%20%5Cepsilon%20%5C%7B%200%2C1%5C%7D%5En%7D%20(-1)%5E%7By%20%5Ccdot%20z%7D%20%7Cz%5Crangle%0

Now let’s measure the above state in the standard basis.

Which ’s could we get when we do so?
For a given to be observed, it must have a nonzero amplitude. This means that |and
must be equal, which occurs if and only if

.
Or rewriting this equation a bit:

Note that every satisfying the above equation will appear with the same probability as every

other, namely . So, what we get when we measure is an -bit string , chosen uniformly at
random among all the strings whose inner product with is 0. In other words: we haven’t yet
learned itself, but we’ve learned a bit of information about , which I hope you’ll grant is something!

But what if we really want itself? In that case, we can just repeat Simon’s algorithm over and over,
starting from the beginning! This will give us a collection of strings , which are uniformly
random and independent of each other, subject to satisfying the equations

⋮

After we’ve repeated enough times, what could we tell a classical computer to do with this information?

Well, suppose , where is some constant. Then we now have a collection of
linear equations in unknowns, over a finite field with two elements. We can solve this system
efficiently using a classical computer.

Through an algorithm called “Run Matlab.”

 Or Gaussian elimination, taking |time.

Or if you want to get all theoretical about it, the fastest known algorithm—whose
 constant-factor overheads make it useless in practice—takes |time.

It’s not hard to do a probabilistic analysis showing that, after we’ve seen slightly more than equations,
with overwhelming probability we’ll be left with a system that has exactly two solutions: namely, and

 itself. We can throw away , because we assumed . So that leaves us with .

https://www.codecogs.com/eqnedit.php?latex=H%5E%7B%5Cotimes%20n%7D%20%5Cfrac%7B%7Cx%5Crangle%20%2B%20%7Cy%5Crangle%7D%7B%5Csqrt%7B2%7D%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5E%7Bn%2B1%7D%7D%7D%20%5Csum_%7Bz%5Cepsilon%20%5C%7B0%2C1%5C%7D%5En%7D%20%5Cleft%20%5B(-1)%5E%7Bx%20%5Ccdot%20z%7D%20%2B%20(-1)%5E%7By%20%5Ccdot%20z%7D%5Cright%20%5D%20%7Cz%5Crangle%0
https://www.codecogs.com/eqnedit.php?latex=z%0
https://www.codecogs.com/eqnedit.php?latex=z%0
https://www.codecogs.com/eqnedit.php?latex=z%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=z%0
https://www.codecogs.com/eqnedit.php?latex=2%5E%7Bn-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=s%20%7B%5Ccdot%7D%20z_2%20%3D%200~(%5Ctext%7Bmod%7D%20~2)%0
https://www.codecogs.com/eqnedit.php?latex=s%20%7B%5Ccdot%7D%20z_k%20%3D%200~(%5Ctext%7Bmod%7D%20~2)%0
https://www.codecogs.com/eqnedit.php?latex=c%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=0%5En%0
https://www.codecogs.com/eqnedit.php?latex=s%0
https://www.codecogs.com/eqnedit.php?latex=0%5En%0
https://www.codecogs.com/eqnedit.php?latex=s%0

That’s Simon’s algorithm, which solved Simon’s problem using only |queries to |plus a polynomial
amount of side computation, as compared to the |queries that are provably needed classically.

Does Simon’s algorithm have a deterministic counterpart?

Yes, one can modify the algorithm so that it succeeds with certainty rather than “merely”
overwhelming probability. We won’t go into the details.

So why doesn’t this just prove that quantum algorithms are better?

It’s sort of tricky to translate Simon’s algorithm into “real-world” consequences. To get a
speedup over classical computing in terms of the sheer number of gates, or computational steps, we’d
need some small circuit to compute a function |that was actually like our magical Simon function |has
(i.e., that satisfied the same promise). For example, |for some rank-(–1) Boolean matrix
would do the trick.

But the difficulty in claiming that we’re getting a quantum speedup this way is that, once we pin
down the details of how we’re computing —so for example, the actual matrix —we then need to
compare against classical algorithms that know those details as well. And as soon as we reveal the
innards of the black box, the odds of an efficient classical solution become much higher! So for example,
if we knew the matrix , then we could solve Simon’s problem in classical polynomial time just by
calculating ’s nullspace. More generally, it’s not clear whether anyone to this day has found a
straightforward “application” of Simon’s algorithm, in the sense of a class of efficiently computable
functions |that satisfy the Simon promise, and for which any classical algorithm plausibly needs
exponential time to solve Simon’s problem, even if the algorithm is given the code for .

So the story goes that Simon wrote a paper about this theoretical black-box problem with an
exponential quantum speedup, and the paper got rejected. But there was one guy who was like, “Hey, this
is interesting.” He figured that if you changed a few aspects of what Simon was doing, you could get a
quantum algorithm to find the periods of periodic functions, which would in turn let you do all sorts of
fun stuff.

That guy was Peter Shor.

https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=A%0
https://www.codecogs.com/eqnedit.php?latex=A%0
https://www.codecogs.com/eqnedit.php?latex=A%0
https://www.codecogs.com/eqnedit.php?latex=A%0

