
Lecture 17, Thurs March 23: Quantum Query 
Complexity, Deutsch-Jozsa 
 
People often want to know where the true power of quantum computing comes from. 

● Is it the ability of amplitudes to interfere with one another? 
● Is it the huge size of Hilbert space (the space of possible quantum states)? 
● Is it that entanglement gives us  amplitudes to work with? 

But that’s sort of like dropping your keys and asking “what made them fall?” 
● Is it their proximity to the Earth? 
● Is it the curvature of spacetime? 
● Is it the fact that you dropped them? 

There can be many complementary explanations for the same fact, all of them valid.  And that’s the case 
here.  If there weren’t a huge number of amplitudes, quantum mechanics would be easy to simulate 
classically.  If the “amplitudes” were probabilities, rather than complex numbers that could interfere with 
each other, QM would also be easy to simulate classically.  If no entanglement were allowed, then at least 
all pure states would be product states, once again easy to represent and simulate classically.  If we were 
restricted to stabilizer operations, QM would be easy to simulate classically.  But as far as we know, full 
QM---involving interference among exponentially many amplitudes in complicated, non-stabilizer 
entangled states---is hard to simulate classically, and that’s what opens up the possibility of getting 
exponential speedups using a quantum computer. 
 
Quantum Complexity 
There are two major ways we look at the complexity of quantum algorithms 

The ​circuit complexity​ of a unitary transformation  is the size (i.e., number of gates) of the 
smallest circuit that implements ​.  We like unitaries with polynomial circuit complexity.  Alas, typically 
it’s ​extremely​ hard to determine the circuit complexity of a unitary; the best we can do is to prove upper 
bounds, and conjecture lower bounds on the basis of hardness assumptions and reduction arguments. 
Note that the reasons why this sort of problem is insanely hard have nothing to do with quantum 
mechanics. 

“What’s the smallest circuit that solves Boolean satisfiability?”  
is a similarly hard problem, indeed closely related to P vs NP. 

 
So if we want a more precise picture of what’s going on, albeit in a more limited model, we 

instead often use… 
Query complexity​, which is the number of calls the algorithm makes to an oracle (or black box 

function). The idea is that your oracle takes an input ​x​ and produces an output , where say 
 

is a Boolean function.  In quantum mechanics, our first guess for what this would mean might be: we map 
the input state |​to the output state , or maybe the output state . 
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Here, though, we run into a bit of trouble because such a transformation is not unitary.  To make 
the transformation unitary, we need a so-called ​answer​ or ​target​ register. 

So we give the black box two inputs: , 
which is unchanged, and , which has the answer 

|​written into it in a reversible way, typically 
exclusive-ORing: 

 
If we took care to ensure that |​initially, then 
this would map |​to , exactly like in 
the classical case. 

A lot of times we ignore the answer qubit 
by moving the phases around.  So let’s say we prepare the answer qubit as . 
 
One important note for later: if |​happens to be a Boolean function, then often it’s most convenient to  
consider quantum queries that map each basis state |​to : in other words, that ​write the  
function value into the phase of the amplitude​, rather than storing it explicitly in memory.  Or more  
precisely, we consider queries that map each basis state |​to , where  is a bit that 
controls whether the query should even take place or not.  This sort of “phase oracle” doesn’t really have 
any classical counterpart, but is extremely useful for setting up desired interference patterns. 
 
So it behooves us to ask: how do the “phase oracle” and the “XOR oracle” compare?  Could one be more 
powerful than the other?  Happily, it turns out that they’re ​equivalent​, in the sense that either can be used 
to simulate the other, with no cost in the number of queries.  This is a result that we’ll need later in this 
lecture. 
 
To see the equivalence, all we need to do is consider what happens when the second register—the one 
containing |​or —is placed in the |​state before a query.  You can check that this converts a XOR 
oracle into a phase oracle: we get 

 
 

which equals  
  

which we can rewrite as just .  Meanwhile, if the second register is placed in the  
state, then nothing happens, so we really do get the |​behavior . 
 
Conveniently, the converse is also true!  That is, if we know that a phase oracle will be acting, then by 
placing the  register in one of the states |​or , we can simulate the effect of a XOR oracle, with 
the phase oracle causing |​and |​to be swapped if and only if . 
 

Taking a step back, though, what are we really doing when we design a quantum algorithm in the 
query complexity model?  We’re abstracting away part of the problem, by saying: 
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“Our problem involves some function, say, , and we’re trying to learn 
some property of , in a way that only requires evaluating |​on various inputs, not looking at the 
internals of how |​is computed.” 

So for example, you might want to learn: 
 
Is there some input  such that ? 
Does |​for the majority of ’s? 
Does |​satisfy some global symmetry, such as periodic, or is it far from any function satisfying 

the symmetry? 
Etc. 

 
We then want to know how many queries to |​are needed to learn this property. 

In this model, we abstract out the cost of any quantum gates that 
 are needed before or after the queries: those are treated as “free.” 

 
Before we delve deeper, it’s worth asking: 
“Why do we care about the black-box model?  You’re debating how you’d phrase your wishes if you 
found a magical genie.  Who cares?” 

The truth is more prosaic, though.  You can think of a black box as basically a huge input string. 
From that standpoint, querying |​just means looking 
up the th​ element in the string. 

 
Another way to think about it: 

Imagine I’m writing code, and I have a subroutine that computes .  How many times do I 
need to call the subroutine to find some information about ?  Assuming, in the quantum case, that I even 
get to call the subroutine on a superposition of different  values, and get back a superposition of 
answers? 

But also assuming that we’re not going to “violate abstraction 
 boundaries” by examining the code of the subroutine. 

 
To justify the quantum black-box model, there’s one technical question we need to answer…  
Suppose we did have a small circuit to compute a function .  Could we then implement the quantum 
black-box behavior that we described above—without loss of generality, the XOR behavior,  

? 
The reason this isn’t entirely obvious, is that if you’ll recall, quantum circuits have to be 

reversible​.  So just because there’s a small circuit to compute , doesn’t immediately imply that 
there’s a small circuit that maps the basis state |​to the basis state |​with nothing else 
lying around​. 

 
Indeed, let’s step back, and think about the constraints on computation that are imposed by 

reversibility.  To start with the obvious: if we had a reversible circuit that maps |​to , then  
must be an injective function.  But now for the subtle part: even if |​is both injective ​and​ efficiently  
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computable, that still doesn’t imply (at least, as far as we know) that the map |​is efficiently 
computable. 

Why not?  Well, imagine that |​were an injective one-way function: that is, a function that’s easy 
to compute but hard to invert.  Such functions are the basic building blocks of cryptography, and are 
strongly conjectured to exist, even in a world with quantum computers. 

Note that even though quantum computers can break a few supposedly one-way 
 functions, like those based on factoring and discrete log, there are many, many 

 more “generic,” less “structured” one-way functions that don’t seem threatened 
 by quantum computers.  We’ll have more to say about such issues later. 

 
Anyway, now suppose we had a small circuit  such that .  Then simply by running that 
circuit backwards—that is, inverting all the gates and reversing their order—we could get  

, thereby inverting the supposed one-way function! 
But why doesn’t this contradict our starting assumption that |​was easy to compute?  Here’s 

why: because a reversible circuit for g would at best give us a mapping like 
, a mapping that leaves  around afterward.   And inverting ​that​ mapping will only take us from  ​|​to 

 if we know  already, so it’s no help in breaking the one-way function. 
 

OK, but this still leaves the question: how do we even efficiently implement the mapping  
, if ​|​given a small ​non​-reversible circuit for ? 

In the last lecture, we saw how it’s possible to take any 
non-reversible circuit and simulate it by a reversible one, by using Toffoli 
gates to simulate NAND gates. 

The trouble with that is that, along the way to the final answer, the 
construction also produces all sorts of undesired 
results in the intermediate bits—the technical 
name for this is ​garbage​.  ​Yes, really. 
 
Why is garbage such a problem for quantum computing?  Because garbage can 

prevent the desired interference patterns from showing up—and the whole 
 point of quantum algorithms is to create those interference patterns. 

 
 

For example, what’s the difference between having |​and having , where we treat the 
second qubit as unwanted garbage? 

The garbage is entangled with the first qubit, the qubit we ​do​ want.  So, in the second case, when 
we look at the first qubit only, we see the maximally mixed state rather than the |​state that we wanted. 
 
So to return to the question: suppose you have a circuit to compute .  How you we get a circuit that  

maps |​without all the garbage?  Back in the 1970s, Charles Bennett  

invented a trick for this called… 

https://www.codecogs.com/eqnedit.php?latex=C%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0


 
 
Uncomputing 

It’s simple, though also strange when you first see it.  The trick to getting rid of garbage is to run 
computations ​forward and then in reverse​. 

Let’s say I have some circuit  such that 
, 

where |​is a generic term for all the garbage: that is, byproducts of the computation that I don’t 
want.  Then I do the following: 

First run the circuit , to get . 
Then cNOT the answer |​into a register initialized to 0, to get  

      ​(in other words, make a copy of |​in a safe place) 
Finally, run the inverse circuit, , to get |​or just |​if we ignore 

the 0 qubits. 
 
The reason why we can copy , in spite of the 

No-Cloning Theorem, is that we’re assuming that  is a 
classical answer.  This won’t work if the output is a general 
quantum state. 

 
This justifies the quantum query model because if we can 
compute |​at all, then we ​do​ have the ability to map  |​to  

.  (Note that in the uncomputing process, if the 
“safe” register was initialized to some arbitrary  rather than 
to 0, then it would end up in the state .) 
 
With that out of the way, we’re finally ready to talk about some quantum algorithms. 
 
Deutsch’s Algorithm 

was, by some definition, the first quantum algorithm proposed, in the mid-1980s.  It achieves 
something unimpressive, except for the fact of being possible at all: namely, it computes the parity of two 
bits using only one (superposed) query to the bits. 
 

In more detail, we’re given two unknown bits, |​and . 
Given an index , our oracle returns the bit. i.e.  
What we want to know is, “What is the parity of these bits?” 

Parity​ is whether the bits have different values, so |​or  
 
Classically, this would clearly take two queries since we need to know both bits.  So using a quantum 
algorithm, how do we do it in one? 

Simple: we start with a qubit at , Hadamard it to get , then apply a phase query, which 
applies a phase change to each branch of the superposition depending on the value of the function.  (Here 

https://www.codecogs.com/eqnedit.php?latex=C%0
https://www.codecogs.com/eqnedit.php?latex=C%0
http://www.texrendr.com/?eqn=C%5E%7B-1%7D%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=a%0


we’re using the result from earlier in this lecture, that we can use a single “ordinary” query to simulate the 
effect of a single phase query.)  This yields: 

 
Let’s factor out |​to get 

 
So now if |​we get  

   while if |​we get  

We can ignore the phase out front since global phase doesn’t affect measurement, and then 
Hadamard again to get our quantum states back in the 
|​basis. 
Now in the ​f​(0)=​f​(1) ​|​case we get  
and in the ​f​(0)≠​f​(1)​ ​|​case we get . 
 
The complete quantum circuit is shown on the right. 
 
Note that, if we wanted the parity of an -bit input string , Deutsch’s algorithm would let us get that 
with /2 queries.  We simply need to break  up into /2 blocks of 2 bits each, use Deutsch’s algorithm 
to learn the parity  ​|​of each block  (using /2 queries in total), then calculate the parity of all the  
’s.  This last step doesn’t increase the query complexity, because it doesn’t involve making any 

additional queries to . 
 
OK, if we understand Deutsch’s algorithm, then let’s next see a generalization, called…  
 
The Deutsch-Jozsa Algorithm 

Suppose we have a black box that computes a Boolean function , and 
suppose we’re promised that  |​is either: 

● a constant function All outputs are 0 or all outputs are 1 
● a balanced function There are the same number of 0 outputs as 1 outputs 

The problem is to decide which. 
 

Classically, deterministically, you could solve this problem by examining any |​values of 
the function.  If all the values match, then the function is constant; otherwise the function is balanced.  If 
you want no possibility of error, then it’s not hard to see that this is the best you can do. 

Of course, you can do much better by using random sampling.  On average, you’d need maybe 5 
or 6 queries—or at any rate, a constant number—to get an answer with small probability of error.  If all of 
your samples match, you can guess that the function is constant; if they don’t, you know that it’s 
balanced. 

What the Deutsch-Jozsa algorithm does, is to solve the problem ​perfectly​ (that is, with zero 
probability of error), with only one quantum query.  That’s something that isn’t possible in the classical 
world. 

Truth is, this speedup still isn’t all that impressive, because the classical probabilistic algorithm 
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 is nearly as fast, and would be perfectly fine in practice.  This helps to explain why, until 1994 
 or so, most people didn’t care about quantum computing.  To whatever extent they looked 

 into it at all, they figured all quantum speedups would be in the same vein. 
 
Anyway, here’s the quantum circuit for Deutsch-Jozsa: 
 
You’ll begin to notice that some patterns appear a lot in 
quantum algorithms. 

● You start by putting everything in superposition 
● You then query a function ​f​—in this case, 

 mapping each basis state |​to  
● You then apply a change a basis (in this case, 

another round of Hadamards) 
● Finally, you measure to get the information you want to know 

 
If you can’t figure out what to do next in a quantum algorithm, 

a round of Hadamards is always a good guess! 
 
So given this circuit (call it ), let’s ask: what’s the probability of getting back the state ? 

In other words, what is ? 
Well, the Hadamard gate maps |​and . 

We can summarize this by saying that, for a bit , it maps  

So given a string , Hadamarding all  of the qubits produces the state

. 
This is a fact that we’ll also have several occasions to use in the next lecture. 

 
            Note: Here |​denotes the inner product.  The formula is saying 

    that we pick up a –1 phase for every  such that . 
 
Now, coming back to the Deutsch-Jozsa algorithm, after we Hadamard all  of the qubits and then query 
the oracle, we get the state 

  
So by our previous result, after the second round of Hadamards we get 
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Rather than simplifying this entire sum, let’s take a shortcut by just asking: what is the amplitude for the 
basis state ? 

Well, it’s . 
 
Now, what does this amplitude have to do with whether |​is constant or balanced? 
Well, if |​is constant, then the above amplitude is either 1 (if |​is identically 0) or –1 (if |​is identically 
1). 
On the other hand, if |​is balanced, then the amplitude is 0. 
So when we measure, if we see the outcome |​then we know that |​is constant, and if we see any 
other outcome then we know that |​is balanced!  That was the Deutsch-Jozsa algorithm. 
 
The first problem we’ll see in the next lecture is the so-called ​Bernstein-Vazirani problem​, for which 
there’s a quantum algorithm that achieves a more impressive speedup than Deutsch-Jozsa does.  And the 
speedups will continue to get more impressive from there. 


