
Lecture 15, Thurs March 9: Einstein-Certified 
Randomness 
 

Until recently, the Bell inequality was taught because it was historically and conceptually 
important, not because it had any practical applications. Sure, it establishes that you can’t get away with a 
local hidden variable theory, but in real life, no one actually wants to play the CHSH game, do they?  In 
the last 10 years, however, it’s found applications in… 
 
Generating Guaranteed Random Numbers 

This is one of the most important tasks in computing 
(and certainly in cryptography).  Once we have quantum 
mechanics, you might think that the solution is trivial.  After 
all, you can get a random bit by measuring the |state in the 

|basis.  Easy, right?  But this solution isn’t good enough for cryptography.  Cryptographers are 
paranoid people, and they want the ability to maintain security, even if the hardware they’re using was 
designed by their worst enemy. 

These sorts of assumptions aren’t just academic speculation, especially given the Snowden revelations. 
For example, NIST (the National Institute of Standards and Technology) put out a 

 standard for pseudo-random number generation based on elliptic curves to be used 
 for encryption a while back.  This standard was later discovered to have a backdoor 

 created by the NSA that would allow them to predict the output numbers, 
 thus being able to break systems encrypted under this standard. 

 
Thus cryptographers want to base their random number generation on the smallest set of 

assumptions possible.  They want bits that are guaranteed to be random, and to be sure that no one added 
predictability through any sort of backdoor. 

You might think that, logically, one can never prove that numbers are truly random: that the best 
one can ever say is “I can’t find any pattern here.”  After all, you can’t prove a negative, and if not the 
NSA, who’s to say that God himself didn’t insert a pseudorandom pattern the workings of quantum 
mechanics? 

Though presumably, if God wanted to read our emails he could also do it some other way... 
 

That’s what makes it so interesting, and non-obvious, that the Bell inequality lets us certify 
numbers as being truly random under very weak assumptions, which basically boil down to “no 
faster-than-light travel is possible.”  Let’s now explain how. 
 
Suppose you have two boxes that share quantum entanglement.  We’ll imagine the boxes were designed 
by your worst enemy, so you trust nothing about them.  All we’ll assume is that the boxes can’t send 
signals back and forth (say, because you put them in Faraday cages, or separate them by so large a 
distance that light has no time to travel between them). 



A referee sends the boxes challenge numbers, x and y 
respectively. 
The boxes return numbers a and b respectively. 
If the returned numbers pass a test, we’ll declare them to be 
truly random. 
 

So what’s the trick?  Well, we already saw the trick; 
it’s just the CHSH game! 
 

The usual way to present the CHSH game is as a 
way for Alice and Bob to prove that they share entanglement—and thus, that the universe is 
quantum-mechanical, and that local hidden-variable theories are false. 

However, winning the CHSH game more than 75% of the time also establishes that a and b must 
have some randomness, that there was some amount of entropy generated. 

Why?  Because suppose instead that a and b were deterministic functions—i.e., suppose they 
could be written as a(x, r) and b(y, r) respectively, in terms of Alice and Bob’s inputs as well as shared 
random bits.  In that case, whatever these functions were, they’d define a local hidden-variable theory, 
which is precisely what Bell rules out! 

So the conclusion is that, if 
(1) x and y are random and 
(2) there’s no communication between Alice and Bob, 

then there must exist at least some randomness in the outputs a and b. 
 
Around 2012, Umesh Vazirani coined the term Einstein-Certified Randomness for this sort of thing.  The 
basic idea goes back earlier—for example, to Roger Colbeck’s 2006 PhD thesis, and (in cruder form) to 
Prof. Aaronson’s 2002 review of Stephen Wolfram’s A New Kind of Science, which used the idea to 
refute Wolfram’s proposal for a deterministic hidden-variable theory underlying quantum mechanics. 

 
OK, so how do we actually extract random bits from the results of the CHSH game? 

You could just take the stream of all a’s and b’s that are output, after many plays of the CHSH 
game.  Admittedly, this need not give us a uniform random string.  In other words, if the output string x 
has length n, then its Shannon entropy, 

 

where px |is the probability of string x, will in general be less than n.  However, we can then convert x, if 
we like, into an (almost) uniformly random string on a smaller number of bits, say |or something, by 
using a well-known tool from classical theoretical computer science called a randomness extractor.  A 
randomness extractor—something we already met in the context of quantum key distribution—is a 
function that crunches down many sort-of-random bits (and, typically, a tiny number of truly random bits, 
called the seed) to fewer very random bits. 

David Zuckerman (here at UT) is an expert on randomness extractors. 
 
OK, but there’s an obvious problem with this whole scheme. 

https://www.codecogs.com/eqnedit.php?latex=%5Csum%20p_x%20%5Clog_2%20%5Cfrac%7B1%7D%7Bp_x%7D%0


Namely: we needed the input bits to be uniformly random, in order to play the CHSH game.  But 
that means we put in two perfect random bits, x and y, in order to get out two bits a and b that are not 
perfectly random!  In other words, the entropy we put in is greater than the entropy we get out, and the 
whole thing is a net loss. 

A paper by Pironio et al. addressed this by pointing out that you don’t have to give Alice and Bob 
perfectly random bits every time the CHSH game is played.  Instead, you can just input x = y = 0 most of 
the time, and occasionally stick in some random x’s and y’s to prevent Alice and Bob from using hidden 
variables.  Crucially, if Alice or Bob gets a 0 input in a given round, then they have no way of knowing 
whether that round is for testing or for randomness generation.  So, if they want to pass the 
randomly-inserted tests, then they’ll need to play CHSH correctly in all the rounds (or almost all of them), 
which means generating a lot of randomness. 
 
At this point it all comes down to a quantitative question: 
 
So how much entropy can we get out, per bit of entropy that we put in? 

There was a race to answer this, by designing better and better protocols that got more and more 
randomness out per bit of randomness invested.  First Colbeck showed how to get  bits out per  bits 
in, for some constant .  Then Pironio et al. showed how to get  bits out per  bits in.  Then 
Vazirani and Vidick showed how to get |bits out per  bits in, which is the first time we had 
exponential randomness expansion.  But all this time, an obvious question remained in the background: 
“why not just use a constant amount of randomness to jumpstart the randomness generation, and then feed 
the randomness outputted by Alice and Bob back in as input, and so on forever, thereby getting unlimited 
randomness out?” 

It turns out that a naïve way of doing this doesn’t work: if you just feed Alice and Bob the same 
random bits that they themselves generated, then they’ll recognize those bits, so they won’t be random to 
them—and that will let Alice and Bob cheat, making their further outputs non-random. 

Remember: We’re working under the assumption that 
 “Alice” and “Bob” are machines designed by our worst enemy! 

If you don’t have a limit on the number of devices used, then a simple fix for this problem is to 
feed Alice and Bob’s outputs to two other machines, Charlie and David.  Then you can feed Charlie and 
David’s outputs to two more machines, Edith and Fay, and so on forever, getting exponentially more 
randomness each time. 

OK, but what if we have only a fixed number of devices (like 4, or 6), and we still want unlimited 
randomness expansion?  In that case, a few years ago Coudron and Yuen, and independently Chung, 
Miller, Shi, and Wu, figured out how to use the additional devices as “randomness laundering 
machines”—basically, converting random bits that Alice and Bob can predict into random bits that they 
can’t predict, so that then the output bits can be fed back to Alice and Bob for further expansion, and so 
on as often as desired. 

One question that these breakthrough works didn’t address, was exactly how many random 
“seed” bits are needed to jump-start this entire process.  Like, are we talking a billion bits or 2 bits?  In a 
student project supervised by Prof. Aaronson, Renan Gross calculated the first explicit upper bound, 
showing that a few tens of thousands of random bits suffice.  That’s likely still far from the truth: it might 
be possible with as few as 10 or 20. 
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It’s a pretty amazing conceptual fact that playing the CHSH game can lead to certified random 
bits (and worth mentioning that this sort of protocol has already been experimentally demonstrated at 
NIST).  So you might wonder… 
 
What else can you certify about two separated boxes, by seeing them win at the CHSH game? 

It turns out that the answer is: an enormous number of things. 
In a tour-de-force in 2012, Reichardt, Unger, and Vazirani showed how to use a sequence of 

CHSH-like challenges to certify that Alice and Bob performed a specific sequence of unitary 
transformations on their qubits (up to local changes of basis).  This means that, just by making Alice and 
Bob repeatedly win the CHSH game, you can force them to do any quantum computation of your choice. 
Reichardt et al. describe this as a “classical leash for a quantum system.” 

This sort of thing constitutes one of the main current ideas for how a classical skeptic could verify 
the operation of a quantum computer.  For (say) factoring a huge integer into primes, we can easily verify 
the output of a quantum algorithm, by simply multiplying the claimed factors and seeing if they work! 
But this isn’t believed to be the case for all problems that a quantum computer can efficiently solve. 
Sometimes, the only way to efficiently verify a quantum computer is working correctly might involve 
using quantum resources yourself.  What Reichardt et al. show is that, as long as we have two quantum 
computers, and as long as those quantum computers are entangled with each other but unable to exchange 
messages, we can use the CHSH game to verify that the computers are behaving as expected. 
 
This brings us nicely to quantum computation, which is probably the subject that most of you took the 
course to learn about!  We’ll begin discussing quantum computation in earnest in the next lecture. 


