
Lecture 14, Thurs March 2: Nonlocal Games 
 

Last time we talked about the CHSH Game, and how no classical strategy lets Alice and Bob win 
it more than 75% of the time.  Today we’ll see how, by using entanglement, they can win 85% of the 
time—and then we’ll delve deeper to try to understand what’s going on. 
 
The strategy involves Alice and Bob measuring their respective qubits in different bases, depending on 
whether their input bits ​x​ and​ y ​are 0 or 1, and then outputting bits ​a​ and ​b​ respectively based on the 
outcomes of those measurements. 
 
Let ,  and let . 
 
 
 
If ​x​ = 0, Alice measures in and if ​x​ = 1, Alice measures in  
 
 
She sets ​a​ to 0 if she measures |​or  
  and 1 if she measures |​or  
 
 
If ​y​ = 0, Bob measures in the X basis rotated by |​clockwise. 
 
 
and if ​y​ = 0 rotated by , he sets ​b​ to 0 if he measures -​or  

      1 if otherwise 
 
 
This strategy has the amazing property of making Alice and Bob win with probability |​for all 
possible values of ​x​ and ​y​. 
 
So why does this strategy work 85% of the time? 
Let’s consider the case where Alice gets ​x ​= 0 and measures . 
She’ll output ​a​ = 0, and she and Bob will win iff Bob outputs ​b​ = 0. 
 
So what are the odds that Bob outputs 0? 

Given that Alice measured her qubit already, Bob’s qubit collapsed to 
the |​state. 

First suppose ​y​ = 0.  Then Bob measures the |​state in a basis rotated 
by |​clockwise.  He outputs 0 if he measures . Thus, the probability that 
Bob outputs 0 in this case is . 



We can do the same calculation for the case ​y​ = 1.  The angle between vectors is still .  In fact, 
we can generalize this result to ​all​ the cases where either ​x​ or ​y​ is 0. 

Note that we can assume without loss of generality that Alice measures first, 
 because of the No Communication Theorem. 

 
The interesting case is where ​a​ and ​b​ are both 1. 

Here Alice measures in the |​basis.  Assume without loss 
of generality that Alice gets the outcome .  Then what’s Bob’s probability 
of getting the outcome ? 

It’s still , because the angle between |​and |​is , and 
global phase doesn’t matter. 
 

So, Alice and Bob win the game with probability |​in all four cases. 
 

How does this game relate to hidden variable theories?  Well, if all correlations between the 
qubits could be explained by stories like “if anyone asks, we’re both 0,” then we’d make a firm 
prediction: that Alice and Bob can win the CHSH game at most 75% of the time (because that’s how well 
they can do by pre-sharing arbitrary amounts of classical information). 

So if they play the game repeatedly, and demonstrate that they can win more than 75% of the 
time, then local realism is false.  Notice that nowhere in this argument did we ever need to presuppose 
that quantum mechanics is true. 
 
Does Alice and Bob’s ability to succeed more than 75% of the time mean that they are communicating? 

Well, we know it’s not possible for either to send a signal to the other, by the No-Communication 
Theorem.  But how can we reconcile that with their success in the CHSH game? 

One way to understand what’s going on, is to work out Alice and Bob’s density matrices 
explicitly. 

Bob’s initial density matrix is -​and after Alice measures it’s still . 
 

  
So in that sense, no signal has been communicated from Alice to Bob.  Nevertheless, ​if​ you knew 

both Alice’s measurement and its outcome, then you could update Bob’s density matrix to that of a pure 
state.  That shouldn’t worry us though, since even classically, if you condition on what Alice sees then 
you can change your predictions for Bob. 
 

Imagine a hierarchy of possibilities for what the universe allows.  ​Classical Local Realism​ is at 
the bottom: that’s where you only ever need to use classical probability theory when you have incomplete 
information about physical systems, ​and also​ signals propagate only at the speed of light. 

At the top of the hierarchy is the ​Faster-Than-Light Science-Fiction Utopia​, where Alice and Bob 
can communicate instantaneously, you can travel faster than light, and so forth. 
 



A priori, people tend to believe that reality must be one or the other.  So when they read 
pop-science articles about how classical local realism is false, they think, “OK, 
then we must live in the FTL sci-fi utopia.”  

Instead, the truth—according to quantum mechanics—is in the middle, 
and is so subtle that perhaps no science-fiction writer would ever have had the 
imagination to invent it.  We live in a world where there’s no classical local 
realism, but no faster-than-light communication either.  Or to put it another way: a 
classical​ ​simulation​ of our universe would involve FTL communication, but our 
universe itself does not. 

Maybe no science fiction writer ever came up with this possibility, 
simply because it’s hard to think of a plot that requires Alice and 

 Bob to win the CHSH game 85% of the time instead of 75%! 
 
Indeed, this is a key piece of evidence that our world really ​is​ quantum, and is not secretly 

classical behind the scenes: because we know from Bell that the latter possibility would require FTL 
communication. 

 
So where is that -​coming from anyways?  It seems so arbitrary… 

It may seem like the |​is simply coming from our particular approach to the problem.  
Maybe if we came at it another way, we could use entanglement to win ​even more​ than 85% of the time: 
why not 100%? 
 
Surprisingly, |​turns out to be optimal, even if Alice and Bob share unlimited amounts of 
entanglement.  This is the upshot of 
 
Tsirelson’s Inequality 

...a cousin of the Bell inequality, proved in the 1980s. 
 
It requires a ​bit​ too much machinery to give a complete proof of Tsirelson’s Inequality here.  However, 
we’ll convey the intuition, by showing that, among strategies “similar to the one we used,” ours was the 
optimal one. 
 

Let’s say that Alice has two angles: 
,​ ​the angle she measures in if she receives input ​x​ = 0, and 
, the angle she measures in if she receives input ​x​ = 1. 

Similarly, Bob has 𝜏​0​ and 𝜏​1​, corresponding to ​y​ = 0 and ​y​ = 1 respectively . 
 

The same rules apply from the solution we constructed earlier for the CHSH game. 
All we’re doing here is changing the chosen vectors into variables to try 

and show that there’s no better vectors to chose than the ones we did. 
 
The key formula is this: Alice and Bob’s total success probability is 



Why? 
1. Each of the four input pairs has an equal chance of occurring. 
2. In the first three cases, Alice and Bob win iff they output the same bit, so we take the squared 

cosine between their measurement angles. 
3. But in the fourth case, ​x​ = ​y​ = 1, Alice and Bob win iff they output ​different​ bits.  So in this case, 

we take the squared sine between their measurement angles. 
 
Now we use some high-school trigonometry to get the above equals 

 
 
We can get rid of the 2’s inside the cosines, by simply realizing that we could adjust our original angles to 
account for them. 
 
It will be helpful to think of the cosines as the inner products between unit vectors.  In that case, we can 
rewrite the above as 

 

 
 
Since ​u​0​, u​1​, ​v​0​, and v​1​ are all unit vectors, the above is upper-bounded by 

 
 
From here, we can use the parallelogram inequality to bound it further: 

 
 
Which equals 

 
 
Which wouldn’t you know it, is equal to 

  
 
So ​that really is the maximum winning probability for the CHSH game. 
 

There’s been a trend in the last 15 years to study theories that would go past quantum mechanics 
 by letting you violate Tsirelson’s Inequality, but that would still prohibit faster-than-light travel. 
  In such a world, it’s been proven (among other things) that if Alice and Bob wanted to schedule 

something on a calendar, they could decide if there’s a date where they’re both free by exchanging only 
one bit of communication.  That’s a lot better than can be done under the rules of quantum mechanics! 
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Testing the Bell Inequality 
When Bell proved his inequality, he was just trying to make a conceptual point, about the 

necessity for nonlocal influences in any hidden-variable theory underlying quantum mechanics.  But by 
the 1980s, technology had advanced to the point where playing the CHSH game was actually a feasible 
physics experiment!  Alain Aspect (and others) ran the experiment, and the results were fully consistent 
with quantum mechanics, and extremely problematic for local hidden variable theories. 

The experiments don’t quite get to 85% success probability, given the usual 
 difficulties that afflict quantum experiments.  But you can reach a high 

 statistical confidence that you’re winning more than, say, 80% of the time. 
 
This was evidence, not only that local realism was false, but also that ​entanglement had been 

created​. 
Most physicists shrugged, already sold on quantum mechanics (and on the existence of 

entanglement).  But a few, still committed to a classical view of the world, continued to look for 
loopholes in the experiment. 

Skeptics pointed out two loopholes in the existing experiments, essentially saying “if you squint 
enough, classical local realism might still be possible”: 

1. Detector Inefficiency 
Sometimes detectors fail to detect a photon, or they detect non-existent photons.  Enough noise in 

the experiments could skew the data. 
2. The Locality Loophole 

Performing the measurements and storing their results in a computer memory takes some time: 
maybe nanoseconds or microseconds.  Now, unless Alice and Bob and the referee are ​very​ far away from 
each other, this opens the possibility of a sort of “local hidden variable conspiracy,” where as soon as 
Alice measures, some particle (unknown to present-day physics) flies over to Bob and says “hey, Alice 
got the measurement outcome 0; you should return the measurement outcome 0 too.”  The particle would 
travel “only” at the speed of light, yet could still reach Bob before his computer registered the 
measurement outcome. 
 

By the 2000s, physicists were able to close loophole 2, but only in experiments still subject to 
loophole 1.  And conversely, they could close loophole 1, but only in experiments still subject to 2. 
Finally, in 2016, several teams managed to do experiments that closed both loopholes simultaneously.  
 

There are still people who deny the reality of quantum entanglement, but through increasingly 
solipsistic arguments.  For example…  

 
Superdeterminism 

is a strange way to maintain that classical local realism is still the law of the land. 
Superdeterminism explains the results of CHSH experiments by saying “We only ​think​ Alice and Bob can 
choose measurement bases randomly.  Actually, there’s a grands cosmic conspiracy involving all of our 
brains, our computers, and our random number generators, with the purpose of rigging the measurement 
bases to ensure that Alice and Bob can win the CHSH game ~85% of the time.  But that’s all this cosmic 
conspiracy does: it doesn’t allow FTL communication or anything like that, even though it easily could.” 



Nobel Laureate Gerard ‘t Hooft advocates superdeterminism, so it’s not like the idea lacks 
distinguished supporters, but Professor Aaronson is on board with entanglement. 
 
 
Now we’ll look at some other non-local games, to see what else entanglement can help with. 
First we have… 
 
The Odd Cycle Game 

There’s a cycle with an odd number of vertices ​n​. 
Alice and Bob claim that they have a two-coloring of the 

cycle, but basic graph theory tells us that this isn’t possible. 
Nevertheless, Alice and Bob will try to convince a referee that 

they’ve found a two-coloring anyway.  They’ll do that by using 
entanglement to coordinate their responses to challenges from a 
referee. 
 
The referee performs two obvious consistency checks: 

● He can ask them both the color of a random vertex ​v​, in the two-coloring they found. 
○ They pass the test iff their answers are the same 

● He can ask Alice the color of a random vertex ​v​, and Bob the color of an adjacent vertex ​w​. 
○ They pass the test iff their answers are different 

The referee chooses between these tests with equal probability—and crucially, he doesn’t tell Alice or 
Bob which test he’s performing. 
 
In a single run of the game, the referee performs one such test, and gets answers from Alice and Bob. 
Without loss of generality, assume their answers are always RED or BLUE. 
 
What strategy provides the best probability that Alice and Bob will pass the referee’s test and win the 
game? 
 

Classically​, we know that regardless of what Alice and Bob do, . 
 
Why?  Because for Alice and Bob to answer all possible challenges correctly, they’d need an  

actual two-coloring, which is impossible.  The best they can do is agree on a coloring for all but one of the 

vertices, which gets them . 

 
Nevertheless, we claim that ​quantumly​ Alice and Bob can do better, and can achieve 

. 

if they pre-share a single Bell pair, . 
 

https://www.codecogs.com/eqnedit.php?latex=Pr%5B%5Ctext%7Bwin%7D%5D%20%5Capprox%20%201%20-%20%5Cfrac%7B1%7D%7Bn%5E2%7D%0


The strategy is as follows: Alice and Bob both measure their qubits in a basis depending on the vertex 
they’re asked about. 

The measurement bases for adjacent vertices differ by , so the 
bases rotate all the way around the unit circle. 

The first basis has outcome |​map to answering BLUE, and 
outcome |​map to answering RED.  The second basis has outcome 

 map to answering RED, and outcome |​map to 
 answering BLUE.  They continue alternating in this way. 
 
 

The upshot is that, when Alice and Bob are asked about the same 
vertex, they both measure in the same basis, and thus answer with 
the same color. 

On the other hand, when Alice and Bob are asked about adjacent vertices, we get a similar 
situation to the CHSH game, where the probability of Bob producing the same output as Alice, is the 
squared sine of the angle between their vectors: 

. 
 
Another crazy game is…  
The Magic Square Game 

Here Alice and Bob claim that they can fill a 3×3 grid with 0’s and 1’s 
so that: 

1. Every row has an even sum 
2. Every column has an odd sum 

The referee asks Alice to provide a randomly-chosen row of the grid, 
and asks Bob to provide a randomly-chosen column.  Alice and Bob “win” the 
game if and only if: 

● The row has an even sum 
● The column has an odd sum 
● The row and column agree on the square where they intersect 

 
You can see that constraints 1 and 2 ​can’t​ actually both be satisfied, by examining the total 

number of 1’s in the grid.  Constraint 1 requires this total number to be even, while constraint 2 requires it 
to be odd.  This implies that there’s no ​classical strategy​ that lets Alice and Bob win the game with 
probability 1. 

Nevertheless, David Mermin (the author of our textbook) discovered a ​quantum strategy​ where 
Alice and Bob win with probability 1.  This strategy requires them to share 2 ebits of entanglement. 

We won’t describe the strategy in class, since it’s very complicated to state without the 
“stabilizer formalism,” which we haven’t yet seen (but will by the end of the course). 
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