
Lecture 10, Thurs Feb 16: Teleportation, 
Entanglement Swapping, GHZ, Monogamy 
 
Next let’s see... 
Quantum Teleportation 

which is a result from 1991 that came as a great surprise.  Science journalists still love it given its 
irresistible name.  In this lecture we’ll see what it can and can’t do. 
 
Firstly, what does teleportation mean? 

You might think it implies sending qubits instantaneously over vast distances, but that can’t be 
done, as it violates the causal structure of the universe.  So we’re only going to send qubits at the speed of 
light, no faster.  Of course, there are other ways to move qubits at the speed of light or slower, like just 
picking them up and moving them, or putting them on a bus!  (It doesn’t sound as sexy that way.) 

OK, but what if you only had a phone line, or a standard Internet connection?  That would let you 
send classical bits, but not qubits.  With teleportation, though, we’ll achieve something surprising.  We’ll 
show: 

It is possible for Alice and Bob to use pre-shared entanglement plus classical communication to 
perfectly transmit a qubit. 
 
The inequality here is almost the converse of the one for superdense coding: 

 
Which is to say, you need one pair of entangled qubits plus two classical bits in order to transmit 

one qubit.  (This can also be shown to be optimal.) 
 
We’ll give a more in-depth explanation in the next lecture, but the gist of it is: 
Alice has, say, a single qubit, .  She also shares a Bell pair with Bob. 
Alice applies some transformation to |that entangles it with her half of the Bell pair.  She then 
measures her qubits. 
Alice tells Bob the measurement outcomes over the phone. 
Bob applies some transformations (to his qubit of the entangled pair), based on what he hears from Alice. 

“Magically,” Bob now has|  
At the end, will Alice also have ? 

No. A logical consequence of the No Cloning Theorem is that there can only be one copy of the qubit. 
 
Could we hope for a similar protocol without sending classical information?  
       No, because of the No-Communication Theorem. 
 

So let’s say Alice wants to get a qubit over to Bob, without using a quantum communication 
channel, but with a classical channel together with preshared entanglement.  How should Alice go about 
this? 



Once the question is posed, you can play around with different combinations of operations, and 
you’d eventually discover that what works is this: 

 
 
The qubit Alice wants to transmit is  
  
 
The entangled qubits form a Bell Pair. 
 
The total state starts as: 

         
 

Then Alice applies a cNOT gate (with |as the control, and her half of the Bell pair as the target): 

 
Alice then Hadamards her |qubit: 

 
 
Finally, Alice measures both of her qubits in the |basis. 
This leads to four possible outcomes: 
 

If Alice Sees     

Then Bob’s qubit is     

 
We’re deducing information about by Bob’s state by using the partial measurement rule.  E.g., if 

Alice sees , then we narrow down the state of the entire system to the possibilities that fit, namely 
and . 
 

What is Bob’s state, if he knows that Alice measured, but doesn’t know the measurement outcome? 
It’s an equal mixture of all four possibilities, which is just the Maximally Mixed State. 

 This makes sense given the No-Communication Theorem!  Until Alice sends 
        information over, Bob’s qubit can’t possibly depend on . 

 
Next, Alice tells Bob her measurement results via a classical channel.  And Bob uses the information to 
“correct” his qubit to . 

If the first bit sent by Alice is 1, then Bob applies  
 
If the second bit sent by Alice is 1, then Bob applies  
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These transformations will bring Bob’s qubit to the state . 
That means they’ve successfully transmitted a qubit without a quantum channel! 

      This protocol never assumed that Alice knew what was . 
For this protocol to work, Alice had to measure her syndrome bits. These measurements were 

destructive (since we can’t ensure that they’ll be made in a basis orthonormal to , and thus Alice 
doesn’t have |at the end.  Alice and Bob also “use up” their Bell pair in the process of teleporting . 

      Something to think about: Where is |after Alice’s 
 measurement, but before Bob does his operations? 

 
How do people come up with this stuff? I can’t picture how anyone trying to solve this problem would 
even begin their search… 

Well it’s worth pointing out that quantum mechanics was discovered in 1926 and that quantum 
teleportation was only discovered in the 90’s. These sorts of protocols can be hard to find.  Sometimes 
someone tries to prove that something is impossible, and in doing so eventually figures out a way to get it 
done... 
 
Aren't we fundamentally sending infinitely more information than two classical bits if we’ve sent over 
enough information to perfectly describe an arbitrary qubit, since the qubit’s amplitudes could be arbitrary 
complex numbers? 

In some sense, but at the end of the day, Bob only really obtains the information that he can 
measure, which is significantly less.  Amplitudes may “exist” physically, but they’re different from other 
physical quantities like length, in that they seem to act a lot more like probabilities. 

Like, there’s a state , of a single qubit, such that  |is a binary encoding of the 
complete works of Shakespeare—the rules of quantum mechanics don’t put a limit on the amount of 
information that it takes to specify an amplitude.  With that said, we could also encode the complete 
works of Shakespeare into the probability that a classical coin lands heads!  In both cases, the works of 
Shakespeare wouldn’t actually be retrievable by measuring the system. 
 
If we can teleport one qubit, the next question we may want to ask is: 

 
Can we go further? What would it take to teleport an arbitrary quantum state, say of n qubits? 
 
To answer this question, let’s notice that nothing said that a qubit that’s teleported has to be unentangled 
with the rest of the world. 
 

You could run the protocol and 
have |be half of another Bell pair. 
That would entangle the fourth qubit to 
Bob’s qubit (you can check this via 
calculation).  That’s not a particularly 
interesting operation, since it lands you 
where you started, with one qubit of 
entanglement between Alice and Bob, but it does have an interesting implication. 



It suggests that it should be possible to teleport an arbitrary -qubit entangled state, by simply 
teleporting the qubits one at a time, thus using  ebits of preshared entanglement.  And indeed it’s not 
hard to check that that works. 
 
One further consequence of this is that two qubits don’t need to interact directly to become entangled. 

In some sense, we already knew that: 
Consider for example the following circuit. 

 
Here the first and third end up entangled, even though 
there’s never “direct” contact between them: the second 
qubit serves as an intermediary. 
 

What does it take for Alice and Bob to get entangled? 
The obvious way is for Alice to create a Bell pair and then send one of the qubits to Bob. 

 In most practical experiments, the entangled qubits are created somewhere between 
 Alice and Bob, then one qubit is sent to each. 

 
However, teleportation leads to 
something 
much more surprising than this, called... 
Entanglement Swapping 
 
If Alice has two entangled qubits, and also two Bell pairs shared with Bob, she can teleport both of her 
qubits to Bob, whereupon they’ll be entangled on Bob’s end … even though the two qubits on Bob’s end, 
which are now entangled, were never in causal contact with one another! 
 

This process has been used in real experiments, such as the recent  
“loophole-free Bell tests,” about which we’ll learn more later in the course. 

 
By the way, quantum teleportation itself has been demonstrated experimentally many times. 

 
A few more comments on the nature of entanglement: 

 
We’ve seen the Bell pair, and what it’s good for.  There’s a 3-qubit analogue of it called 

the GHZ state: .  We’ll see applications of the GHZ state later in the course, but for 
now we’ll use it to illustrate an interesting conceptual point. 

Let’s say that Alice, Bob, and Charlie hold random bits, which are either all  or all  
(so, they’re classically correlated).  If all three of them get together, they can see that their bits are 
correlated, and the same is true if only two of them are together. 

But now suppose the three players share a GHZ state.  With all three of them, they can 
see that the state is entangled, but what if Charlie is gone?  Can Alice and Bob see that they’re entangled 
with each other? 
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No.  To see this, observe that by the No-Communication Theorem, Charlie could’ve measured 
without Alice and Bob knowing.  But if he did, then Alice and Bob would clearly have classical 
correlation only: either both ’s (if Charlie got the measurement outcome ) or both  (if Charlie got ). 
From this it follows that Alice and Bob have only classical correlation regardless of whether Charlie 
measured or not. 
 
A different way to see this is to look at the density matrix of the state shared by Alice and Bob: 

 
 (all blank entries are 0) 
 
 
 

And notice that this is different than the density matrix of a Bell pair shared by Alice and Bob 

 
 
Where  
 
This is one illustration of a general principle called… 
The Monogamy of Entanglement 

Simply put, this means that if Alice has a qubit that is maximally 
entangled with Bob, then that qubit can’t also be maximally entangled with 
Charlie. 
 

With GHZ, you can only see the entanglement if you have all three 
qubits together.  This is sometimes analogized to the Borromean Rings (right), 
an arrangement of three rings with the property that all three are linked 
together, without any two of them being linked together. 

There are other 3-qubit states which aren’t like that… 
In the W state, , there’s some entanglement between Alice and Bob, and  

there’s some entanglement between Alice and Charlie, but neither pair is maximally entangled. 
 
As for how you quantify entanglement … well, that will be the subject of the next lecture! 
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