
BQP and the Polynomial Hierarchy∗

Scott Aaronson†

MIT

ABSTRACT
The relationship between BQP and PH has been an open
problem since the earliest days of quantum computing. We
present evidence that quantum computers can solve prob-
lems outside the entire polynomial hierarchy, by relating this
question to topics in circuit complexity, pseudorandomness,
and Fourier analysis.

First, we show that there exists an oracle relation problem
(i.e., a problem with many valid outputs) that is solvable in
BQP, but not in PH. This also yields a non-oracle relation
problem that is solvable in quantum logarithmic time, but
not in AC

0.
Second, we show that an oracle decision problem separat-

ing BQP from PH would follow from the Generalized Linial-
Nisan Conjecture, which we formulate here and which is
likely of independent interest. The original Linial-Nisan
Conjecture (about pseudorandomness against constant-depth
circuits) was recently proved by Braverman, after being open
for twenty years.

Categories and Subject Descriptors
F.1.3 [Theory of Computation]: Computation by Ab-
stract Devices—Complexity Measures and Classes

General Terms
Theory

Keywords
constant-depth circuits, Fourier analysis, Linial-Nisan Con-
jecture, quantum complexity classes

∗We regret that, because of space limitations, we are un-
able to prove anything in this extended abstract. Readers
interested in the proofs should stop reading now and go to
www.scottaaronson.com/papers/bqpph.pdf.
†Based upon work supported by the National Science Foun-
dation under Grant No. 0844626. Also supported by a
DARPA YFA grant and the Keck Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

1. INTRODUCTION
A central task of quantum computing theory is to un-

derstand how BQP—Bounded-Error Quantum Polynomial-
Time, the class of all problems feasible for a quantum computer—
fits in with classical complexity classes. In their original
1993 paper defining BQP, Bernstein and Vazirani [9] showed
that BPP ⊆ BQP ⊆ P#P.1 Informally, this says that quan-
tum computers are at least as fast as classical probabilistic
computers and no more than exponentially faster (indeed,
they can be simulated using an oracle for counting). Bern-
stein and Vazirani also gave evidence that BPP 6= BQP,
by exhibiting an oracle problem called Recursive Fourier
Sampling that requires nΩ(log n) queries on a classical com-
puter but only n queries on a quantum computer. The
evidence for the power of quantum computers became dra-
matically stronger a year later, when Shor [23] (building on
work of Simon [24]) showed that Factoring and Discrete
Logarithm are in BQP. On the other hand, Bennett et al.
[8] gave oracle evidence that NP 6⊂ BQP, and while no one
regards such evidence as decisive, today it seems extremely
unlikely that quantum computers can solve NP-complete
problems in polynomial time. A vast body of research, con-
tinuing to the present, has sought to map out the detailed
boundary between those NP problems that are feasible for
quantum computers and those that are not.

However, there is a complementary question that—despite
being universally recognized as one of the“grand challenges”
of the field—has had essentially zero progress over the last
sixteen years:

Is BQP in NP? More generally, is BQP con-
tained anywhere in the polynomial hierarchy PH =

NP ∪ NP
NP ∪ NP

NPNP ∪ · · · ?

The “default” conjecture is presumably BQP 6⊂ PH, since
no one knows what a simulation of BQP in PH would look
like. Before this work, however, there was no formal evi-
dence for or against that conjecture. Almost all the prob-
lems for which we have quantum algorithms—including Fac-
toring and Discrete Logarithm—are easily seen to be in
NP∩coNP.2 One notable exception is Recursive Fourier
Sampling, the problem that Bernstein and Vazirani [9] orig-
inally used to construct an oracle A relative to which BPP

A 6=
1The upper bound was later improved to BQP ⊆ PP by
Adleman, DeMarrais, and Huang [2].
2Here we exclude BQP-complete problems such as approxi-
mating the Jones polynomial [3], which, by the very fact of
being BQP-complete, seem hard to interpret as “evidence”
for BQP 6⊂ PH.

BQPA. One can show, without too much difficulty, that
Recursive Fourier Sampling yields oracles A relative to
which BQP

A 6⊂ NP
A and indeed BQP

A 6⊂ MA
A. How-

ever, while it is reasonable to conjecture that Recursive
Fourier Sampling (as an oracle problem) is not in PH, it
is open even to show that this problem (or any other BQP

oracle problem) is not in AM! Recall that AM = NP un-
der plausible derandomization assumptions. Thus, until
we solve the problem of constructing an oracle A such that
BQP

A 6⊂ AM
A, we cannot even claim to have oracle evi-

dence (which is itself, of course, a weak form of evidence)
that BQP 6⊂ NP.

Before going further, we should clarify that there are two
questions here: whether BQP ⊆ PH and whether PromiseBQP ⊆
PromisePH. In the unrelativized world, it is entirely pos-
sible that quantum computers can solve promise problems
outside the polynomial hierarchy, but that all languages in
BQP are nevertheless in PH. However, for the specific pur-
pose of constructing an oracle A such that BQPA 6⊂ PHA,
the two questions are equivalent, basically because one can
“offload” a promise into the construction of the oracle A.

1.1 Motivation
There are at least four reasons why the BQP versus PH

question is so interesting. At a basic level, it is both theoret-
ically and practically important to understand what classical
resources are needed to simulate quantum physics. For ex-
ample, when a quantum system evolves to a given state, is
there always a short classical proof that it does so? Can
one estimate quantum amplitudes using approximate count-
ing (which would imply BQP ⊆ BPP

NP)? If something like
this were true, then while the exponential speedup of Shor’s
factoring algorithm might stand, quantum computing would
nevertheless seem much less different from classical comput-
ing than previously thought.

Second, if BQP 6⊂ PH, then many possibilities for new
quantum algorithms might open up to us. One often hears
the complaint that there are too few quantum algorithms,
or that progress on quantum algorithms has slowed since the
mid-1990s. In our opinion, the real issue here has nothing
to do with quantum computing, and is simply that there are
too few natural NP-intermediate problems for which there
plausibly could be quantum algorithms! In other words, in-
stead of focussing on Graph Isomorphism and a small num-
ber of other NP-intermediate problems, it might be fruitful
to look for quantum algorithms solving completely different
types of problems—problems that are not necessarily even
in PH. In this paper, we will see a new example of such a
quantum algorithm, which solves a problem called Fourier
Checking.

Third, it is natural to ask whether the P
?
= BQP question

is related to that other fundamental question of complexity

theory, P
?
= NP. More concretely, is it possible that quan-

tum computers could provide exponential speedups even if
P = NP? If BQP ⊆ PH, then certainly the answer to that
question is no (since P = NP =⇒ P = PH). Therefore,
if we want evidence that quantum computing could survive
a collapse of P and NP, we must also seek evidence that
BQP 6⊂ PH.

Fourth, a major challenge for quantum computing re-
search is to get better evidence that quantum computers can-
not solve NP-complete problems in polynomial time. As
an example, could we show that if NP ⊆ BQP, then the

polynomial hierarchy collapses? At first glance, this seems
like a wild hope; certainly we have no idea at present how
to prove anything of the kind. However, notice that if
BQP ⊆ AM, then the desired implication would follow imme-
diately! For in that case, coNP ⊆ BQP, hence coNP ⊆ AM,
hence PH = Σ

P
2 , where the last implication was shown by

Boppana, H̊astad, and Zachos [10].

1.2 Our Results
This paper presents the first formal evidence for the possi-

bility that BQP 6⊂ PH. Perhaps more importantly, it places
the relativized BQP versus PH question at the frontier of
(classical) circuit lower bounds. The heart of the problem,
we will find, is to extend Braverman’s spectacular recent
proof [11] of the Linial-Nisan Conjecture, in ways that would
reveal a great deal of information about small-depth circuits
independent of the implications for quantum computing.

We have two main contributions. First, we achieve an
oracle separation between BQP and PH for the case of re-
lation problems. A relation problem is simply a problem
where the desired output is an n-bit string (rather than a
single bit), and any string from some nonempty set S is
acceptable. Relation problems arise often in theoretical
computer science; one well-known example is finding a Nash
equilibrium (shown to be PPAD-complete by Daskalakis et
al. [13]). Within quantum computing, there is consider-
able precedent for studying relation problems as a warmup
to the harder case of decision problems. For example, in
2004 Bar-Yossef, Jayram, and Kerenidis [4] gave a relation
problem with quantum one-way communication complexity
O (log n) and randomized one-way communication complex-
ity Ω (

√
n). It took several more years for Gavinsky et al.

[15] to achieve the same separation for decision problems,
and the proof was much more complicated.3

Formally, our result is as follows:

Theorem 1. There exists an oracle A relative to which
FBQPA 6⊂ FBPPPHA

, where FBQP and FBPP are the rela-
tion versions of BQP and BPP respectively.4

Interestingly, the oracle A in Theorem 1 can be taken to
be a random oracle. By contrast, Aaronson and Ambainis
[1] have shown that, under a plausible conjecture about in-
fluences in low-degree polynomials, one cannot separate the
decision classes BQP and BPP by a random oracle without
also separating P from P

#P in the unrelativized world. In
other words, the use of relation problems (rather than deci-
sion problems) seems essential if one wants a random oracle
separation.

Underlying Theorem 1 is a new lower bound against AC
0

circuits (constant-depth circuits composed of AND, OR, and
NOT gates). The close connection between AC

0 and the
polynomial hierarchy that we exploit is not new. In the
early 1980s, Furst-Saxe-Sipser [14] and Yao [28] noticed that,
if we have a PH machine M that computes (say) the Parity

3Recently, Shepherd and Bremner [22] proposed a beauti-
ful sampling problem that is solvable efficiently on a quan-
tum computer but that they conjecture is hard classically.
This provides yet another example where it seems easier to
find evidence for the power of quantum computers once one
moves away from decision problems.
4Confusingly, the F stands for “function”; we are simply fol-
lowing the standard naming convention for classes of relation
problems (FP, FNP, etc).

of a 2n-bit oracle string, then by simply reinterpreting the
existential quantifiers of M as OR gates and the universal
quantifiers as AND gates, we obtain an AC

0 circuit of size
2poly(n) solving the same problem. It follows that, if we can
prove a 2ω(polylog n) lower bound on the size of AC

0 circuits
computing Parity, we can construct an oracle A relative to
which ⊕PA 6⊂ PHA. The idea is the same for constructing
an A relative to which CA 6⊂ PH

A, where C is any complexity
class.

Indeed, the relation between PH and AC
0 is so direct that

we get the following as a more-or-less immediate counterpart
to Theorem 1:

Theorem 2. In the unrelativized world (with no oracle),
there exists a relation problem solvable in BQLOGTIME but
not in nonuniform AC

0.

Here BQLOGTIME is the class of problems solvable by
uniform logarithmic-size quantum circuits, with random ac-
cess to the input string x1 . . . xn. It should not be confused
with the much larger class BQNC, of problems solvable by
logarithmic-depth quantum circuits.

The relation problem that we use to separate BQP from
PH, and BQLOGTIME from AC

0, is called Fourier Fish-
ing. The problem can be informally stated as follows. We
are given oracle access to n Boolean functions f1, . . . , fn :
{0, 1}n → {−1, 1}, which we think of as chosen uniformly
at random. The task is to output n strings, z1, . . . , zn ∈
{0, 1}n, such that the corresponding squared Fourier coeffi-

cients f̂1 (z1)
2 , . . . , f̂n (zn)2 are “often much larger than av-

erage.” Notice that if fi is a random Boolean function,

then each of its Fourier coefficients f̂i (z) follows a nor-
mal distribution—meaning that with overwhelming proba-
bility, a constant fraction of the Fourier coefficients will be
a constant factor larger than the mean. Furthermore, it
is straightforward to create a quantum algorithm that sam-

ples each z with probability proportional to f̂i (z)2, so that
larger Fourier coefficients are more likely to be sampled than
smaller ones.

On the other hand, computing any specific f̂i (z) is easily
seen to be equivalent to summing 2n bits. By well-known
lower bounds on the size of AC

0 circuits computing the Ma-
jority function (see H̊astad [26] for example), it follows

that, for any fixed z, computing f̂i (z) cannot be in PH as
an oracle problem. Unfortunately, this does not directly im-
ply any separation between BQP and PH, since the quantum

algorithm does not compute f̂i (z) either: it just samples a

z with probability proportional to f̂i (z)2. However, we will
show that, if there exists a BPP

PH machine M that even
approximately simulates the behavior of the quantum algo-
rithm, then one can solve Majority by means of a nonde-
terministic reduction—which uses approximate counting to
estimate Pr [M outputs z], and adds a constant number of
layers to the AC0 circuit. The central difficulty is that, if M
knew the specific z for which we were interested in estimat-

ing f̂i (z), then it could choose adversarially never to output
that z. To solve this, we will show that we can “smug-
gle” a Majority instance into the estimation of a random

Fourier coefficient f̂i (z), in such a way that it is information-
theoretically impossible for M to determine which z we care
about.

Our second contribution is to define and study a new
black-box decision problem, called Fourier Checking. In-

formally, in this problem we are given oracle access to two
Boolean functions f, g : {0, 1}n → {−1, 1}, and are promised
that either

(i) f and g are both uniformly random, or

(ii) f is uniformly random, while g is extremely well cor-
related with f ’s Fourier transform over Z

n
2 (which we

call “forrelated”).

The problem is to decide whether (i) or (ii) is the case.
It is not hard to show that Fourier Checking is in BQP:

basically, one can prepare a uniform superposition over all
x ∈ {0, 1}n, then query f , apply a quantum Fourier trans-
form, query g, and check whether one has recovered some-
thing close to the uniform superposition. On the other
hand, being forrelated seems like an extremely“global”prop-
erty of f and g: one that would not be apparent from query-
ing any small number of f (x) and g (y) values. And thus,
one might conjecture that Fourier Checking (as an oracle
problem) is not in PH.

In this paper, we adduce strong evidence for that conjec-
ture. Specifically, we show that for every k ≤ 2n/4, the for-

related distribution over 〈f, g〉 pairs is O
(
k2/2n/2

)
-almost

k-wise independent. By this we mean that, if one had 1/2
prior probability that f and g were uniformly random, and
1/2 prior probability that f and g were forrelated, then even
conditioned on any k values of f and g, the posterior prob-
ability that f and g were forrelated would still be

1

2
± O

(
k2

2n/2

)
.

We conjecture that this almost k-wise independence prop-
erty is enough, by itself, to imply that an oracle problem
is not in PH. We call this the Generalized Linial-Nisan
Conjecture.

Without the ±O
(
k2/2n/2

)
error term, our conjecture

would be equivalent5 to a famous conjecture in circuit com-
plexity made by Linial and Nisan [18] in 1990. Their con-
jecture stated that polylogarithmic independence fools AC

0:
in other words, every probability distribution over N-bit
strings that is uniform on every small subset of bits, is in-
distinguishable from the truly uniform distribution by AC0

circuits. When we began investigating this topic a year
ago, even the original Linial-Nisan Conjecture was still open.
Since then, Braverman [11] (building on earlier work by
Bazzi [5] and Razborov [20]) has given a beautiful proof
of that conjecture. In other words, to construct an ora-
cle relative to which BQP 6⊂ PH, it now suffices to general-
ize Braverman’s Theorem from k-wise independent distribu-
tions to almost k-wise independent ones. We believe that
this is by far the most promising approach to the BQP versus
PH problem.

Alas, generalizing Braverman’s proof is much harder than
one might have hoped. To prove the original Linial-Nisan
Conjecture, Braverman showed that every AC

0 function f :
{0, 1}n → {0, 1} can be well-approximated, in the L1-norm,
by low-degree sandwiching polynomials: real polynomials
pℓ, pu : R

n → R, of degree O (polylog n), such that pℓ (x) ≤
f (x) ≤ pu (x) for all x ∈ {0, 1}n. Since pℓ and pu triv-
ially have the same expectation on any k-wise independent

5Up to unimportant variations in the parameters

distribution that they have on the uniform distribution, one
can show that f must have almost the same expectation as
well. To generalize Braverman’s result from k-wise inde-
pendence to almost k-wise independence, we will show that
it suffices to construct low-degree sandwiching polynomials
that satisfy a certain additional condition. This new condi-
tion (which we call “low-fat”) basically says that pℓ and pu

must be representable as linear combinations of terms (that
is, products of xi’s and (1 − xi)’s), in such a way that the
sum of the absolute values of the coefficients is bounded—
thereby preventing “massive cancellations” between positive
and negative terms. Unfortunately, while we know two
techniques for approximating AC0 functions by low-degree
polynomials—that of Linial-Mansour-Nisan [17] and that of
Razborov [19] and Smolensky [25]—neither technique pro-
vides anything like the control over coefficients that we need.
To construct low-fat sandwiching polynomials, it seems nec-
essary to reprove the LMN and Razborov-Smolensky theo-
rems in a more “conservative,” less “profligate” way. And
such an advance seems likely to lead to breakthroughs in cir-
cuit complexity and computational learning theory having
nothing to do with quantum computing.

Let us mention three further applications of Fourier Check-
ing:

First, if the Generalized Linial-Nisan Conjecture holds,
then just like with Fourier Fishing, we can “scale down
by an exponential,” to obtain a promise problem that is in
BQLOGTIME but not in AC

0.
Second, without any assumptions, we can prove the new

results that there exist oracles relative to which BQP 6⊂
BPPpath and BQP 6⊂ SZK. We can also reprove all previ-
ous oracle separations between BQP and classical complexity
classes in a unified fashion.

Third, independent of its applications to complexity classes,
Fourier Checking yields the largest gap between classical
and quantum query complexity yet known. Its bounded-
error randomized query complexity is Ω(N1/4) (and we con-

jecture Θ(
√

N)), while its quantum query complexity is only
O (1). Prior to this work, the best known gaps were of

the form NΩ(1) versus O (log N) (for Simon’s and Shor’s
algorithms), or Θ (log N) versus O (1) (for the Bernstein-
Vazirani problem).6 Buhrman et al. [12] explicitly raised
the open problem of finding a larger gap. We also get
a property (namely, the property of being forrelated) that

takes NΩ(1) queries to test classically but only O (1) queries
to test quantumly.

1.3 In Defense of Oracles
This paper is concerned with finding oracles relative to

which BQP outperforms classical complexity classes. As
such, it is open to the usual objections: “But don’t oracle
results mislead us about the ‘real’ world? What about non-
relativizing results like IP = PSPACE [21]?”

In our view, it is most helpful to think of oracle separa-
tions, not as strange metamathematical claims, but as lower
bounds in a concrete computational model that is natural and
well-motivated in its own right. The model in question is
query complexity, where the resource to be minimized is the

6De Beaudrap, Cleve, and Watrous [7] gave an NΩ(1) versus
O (1) separation, but for a non-standard model of quantum
query complexity where one gets to map |x〉 to |σ (x)〉 for
a permutation σ (rather than |x〉 |y〉 to |x〉 |y ⊕ σ (x)〉 as in
the standard model).

number of accesses to a very long input string. When some-
one gives an oracle A relative to which CA 6⊂ DA, what they
really mean is simply that they have found a problem that
C machines can solve using superpolynomially fewer queries
than D machines. In other words, C has “cleared the first
possible obstacle”—the query complexity obstacle—to hav-
ing capabilities beyond those of D. Of course, it could be
(and sometimes is) that C ⊆ D for other reasons, but if
we do not even have a query complexity lower bound, then
proving one is in some sense the obvious place to start.

Oracle separations have played a role in many of the cen-
tral developments of both classical and quantum complexity
theory. As mentioned earlier, proving query complexity
lower bounds for PH machines is essentially equivalent to
proving size lower bounds for AC

0 circuits—and indeed, the
pioneering AC

0 lower bounds of the early 1980s were ex-
plicitly motivated by the goal of proving oracle separations
for PH.7 Within quantum computing, oracle results have
played an even more decisive role: the first evidence for the
power of quantum computers came from the oracle sepa-
rations of Bernstein-Vazirani [9] and Simon [24], and Shor’s
algorithm [23] contains an oracle algorithm (for the Period-
Finding problem) at its core.

Having said all that, if for some reason one still feels averse
to the language of oracles, then (as mentioned before) one
is free to scale everything down by an exponential, and to
reinterpret a relativized separation between BQP and PH as
an unrelativized separation between BQLOGTIME and AC

0.

2. PRELIMINARIES
It will be convenient to consider Boolean functions of the

form f : {0, 1}n → {−1, 1}. Throughout this paper, we
let N = 2n; we will often view the truth table of a Boolean
function as an “input” of size N . Given a Boolean function
f : {0, 1}n → {−1, 1}, the Fourier transform of f is defined
as

f̂ (z) :=
1√
N

∑

x∈{0,1}n

(−1)x·z f (x) .

Recall Parseval’s identity:

∑

x∈{0,1}n

f (x)2 =
∑

z∈{0,1}n

f̂ (z)2 = N.

2.1 Problems
We first define the Fourier Fishing problem, in both

“distributional” and “promise” versions. In the distribu-
tional version, we are given oracle access to n Boolean func-
tions f1, . . . , fn : {0, 1}n → {−1, 1}, which are chosen uni-
formly and independently at random. The task is to output
n strings, z1, . . . , zn ∈ {0, 1}n, at least 75% of which satisfy∣∣∣f̂i (zi)

∣∣∣ ≥ 1 and at least 25% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 2.

(Note that these thresholds are not arbitrary, but were care-
fully chosen to produce a separation between the quantum
and classical models!)

We now want a version of Fourier Fishing that removes
the need to assume the fi’s are uniformly random, replacing

7Yao’s paper [28] was entitled “Separating the polynomial-
time hierarchy by oracles”; the Furst-Saxe-Sipser paper [14]
was entitled “Parity, circuits, and the polynomial time hier-
archy.”

it with a worst-case promise on the fi’s. Call an n-tuple
〈f1, . . . , fn〉 of Boolean functions good if

n∑

i=1

∑

zi:|f̂i(zi)|≥1

f̂i (zi)
2 ≥ 0.8Nn,

n∑

i=1

∑

zi:|f̂i(zi)|≥2

f̂i (zi)
2 ≥ 0.26Nn.

(We will show in Lemma 6 that the vast majority of 〈f1, . . . , fn〉
are good.) In Promise Fourier Fishing, we are given
oracle access to Boolean functions f1, . . . , fn : {0, 1}n →
{−1, 1}, which are promised to be good. The task, again,
is to output strings z1, . . . , zn ∈ {0, 1}n, at least 75% of

which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 1 and at least 25% of which satisfy
∣∣∣f̂i (zi)

∣∣∣ ≥ 2.

Next we define a decision problem called Fourier Check-
ing. Here we are given oracle access to two Boolean func-
tions f, g : {0, 1}n → {−1, 1}. We are promised that either

(i) 〈f, g〉 was drawn from the uniform distribution U , which
sets every f (x) and g (y) by a fair, independent coin toss.

(ii) 〈f, g〉 was drawn from the “forrelated” distribution F ,
which is defined as follows. First choose a random real
vector v = (vx)x∈{0,1}n ∈ R

N , by drawing each entry in-
dependently from a Gaussian distribution with mean 0 and
variance 1. Then set f (x) := sgn (vx) and g (x) := sgn (v̂x)
for all x. Here sgn (α) := α/ |α|, and v̂ is the Fourier trans-
form of v over Z

n
2 :

v̂y :=
1√
N

∑

x∈{0,1}n

(−1)x·y vx.

In other words, f and g individually are still uniformly ran-
dom, but they are no longer independent: now g is extremely
well correlated with the Fourier transform of f (hence “for-
related”).

The problem is to accept if 〈f, g〉 was drawn from F , and
to reject if 〈f, g〉 was drawn from U . Note that, since F
and U overlap slightly, we can only hope to succeed with
overwhelming probability over the choice of 〈f, g〉, not for
every 〈f, g〉 pair.

We can also define a promise-problem version of Fourier
Checking. In Promise Fourier Checking, we are promised
that the quantity

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

is either at least 0.05 or at most 0.01. The problem is to
accept in the former case and reject in the latter case.

2.2 Complexity Classes
See the Complexity Zoo8 for the definitions of standard

complexity classes, such as BQP, AM, and PH. When we
write CPH (i.e., a complexity class C with an oracle for the

polynomial hierarchy), we mean ∪k≥1CΣP
k .

We will consider not only decision problems, but also rela-
tion problems (also called function problems). In a relation
problem, the output is not a single bit but a poly (n)-bit

8www.complexityzoo.com

string y. There could be many valid y’s for a given instance,
and the algorithm’s task is to output any one of them.

The definitions of FP and FNP (the relation versions of P

and NP) are standard. We now define FBPP and FBQP,
the relation versions of BPP and BQP.

Definition 3. FBPP is the class of relations R ⊆ {0, 1}∗×
{0, 1}∗ for which there exists a probabilistic polynomial-time
algorithm A that, given any input x ∈ {0, 1}n, produces an
output y such that Pr [(x, y) ∈ R] = 1−o (1), where the prob-
ability is over A’s internal randomness. (In particular, this
implies that for every x, there exists at least one y such that
(x, y) ∈ R.) FBQP is defined the same way, except that A
is a quantum algorithm rather than a classical one.

An important point about FBPP and FBQP is that, as far
as we know, these classes do not admit amplification. In
other words, the value of an algorithm’s success probability
might actually matter, not just the fact that the probability
is bounded above 1/2. This is why we adopt the conven-
tion that an algorithm “succeeds” if it outputs (x, y) ∈ R
with probability 1 − o (1). In practice, we will give oracle
problems for which the FBQP algorithm succeeds with prob-
ability 1− 1/ exp (n), while any FBPP

PH algorithm succeeds
with probability at most (say) 0.99. How far the constant
in this separation can be improved is an open problem.

Another important point is that, while BPPPH = PPH

(which follows from BPP ⊆ Σ
P
2), the class FBPP

PH is strictly
larger than FP

PH. To see this, consider the relation prob-
lem where we are given n, and asked to output any string
of Kolmogorov complexity at least n. Clearly this problem
is in FBPP: just output a random 2n-bit string. On the
other hand, just as obviously the problem is not in FPPH.
This is why we need to construct an oracle A such that

FBQPA 6⊂ FBPPPHA

: because constructing an oracle A such

that FBQP
A 6⊂ FP

PHA

is trivial and not even related to
quantum computing.

We now discuss some “low-level” complexity classes. AC
0

is the class of problems solvable by a nonuniform family
of AND/OR/NOT circuits, with depth O (1), size poly (n),
and unbounded fanin. When we say “AC

0 circuit,”we mean
a constant-depth circuit of AND/OR/NOT gates, not nec-
essarily of polynomial size. Any such circuit can be made
into a formula (i.e., a circuit of fanout 1) with only a poly-
nomial increase in size. The circuit has depth d if it consists
of d alternating layers of AND and OR gates (without loss
of generality, the NOT gates can all be pushed to the bot-
tom, and we do not count them towards the depth). For
example, a DNF (Disjunctive Normal Form) formula is just
an AC

0 circuit of depth 2.
We will also be interested in quantum logarithmic time,

which can be defined naturally as follows:

Definition 4. BQLOGTIME is the class of languages L ⊆
{0, 1}∗ that are decidable, with bounded error, by a LOGTIME-
uniform family of quantum circuits {Cn}n such that each Cn

has O (log n) gates, and can include gates that make random-
access queries to the input string x = x1 . . . xn (i.e., that
map |i〉 |z〉 to |i〉 |z ⊕ xi〉 for every i ∈ [n]).

One other complexity class that arises in this paper, which
is less well known than it should be, is BPPpath. Loosely
speaking, BPPpath can be defined as the class of problems
that are solvable in probabilistic polynomial time, given the

Figure 1: The Fourier coefficients of a random

Boolean function follow a Gaussian distribution,

with mean 0 and variance 1. However, larger

Fourier coefficients are more likely to be observed

by the quantum algorithm.

ability to “postselect” (that is, discard all runs of the com-
putation that do not produce a desired result, even if such
runs are the overwhelming majority).

3. QUANTUM ALGORITHMS
In this section, we show that Fourier Fishing and Fourier

Checking both admit simple quantum algorithms.

3.1 Algorithm for Fourier Fishing
Here is a quantum algorithm, FF-ALG, that solves Fourier

Fishing with overwhelming probability in O
(
n2

)
time and

n quantum queries (one to each fi). For i := 1 to n, first
prepare the state

1√
N

∑

x∈{0,1}n

fi (x) |x〉 ,

then apply Hadamard gates to all n qubits, then measure in
the computational basis and output the result as zi.

Intuitively, FF-ALG samples the Fourier coefficients of each
fi under a distribution that is skewed towards larger coef-
ficients; the algorithm’s behavior is illustrated pictorially in
Figure 1. Recall the definition of a “good” tuple 〈f1, . . . , fn〉
from Section 2.1. Assuming 〈f1, . . . , fn〉 is good, it is not
hard to analyze FF-ALG’s success probability.

Lemma 5. Assuming 〈f1, . . . , fn〉 is good, FF-ALG succeeds
with probability 1 − 1/ exp (n).

We also have the following:

Lemma 6. 〈f1, . . . , fn〉 is good with probability 1−1/ exp (n),
if the fi’s are chosen uniformly at random.

Combining Lemmas 5 and 6, we find that FF-ALG succeeds
with probability 1−1/ exp (n), where the probability is over
both 〈f1, . . . , fn〉 and FF-ALG’s internal randomness.

3.2 Algorithm for Fourier Checking
We now turn to Fourier Checking, the problem of de-

ciding whether two Boolean functions f, g are independent
or forrelated. Here is a quantum algorithm, FC-ALG, that
solves Fourier Checking with constant error probability
using O (1) queries. First prepare a uniform superposition
over all x ∈ {0, 1}n. Then query f in superposition, apply

Hadamard gates to all n qubits, query g in superposition,
and apply Hadamard gates to all n qubits again, to create
the state

1

N3/2

∑

x,y,z∈{0,1}n

f (x) (−1)x·y g (y) (−1)y·z |z〉 .

Finally, measure in the computational basis, and “accept”
if and only if the outcome |0〉⊗n is observed. If needed,
repeat the whole algorithm O (1) times to boost the success
probability.

It is clear that the probability of observing |0〉⊗n (in a
single run of FC-ALG) equals

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

.

Recall that Promise Fourier Checking was the prob-
lem of deciding whether p (f, g) ≥ 0.05 or p (f, g) ≤ 0.01,
promised that one of these is the case. Thus, we immedi-
ately get a quantum algorithm to solve Promise Fourier
Checking, with constant error probability, using O (1) queries
to f and g.

For distributional Fourier Checking, we also need the
following theorem, which is proved in the full version.

Theorem 7. If 〈f, g〉 is drawn from the uniform distri-
bution U, then EU [p (f, g)] = 1

N
. If 〈f, g〉 is drawn from the

forrelated distribution F, then EF [p (f, g)] > 0.07.

4. FOURIER FISHING LOWER BOUND
In Section 3.1, we gave a quantum algorithm for Fourier

Fishing that made only one query to each fi. By con-
trast, it is not hard to show that any classical algorithm
for Fourier Fishing requires exponentially many queries
to the fi’s—or in complexity terms, that Fourier Fishing
is not in FBPP. In this section, we give a much stronger
result: that Fourier Fishing is not even in FBPP

PH. This
result does not rely on any unproved conjectures.

4.1 Constant-Depth Circuit Lower Bounds
Our starting point will be the following AC

0 lower bound,
which can be found in the book of H̊astad [26] for example.

Theorem 8 ([26]). Any depth-d circuit that accepts all
n-bit strings of Hamming weight n/2 + 1, and rejects all

strings of Hamming weight n/2, has size exp
(
Ω

(
n1/(d−1)

))
.

We now give a corollary of Theorem 8, which (though sim-
ple) seems to be new, and might be of independent interest.
Consider the following problem, which we call ε-Bias De-
tection. We are given a string y = y1 . . . ym ∈ {0, 1}m,
and are promised that each bit yi is 1 with independent
probability p. The task is to decide whether p = 1/2 or
p = 1/2 + ε.

Corollary 9. Let U [ε] be the distribution over {0, 1}m

where each bit is 1 with independent probability 1/2 + ε.
Then any depth-d circuit C such that

∣∣∣∣ Pr
x∼U [ε]

[C (x)] − Pr
x∼U [0]

[C (x)]

∣∣∣∣ = Ω(1)

has size exp
(
Ω

(
1/ε1/(d+2)

))
.

Corollary 9 is proved in the full version. The proof pro-
ceeds exactly as one would expect: we start with an AC

0

circuit C for ε-Bias Detection, and then use many copies
of C, on different random subsets of the input bits, to get
an AC

0 circuit that with high probability distinguishes all
strings of Hamming weight n/2 + 1 from all strings of Ham-
ming weight n/2.

4.2 Secretly Biased Fourier Coefficients
In this section, we state two lemmas indicating that one

can slightly bias one of the Fourier coefficients of a random
Boolean function f : {0, 1}n → {−1, 1}, and yet still have f
be indistinguishable from a random Boolean function (so
that, in particular, an adversary has no way of knowing
which Fourier coefficient was biased). These lemmas will
play a key role in our reduction from ε-Bias Detection to
Fourier Fishing.

Fix a string s ∈ {0, 1}n. Let A [s] be the probability
distribution over functions f : {0, 1}n → {−1, 1} where each
f (x) is 1 with independent probability 1

2
+ (−1)s·x 1

2
√

N
,

and let B [s] be the distribution where each f (x) is 1 with
independent probability 1

2
− (−1)s·x 1

2
√

N
. Then let D [s] =

1
2

(A [s] + B [s]) (that is, an equal mixture of A [s] and B [s]).
Now consider the following game involving Alice and Bob,

which closely models our problem. First, Alice chooses a
string s ∈ {0, 1}n uniformly at random. She then draws f
according to D [s]. She keeps s secret, but sends the truth
table of f to Bob. After examining the entire truth table,

Bob can output any string z ∈ {0, 1}n such that
∣∣∣f̂ (z)

∣∣∣ ≥ β.

Bob’s goal is to avoid outputting s. The following lemma
says that, regardless of Bob’s strategy, if β is sufficiently
greater than 1, then Bob must output s with probability
significantly greater than 1/N .

Lemma 10. In the above game, we have

Pr [s = z] ≥ eβ + e−β

2
√

eN
.

where the probability is over s, f , and Bob’s random choices.

Lemma 10 is proved in the full version. The intuition
behind it is simple: f looks to Bob almost exactly like a
random Boolean function. Let Vβ be the set of all s ∈
{0, 1}n such that

∣∣∣f̂ (s)
∣∣∣ ≥ β. Then when Alice biases f , of

course she significantly increases the probability that s ∈ Vβ .

But the biased Fourier coefficient f̂ (s) still gets “lost in the
noise”—that is, it is information-theoretically impossible for
Bob to tell s apart from the exponentially many other strings
z that are in Vβ just by chance. Therefore, the best Bob
can do is basically just to output a random element of Vβ .
But since |Vβ| ≪ N , this strategy will cause Bob to output
s with probability ≫ 1/N .

Formalizing the above intuition involves a surprisingly
simple Bayesian calculation. Basically, all we need to do
is fix f together with Bob’s output z (which we know be-
longs to Vβ), and then calculate how likely f was to be drawn
from D [z] rather than D [z′] for some z′ 6= z.

To see the connection to our problem, think of Bob as
a putative AC

0 circuit for Fourier Fishing, and Alice as
an AC0 reduction that uses Bob to solve ε-Bias Detection.
Bob might try not to cooperate, but by choosing s randomly,

Alice can force even an adversarial Bob to give her useful

information about the magnitude of f̂ (s).
Now let D = Es [D [s]] (that is, an equal mixture of all

the D [s]’s). Then we prove in the full version that D is
extremely close in variation distance to U , the uniform dis-
tribution over all Boolean functions f : {0, 1}n → {−1, 1}.

Lemma 11. ‖D − U‖ = O(1/
√

N).

An immediate corollary of Lemma 11 is that, if a Fourier
Fishing algorithm succeeds with probability p on 〈f1, . . . , fn〉
drawn from Un, then it also succeeds with probability at
least p− ‖Dn − Un‖ ≥ p−O(n/

√
N) on 〈f1, . . . , fn〉 drawn

from Dn.

4.3 Putting It All Together
Using the results of Sections 4.1 and 4.2, we can give a

lower bound on the constant-depth circuit complexity of
Fourier Fishing.

Theorem 12. Any depth-d circuit that solves the Fourier
Fishing problem, with probability at least 0.99 over f1, . . . , fn

chosen uniformly at random, has size exp
(
Ω

(
N1/(2d+8)

))
.

Combining Theorem 12 with standard diagonalization tricks,
we can also give an oracle separation (in fact, a random or-
acle separation) between the complexity classes FBQP and
FBPP

PH.

Theorem 13. FBQP
A 6⊂ FBPP

PHA

with probability 1 for
a random oracle A.

If we “scale down by an exponential,” then we can elimi-
nate the need for the oracle A, and get a relation problem
that is solvable in quantum logarithmic time but not in AC

0.

Theorem 14. There is a relation in BQLOGTIME \AC0.

Theorems 12, 13, and 14 are proved in the full version.

5. FOURIER CHECKING LOWER BOUND
Section 4 settled the relativized BQP versus PH question,

if we are willing to talk about relation problems. Ulti-
mately, though, we also care about decision problems. So
in this section we consider the Fourier Checking problem,
of deciding whether two Boolean functions f, g are indepen-
dent or forrelated. In Section 3.2, we saw that Fourier
Checking has quantum query complexity O (1). What is
its classical query complexity?9

It is not hard to give a classical algorithm that solves
Fourier Checking using O(

√
N) = O(2n/2) queries. In

the next section, we will show that Fourier Checking has
a property called almost k-wise independence, which imme-
diately implies a lower bound of Ω(4

√
N) = Ω(2n/4) on its

randomized query complexity10 (as well as exponential lower
bounds on its MA, BPPpath, and SZK query complexities).
Indeed, we conjecture that almost k-wise independence is
enough to imply that Fourier Checking is not in PH. We
discuss the status of that conjecture in Section 6.
9So long as we consider the distributional version of
Fourier Checking, the deterministic and randomized
query complexities are the same (by Yao’s principle).

10With some more work, we believe that the randomized
query complexity lower bound can be improved to Ω(

√
N),

though we have not pursued that here.

5.1 Almostk-Wise Independence
Let X = x1 . . . xN ∈ {0, 1}N be a string. Then a literal

is an expression of the form xi or 1 − xi, and a k-term is
a product of k literals (each involving a different xi), which
is 1 if the literals all take on prescribed values and 0 other-
wise. We can give an analogous definition for strings over
the alphabet {−1, 1}; we simply let the literals have the form
1±xi

2
.

Let U be the uniform distribution over N-bit strings. The
following definition will play a major role in this work.

Definition 15. A distribution D over N-bit strings is ε-
almost k-wise independent if for every k-term C,

1 − ε ≤ PrX∼D [C (X)]

PrX∼U [C (X)]
≤ 1 + ε.

(Note that PrX∼U [C (X)] is just 2−k.)

In other words, there should be no assignment to any k
input bits, such that conditioning on that assignment gives
us much information about whether X was drawn from D
or U .

Now let F be the forrelated distribution over pairs of
Boolean functions f, g : {0, 1}n → {−1, 1}, where we first
choose a vector v = (vx)x∈{0,1}n ∈ R

N of independent

N (0, 1) Gaussians, then set f (x) := sgn (vx) and g (x) :=
sgn (v̂x) for all x ∈ {0, 1}n.

Theorem 16. F is O(k2/
√

N)-almost k-wise independent

for all k ≤ 4
√

N .

We prove Theorem 16 in the full version. To do so, we
first compute the measure of the Gaussian distribution on
an affine subspace of R

2N defined by K +L equations of the
form vxi = ai and v̂yj = bj . This computation is somewhat
involved, but is enormously aided by rotational invariance
and other nice properties of the Gaussian distribution. We
then perform a discretization step, to deal with the fact that
the functions f and g are Boolean.

5.2 Oracle Separation Results
The following lemma says that any almost k-wise inde-

pendent distribution is indistinguishable from the uniform
distribution by BPPpath or SZK machines.

Lemma 17. Suppose a probability distribution D over or-
acle strings is 1/t (n)-almost poly (n)-wise independent, for
some superpolynomial function t. Then no BPPpath ma-
chine or SZK protocol can distinguish D from the uniform
distribution U with non-negligible bias.

We can combine Theorem 16 and Lemma 17 with standard
diagonalization tricks, to obtain an oracle relative to which
BQP 6⊂ BPPpath and BQP 6⊂ SZK.

Theorem 18. There exists an oracle A relative to which
BQPA 6⊂ BPPA

path and BQPA 6⊂ SZKA.

Since BPP ⊆ MA ⊆ BPPpath, Theorem 18 supersedes the
previous results that there exist oracles A relative to which
BPPA 6= BQPA [9] and BQPA 6⊂ MAA [27].

Lemma 17 and Theorem 18 are proved in the full version.

6. THE GENERALIZED LN CONJECTURE
In 1990, Linial and Nisan [18] conjectured that “polyloga-

rithmic independence fools AC0”—or loosely speaking, that
every probability distribution D over n-bit strings that is
uniform on all small subsets of bits, is indistinguishable from
the uniform distribution by polynomial-size, constant-depth
circuits. We now state a variant of the Linial-Nisan Conjec-
ture, not with the best parameters but with weaker, easier-
to-understand parameters that suffice for our application.

Conjecture 19 (Linial-Nisan or LN Conjecture).

Let D be an nΩ(1)-wise independent distribution over {0, 1}n,
and let f : {0, 1}n → {0, 1} be computed by an AC

0 circuit

of size 2no(1)

and depth O (1). Then
∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]
∣∣∣ = o (1) .

After seventeen years of almost no progress, in 2007 Bazzi
[5] finally proved the LN Conjecture for the special case of
depth-2 circuits (also called DNF formulas). Bazzi’s proof
was about 50 pages, but it was dramatically simplified a year
later, when Razborov [20] discovered a 3-page proof. Then
in 2009, Braverman [11] gave a breakthrough proof of the
full LN Conjecture.

Theorem 20 (Braverman’s Theorem [11]). Let f :
{0, 1}n → {0, 1} be computed by an AC

0 circuit of size S

and depth d, and let D be a
(
log S

ε

)7d2

-wise independent
distribution over {0, 1}n. Then for all sufficiently large S,

∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]
∣∣∣ ≤ ε.

We conjecture a modest-seeming extension of Braverman’s
Theorem, which says (informally) that almost k-wise inde-
pendent distributions fool AC0 as well.

Conjecture 21 (GLN Conjecture). Let D be a 1/nΩ(1)-

almost nΩ(1)-wise independent distribution over {0, 1}n, and
let f : {0, 1}n → {0, 1} be computed by an AC

0 circuit of size

2no(1)

and depth O (1). Then
∣∣∣ Pr
x∼D

[f (x)] − Pr
x∼U

[f (x)]
∣∣∣ = o (1) .

By the usual correspondence between AC
0 and PH, the

GLN Conjecture immediately implies the following counter-
part of Lemma 17:

Suppose a probability distribution D over oracle
strings is 1/t (n)-almost poly (n)-wise indepen-
dent, for some superpolynomial function t. Then
no PH machine can distinguish D from the uni-
form distribution U with non-negligible bias.

And thus we get the following implication:

Theorem 22. Assuming the GLN Conjecture, there ex-
ists an oracle A relative to which BQP

A 6⊂ PH
A.

The proof is the same as that of Theorem 18; the only
difference is that the GLN Conjecture now plays the role of
Lemma 17. Likewise:

Theorem 23. Assuming the GLN Conjecture for the spe-
cial case of depth-2 circuits (i.e., DNF formulas), there ex-
ists an oracle A relative to which BQP

A 6⊂ AM
A.

As a side note, it is conceivable that one could prove
Prx∼D [ϕ (x)]−Prx∼U [ϕ (x)] = o (1) for every almost k-wise
independent distribution D and small CNF formula ϕ, with-
out getting the same result for DNF formulas (or vice versa).
However, since BQP is closed under complement, even such
an asymmetric result would imply an oracle A relative to
which BQPA 6⊂ AMA.

If the GLN Conjecture holds, then we can also“scale down
by an exponential,” to obtain an unrelativized decision prob-
lem that is solvable in BQLOGTIME but not in AC

0.

Theorem 24. Assuming the GLN Conjecture, there ex-
ists a promise problem in BQLOGTIME \ AC

0.

6.1 Low-Fat Polynomials
Given that the GLN Conjecture would have such remark-

able implications for quantum complexity theory, the ques-
tion arises of how we can go about proving it. As we are
indebted to Louay Bazzi for pointing out to us, the GLN
Conjecture is equivalent to the following conjecture, about
approximating AC

0 functions by low-degree polynomials.

Conjecture 25 (Low-Fat Sandwich Conjecture).
For every function f : {0, 1}n → {0, 1} computable by an
AC

0 circuit, there exist polynomials pℓ, pu : R
n → R of de-

gree k = no(1) that satisfy the following three conditions.

(i) Sandwiching: pℓ (x) ≤ f (x) ≤ pu (x) for all x.

(ii) L1-Approximation: Ex∼U [pu (x) − pℓ (x)] = o (1).

(iii) Low-Fat: pℓ (x) and pu (x) can be written as linear
combinations of terms, pℓ (x) =

∑
C αCC (x) and pu (x) =∑

C βCC (x) respectively, such that
∑

C |αC | 2−|C| =

no(1) and
∑

C |βC | 2−|C| = no(1). (Here a term is a
product of literals of the form xi and 1 − xi.)

If we take out condition (iii), then Conjecture 25 becomes
equivalent to the original LN Conjecture (see Bazzi [5] for
a proof). And indeed, all progress so far on “Linial-Nisan
problems” has crucially relied on this connection with poly-
nomials. Bazzi [5] and Razborov [20] proved the depth-2
case of the LN Conjecture by constructing low-degree, ap-
proximating, sandwiching polynomials for every DNF, while
Braverman [11] proved the full LN Conjecture by construct-
ing such polynomials for every AC

0 circuit.11 Given this
history, proving Conjecture 25 would seem like the “obvi-
ous” approach to proving the GLN Conjecture.

It is easy to prove one direction of the equivalence: that
to prove the GLN Conjecture, it suffices to construct low-fat
sandwiching polynomials for every AC0 circuit. The other
direction—that the GLN Conjecture implies Conjecture 25,
and hence, there is no loss of generality in working with poly-
nomials instead of probability distributions—follows from a
linear programming duality calculation.

7. DISCUSSION
We now take a step back, and use our results to address

some conceptual questions about the relativized BQP versus

11Strictly speaking, Braverman constructed approximating
polynomials with slightly different (though still sufficient)
properties. We know from Bazzi [5] that it must be possible
to get sandwiching polynomials as well.

PH question, the GLN Conjecture, and what makes them so
difficult.

The first question is an obvious one. Complexity theorists
have known for decades how to prove constant-depth circuit
lower bounds, and how to use those lower bounds to give
oracles A relative to which (for example) PP

A 6⊂ PH
A and

⊕PA 6⊂ PHA. So why should it be so much harder to give
an A relative to which BQP

A 6⊂ PH
A? What makes this

AC
0 lower bound different from all other AC

0 lower bounds?
The answer seems to be that, while we have powerful

techniques for proving that a function f is not in AC
0, all

of those techniques, in one way or another, involve argu-
ing that f is not approximated by a low-degree polynomial.
The Razborov-Smolensky technique [19, 25] argues this ex-
plicitly, while even the random restriction technique [14, 28,
26] argues it “implicitly,” as shown by Linial, Mansour, and
Nisan [17]. And this is a problem, if f is also computed by
an efficient quantum algorithm. For Beals et al. [6] proved
the following in 1998:

Lemma 26 ([6]). Suppose a quantum algorithm Q makes

T queries to a Boolean input X ∈ {0, 1}N . Then Q’s ac-
ceptance probability is a real multilinear polynomial p (X),
of degree at most 2T .

In other words, if a function f is in BQP, then for that
very reason, f has a low-degree approximating polynomial!
As an example, we already saw that the following polyno-
mial p, of degree 4, successfully distinguishes the forrelated
distribution F from the uniform distribution U :

p (f, g) :=
1

N3




∑

x,y∈{0,1}n

f (x) (−1)x·y g (y)




2

. (1)

Therefore, we cannot hope to prove a lower bound for Fourier
Checking, by any argument that would also imply that
such a p cannot exist.

This brings us to a second question. If

(i) every known technique for proving f /∈ AC
0 involves

showing that f is not approximated by a low-degree
polynomial, but

(ii) every function f with low quantum query complexity
is approximated by a low-degree polynomial,

does that mean there is no hope of solving the relativized
BQP versus PH problem using polynomial-based techniques?

We believe the answer is no. The essential point here
is that an AC

0 function can be approximated by different
kinds of low-degree polynomials. Furthermore, to show
that f /∈ AC

0, it suffices to show that f is not approximated
by a low-degree polynomial in any one of these senses. For
example, even though the Parity function has degree 1 over
the finite field F2, Razborov and Smolensky showed that
over other fields (such as F3), any degree-o (

√
n) polynomial

disagrees with Parity on a large fraction of inputs—and
that is enough to imply that Parity/∈ AC

0. In other words,
we simply need to find a type of polynomial approximation
that works for AC

0 circuits, but does not work for Fourier
Checking. If true, Conjecture 25 (the Low-Fat Sandwich
Conjecture) provides exactly such a type of approximation.

But this raises another question: what is the significance
of the “low-fat” requirement in Conjecture 25? Why, of

all things, do we want our approximating polynomial p to
be expressible as a linear combination of terms, p (x) =∑

C αCC (x), such that
∑

C |αC | 2−|C| = no(1)?
The answer takes us to the heart of what an oracle sep-

aration between BQP and PH would have to accomplish.
Notice that, although the polynomial p from equation (1)
solved the Fourier Checking problem, it did so only by
cancelling massive numbers of positive and negative terms,
then representing the answer by the tiny residue left over.
Not coincidentally, this sort of cancellation is a central fea-
ture of quantum algorithms. By contrast, we show that,
if a polynomial p does not involve such massive cancella-
tions, but is instead more “conservative” and “reasonable”
(like the polynomials that arise from classical decision trees),
then p cannot distinguish almost k-wise independent distri-
butions from the uniform distribution, and therefore cannot
solve Fourier Checking. If Conjecture 25 holds, then
every small-depth circuit can be approximated, not just by
any low-degree polynomial, but by a“reasonable” low-degree
polynomial—one with a bound on the coefficients that pre-
vents massive cancellations. This would prove that Fourier
Checking has no small constant-depth circuits, and hence
that there exists an oracle separating BQP from PH.

8. OPEN PROBLEMS
First, of course, prove the GLN Conjecture, or prove the

existence of an oracle A relative to which BQPA 6⊂ PHA by
some other means. A natural first step would be to prove
the GLN Conjecture for the special case of DNFs: as shown
in Theorem 23, this would imply an oracle A relative to
which BQP

A 6⊂ AM
A. We have offered a $200 prize for the

PH case and a $100 prize for the AM case.12

Second, it would be of interest to prove the GLN Conjec-
ture for classes of functions weaker than (or incomparable
with) DNFs: for example, monotone DNFs, read-once for-
mulas, and read-k-times formulas.

Third, can we give an example of a Boolean function f :
{0, 1}n → {−1, 1} that is well-approximated by a low-degree
polynomial, but not by a low-degree low-fat polynomial?

Fourth, can we give an oracle relative to which BQP 6⊂ IP?
Fifth, what else does the GLN Conjecture imply?
Sixth, how much can we say about the BQP versus PH

question in the unrelativized world? As one concrete chal-
lenge, can we find a nontrivial way to “realize” the Fourier
Checking oracle (in other words, an explicit computational
problem that is solvable using Fourier Checking)?

Seventh, how far can the gap between the success proba-
bilities of FBQP and FBPP

PH algorithms be improved?

9. ACKNOWLEDGMENTS
I thank Louay Bazzi for reformulating the GLN Conjec-

ture as the Low-Fat Sandwich Conjecture, Andy Drucker,
Lance Fortnow, and Sasha Razborov for helpful discussions,
and an anonymous reviewer for comments.

10. REFERENCES
[1] S. Aaronson and A. Ambainis. The need for structure in

quantum speedups. arXiv:0911.0996, 2009.
[2] L. Adleman, J. DeMarrais, and M.-D. Huang. Quantum

computability. SIAM J. Comput., 26(5):1524–1540, 1997.

12See http://scottaaronson.com/blog/?p=381

[3] D. Aharonov, V. Jones, and Z. Landau. A polynomial
quantum algorithm for approximating the Jones
polynomial. In Proc. ACM STOC, p. 427–436, 2006.

[4] Z. Bar-Yossef, T. S. Jayram, and I. Kerenidis. Exponential
separation of quantum and classical one-way
communication complexity. SIAM J. Comput.,
38(1):366–384, 2008.

[5] L. Bazzi. Polylogarithmic independence can fool DNF
formulas. In Proc. IEEE FOCS, p. 63–73, 2007.

[6] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de
Wolf. Quantum lower bounds by polynomials. J. ACM,
48(4):778–797, 2001.

[7] J. N. de Beaudrap, R. Cleve, and J. Watrous. Sharp
quantum versus classical query complexity separations.
Algorithmica, 34(4):449–461, 2002.

[8] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani.
Strengths and weaknesses of quantum computing. SIAM J.
Comput., 26(5):1510–1523, 1997.

[9] E. Bernstein and U. Vazirani. Quantum complexity theory.
SIAM J. Comput., 26(5):1411–1473, 1997.

[10] R. B. Boppana, J. H̊astad, and S. Zachos. Does co-NP have
short interactive proofs? Inf. Proc. Lett., 25:127–132, 1987.

[11] M. Braverman. Poly-logarithmic independence fools AC0

circuits. In Proc. IEEE Complexity, p. 3–8, 2009.
[12] H. Buhrman, L. Fortnow, I. Newman, and H. Röhrig.

Quantum property testing. SIAM J. Comput.,
37(5):1387–1400, 2008.

[13] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou.
The complexity of computing a Nash equilibrium.
Commun. ACM, 52(2):89–97, 2009.

[14] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and
the polynomial time hierarchy. Math. Systems Theory,
17:13–27, 1984.

[15] D. Gavinsky, J. Kempe, I. Kerenidis, R. Raz, and R. de
Wolf. Exponential separation for one-way quantum
communication complexity, with applications to
cryptography. SIAM J. Comput., 38(5):1695–1708, 2008.

[16] A. Klivans and D. van Melkebeek. Graph nonisomorphism
has subexponential size proofs unless the polynomial-time
hierarchy collapses. SIAM J. Comput., 31:1501–1526, 2002.

[17] N. Linial, Y. Mansour, and N. Nisan. Constant depth
circuits, Fourier transform, and learnability. J. ACM,
40(3):607–620, 1993.

[18] N. Linial and N. Nisan. Approximate inclusion-exclusion.
Combinatorica, 10(4):349–365, 1990.

[19] A. A. Razborov. Lower bounds for the size of circuits of
bounded depth with basis {&,⊕}. Mathematicheskie
Zametki, 41(4):598–607, 1987.

[20] A. A. Razborov. A simple proof of Bazzi’s theorem. ACM
Trans. Comput. Theory, 1(1), 2009.

[21] A. Shamir. IP=PSPACE. J. ACM, 39(4):869–877, 1992.
[22] D. Shepherd and M. J. Bremner. Temporally unstructured

quantum computation. Proc. Roy. Soc. London,
A465(2105):1413–1439, 2009.

[23] P. W. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[24] D. Simon. On the power of quantum computation. In Proc.
IEEE FOCS, p. 116–123, 1994.

[25] R. Smolensky. Algebraic methods in the theory of lower
bounds for Boolean circuit complexity. In Proc. ACM
STOC, p. 77–82, 1987.

[26] J. Håstad. Computational Limitations for Small Depth
Circuits. MIT Press, 1987.

[27] J. Watrous. Succinct quantum proofs for properties of finite
groups. In Proc. IEEE FOCS, p. 537–546, 2000.

[28] A. C-C. Yao. Separating the polynomial-time hierarchy by
oracles. In Proc. IEEE FOCS, p. 1–10, 1985.

