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Abstract

This paper studies whether quantum proofs are more powtrdul classical proofs, or in complexity terms,
whetherQMA = QCMA. We prove three results about this question. First, we giegiantum oracle separation”
betweenQMA and QCMA. More concretely, we show that any quantum algorithm néét( nf—L) queries
to find ann-qubit “marked state’|y), even if given ann-bit classical description dfy) together with a quantum
black box that recognizgg)). Second, we give an explic CMA protocol that nearly achieves this lower bound.
Third, we show that, in the one previously-known case wherm@ntum proofs seemed to provide an exponential
advantageclassicalproofs are basically just as powerful. In particular, Watrgave 8QMA protocol for verifying
non-membership in finite groups. Under plausible groupitiic assumptions, we give@CMA protocol for the
same problem. Even with no assumptions, our protocol matiyspolynomially many queries to the group oracle.
We end with some conjectures about quantum versus classaakes, and about the possibility otkassicaloracle

separation betweeQMA andQCMA.

1 Introduction

If someone hands you a quantum state, is that more “usefali bieing handed a classical string with a comparable
number of bits? In particular, are there truths that you déoiently verify, and are there problems that you can
efficiently solve, using the quantum state but not using theg? These are the questions that this paper addresses,
and that it answers in several contexts.

Recall thatQMA, or Quantum Merlin-Arthur, is the class of decision probsefior which a “yes” answer can be
verified in quantum polynomial time, with help from a polyniairsize quantum witness statg¢). Many results
are known abouQMA: for example, it has natural complete promise problems,[A8)ws amplification of success
probabilities [21], and is contained PP [21]. Raz and Shpilka [26] have also studied communicatmmmexity
variants ofQMA.

Yet as Aharonov and Naveh [3] pointed out in 2002, the verynitedn of QMA raises a fundamental question.
Namely: is it really essential that the witness be quantundoes it suffice for the algorithiwerifyingthe witness to
be quantum? To address this question, Aharonov and Navetedéfie clasQ CMA, or “Quantum Classical Merlin-
Arthur,” to be the same a@MA except that now the witness is classitalle can then ask wheth@VIA = QCMA.

Not surprisingly, the answer is that we don’t know.

If we can't decide whether two complexity classes are edhalusual next step is to construct a relativized world
that separates them. This would provide at least some esédbat the classes are different. Butin the cas@MA
versusQCMA, even this limited goal has remained elusive.

Closely related to the question of quantum versus claspigadfs is that of quantum versus classiealvice
Compared to a proof, advice has the advantage that it cangted; but the disadvantage that it can’t be tailored to a
particular input. More formally, [eBQP /qpoly be the class of problems solvable in quantum polynomial,tinith
help from a polynomial-size “quantum advice stafe;,) that depends only on the input length Then the question
is whetheiBQP /gpoly = BQP/poly, whereBQP /poly is the class of problems solvable in quantum polynomial time
with help from polynomial-sizelassicaladvice. Aaronson [2] showed thBQP /qpoly C PP/poly, which at least
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tells us that quantum advice is not “infinitely” more powéithan classical advice. But, like tH@MA versusQCMA
question, th8QP /qpoly versusBQP/poly question has remained open, with not even an oracle sepakatown.

1.1 Our Results

This paper introduces new tools with which to att&dklA versusQCMA and related questions.

First, we achieve an oracle separation betw@btA andQCMA, but only by broadening the definition of “oracle.”
In particular, we introduce the notion ofi@antum oraclegwhich is just an infinite sequence of unitarlés= {U, }, -,
that a quantum algorithm can apply in a black-box fashionst 48 a classical oracle models a subroutine to which
an algorithm has black-box access, so a quantum oracle madglantum subroutine, which can take quantum input
and produce quantum output. We are able to give a quanturtedhad separateQMA from QCMA:

Theorem 1.1 There exists a quantum oradlesuch thaQMAY # QCMAY.

Similarly, there exists a quantum oradfesuch thaBQP" /qpoly # BQPY /poly.

Theorem 1.1 implies that RMA = QCMA, then any proof of this fact will require “quantumly nonrééing
techniques”: techniques that are sensitive to the presehgaantum oracles. Currently, we do not knowasfy
guantumly nonrelativizing techniques that are not alsssitally nonrelativizing. For this reason, we believe that
guantum oracle separations merit the same informal irgéapon as classical oracle separations: almost any angume
that one might advance against the former, is also an argiagainst the latter! The difference is that quantum oracle
results are sometimes much easier to prove than classiesl dio our knowledge, this paper provides the first example
of this phenomenon, but other examples have since emergad][1

It might be objected that, even if quantum oracle separatame no less trustworthy than classical ones, they
certainly aren'tmoretrustworthy, and complexity theorists have known sincedlebratedP = PSPACE theorem
[27] that oracle results sometimes “point in the wrong diet” We wish to stress two points in response. First,
oracle results provide at leasdmeunderstanding, thereby opening the way to further progrddss is particularly
true in quantum computing, where even the oracle resultsttebhe much less intuitively obvious than they are in the
classical world. Second, complexity theorists do not auttyehave any nonrelativizing technique for “non-interaet
classes such @&8MA andQCMA even remotely analogous to the arithmetization technifaeS$Shamir [27] used to
showlIP = PSPACE. We hope such a technique will someday be discovered.

Underlying Theorem 1.1 is the following lower bound. Suppaginitary oracl®/,, acts onn qubits, and suppose
that either (i)U,, is the identity, or (i) there exists a secreqqubit “marked statel,,) such thatl,, [¢,,) = — |¢n),
butU, |¢) = |¢) whenevely) is orthogonal tdv,,). Then even if a quantum algorithm is givenbits of classical

advice abouti,, ), the algorithm still need$ (‘/m2—11) queries taU,, to distinguish these cases. Note that when

m = 0, we recover the usué? (\/Q_n) lower bound for Grover search as a special case. At the otenee, if
m = 2™ then our bound gives nothing—not surprisingly, since tlassical advice might contain explicit instructions
for preparingv,,). The pointis that, ifn is notexponentially large, then exponentially many queries aexed.
Since|t,,) is an arbitrary2”-dimensional unit vector, it might be thought obvious tA&t™ bits are needed to
describe that vector. The key point, however, is that@E@MA verifier is given not only a classical description
of |4, ), but also oracle access &d,. So the question is whether soreembinationof these resources might be
exponentially more powerful than either one alone. We pitbe¢ the answer is no, using the hybrid argument of
Bennett et al. [10] together with geometric results aboutfg@nings of the unit sphere.
In Section 4, we show that our lower bound is basically tidght,giving an algorithm that find&),,) using

0] («/2”/m) gueries whemn > 2n. This algorithm has the drawback of beiogmputationallyinefficient. To fix

this, we give another algorithm that fings, ) usingO (n\/zn/m) gueries together with (n2x/2”/m + poly (m))
computational steps.

Having separate@MA from QCMA by a quantum oracle, we next revisit the question of whethesd classes
can be separated byctassicaloracle. Right now, we know of only one candidate problem fmtsa separation in
the literature: the Group Non-Membership){M) problem, which Watrous [30] placed @MA even though Babai
[6] showed it is not iNMIA as an oracle problefmin Group Non-Membership, Arthur is given black-box accesa t

2|nterestingly, the classedA and AM were originally defined by Babai in connection with GNM [4].



finite groupG, together with a subgroufl < G specified by its generators and an elemert G. Arthur’s goal is
to verify thatz ¢ H, using a number of group operations polynomialdg |G|. (Note that the groumembership
problem is inNP by a result of Babai and Szemerédi [8].) In Watrous’s protpthe quantum witness is simply
an equal superpositiol/) over the elements aoff. Given such a witness, Arthur can check non-membership by
comparing the staté$7) and|zH ), and can similarly check the veracity |df) by comparing it tdhH), whereh is
an almost-uniformly random element &f.

Evidently a classical proof of non-membership would havieda@ompletely different. Nevertheless, in Section 5
we show the following:

Theorem 1.2 GNM has polynomially-bounde@CMA query complexity.

Theorem 1.2 implies that it is pointless to try to prove asileedl oracle separation betwe@MA andQCMA by
proving a lower bound on the quantum query complexity of @riden-Membership. If such a separation is possible,
then a new approach will be needed.

The idea of the proof of Theorem 1.2 is that Merlin can “pué tiroup out of the black box.” In other words,
he can claim an embedding of a model grdujinto G. This claim is entirely classical, but verifying it requsre
solving the Normal Hidden Subgroup ProbleNMHSP) in I".  This problem has low query complexity by a result of
Ettinger, Hgyer, and Knill [14], but is not known to be BQP. In addition, analyzing the description bfis not
known to be computationally efficient. Nonetheless, in Bach.1 we discuss evidence thaHSP is in BQP and
that non-membership fdr is in NP. Based on this evidence, we conjecture the following:

Conjecture 1.3 GNM is in QCMA.

Given our results in Section 5, the question remains of wérdtiere is some other way to prove a classical oracle
separation betwee@MA andQCMA. In Section 6, we conjecture that the answer is yes:

Conjecture 1.4 There exists a classical oraclé such thatQMA# = QCMA#. Furthermore, this can be proven by
exhibiting an oracle problem with polynomi@QMA query complexity but exponent@CMA query complexity.

The reason we believe Conjecture 1.4 is that it seems pes§ilslmany purposes, to “encode” a quantum oracle
into a classical one. In Section 6 we explain more concretlgt we mean by that, and present some preliminary
results. For example, we show that there exisBQP algorithm that maps an oracle stringyto ann-qubit pure
state|i 4 ), such that ifA is uniformly random, theife) 4 ) is (under a suitable metric) close to uniformly random under
the Haar measure. We also study the question of applyingdomafV x N unitary matrix using a random classical
oracle in the same way. We do not know how to do this, but we shatwone quantum query will not suffice for this
purpose. To prove this, we show that a quantum algorithmubes just one query can apply at ma8t different

N x N unitaries, whereas the number of unitaries required tocqimate the uniform distribution grows lika (V)
We end in Section 7 with some open problems.

2 Preliminaries

Throughout this paper, we refer to the set\dfdimensional pure states @&~ ~* (that is, complex projective space
with N — 1 dimensions). We usBr to denote probability, anH to denote expectation.

We assume familiarity with standard complexity classe©asBQP andMA. For completeness, we now define
QMA, QCMA, BQP /gpoly, andBQP/poly.

Definition 2.1 QMA is the class of languagds C {0, 1}" for which there exists a polynomial-time quantum verifier
Q and a polynomiap such that, for alk: € {0,1}":

(i) If x € L then there exists @ (n)-qubit quantum proofy) such thatQ accepts with probability at leat/3
given|z) |¢) as input.

(i) If 2 ¢ L thenQ accepts with probability at most/3 given|z) |) as input, for all purported proofkp).



The clasQCMA is defined similarly, except thap) is replaced by a classical string € {0, 1}”(").

Definition 2.2 BQP/qpoly is the class of languagels C {0,1}" for which there exists a polynomial-time quantum
algorithm Q, together with a set of statg$),) },,», (where[y,,) has sizep (n) for some polynomiat), such that for

all z € {0,1}":
(i) If z € L thenQ accepts with probability at leagt/3 given|x) |¢,,) as input.
(i) If 2 ¢ L thenQ accepts with probability at modt/3 given|x) |¢,,) as input.
The clasBQP /poly is defined similarly, except thap,, ) is replaced by a classical string, € {0, 1}”(”)

Let us now explain what we mean by a “quantum oracle.” For agiamtum oracle is simply an infinite sequence
of unitary transformationg/ = {U,},,..,. We assume that eaéh, acts orp (n) qubits for some known polynomial
p. We also assume that given arbit string as input, a quantum algorithm calls o®lly, notU,, for anym # n.
This assumption is only made for simplicity; our results Wbgo through without i€ When there is no danger of
confusion, we will refer td/,, simply asU.

Formally, the oracle access mechanism is as follows. Assuquantum computer’s state has the form

Zaz |¢z 5

where|z) is a workspace register ang, ) is ap (n)-qubit answer register. Then to “quelly,” means to apply the
p (n)-qubit unitary transformation that mapg) to

E:az ) Un|¢z) -

Let C be a quantum complexity class, and1ét= {U,}, ., be a quantum oracle. Then By, we will mean the
class of problems solvable byCamachine that, given an input of length can queryl/,, at unit cost as many times as
it likes.

In defining the notion of quantum oracle, at least two chojesent themselves that have no counterpart for
classical oracles:

(1) If we can apply a quantum oradlg, then can we also apply controlléd{that is,U conditioned on a control
qubit|b))?

(2) If we can applyU, then can we also apply —'?

At least for the present paper, the answers to these questiimot matter, for the following reasons. First, all
of the quantum oracle§ that we consider will be self-inverse (thatig,= U~'). Second, while our algorithnwsill
need to apply controlled#, that is only for the technical reason that we will defliieso thatU |¢) = — |¢) if |¢)
is the marked state, arid|¢) = |¢) wheneverp|y) = 0. If we stipulated instead thaf |) |b) = |¢) |b® 1) and
U |p) |b) = |¢) |b) wheneverp|y) = 0, thenU alone would suffice.

Yet even though these choices will not matter for our resitlill seems worthwhile to discuss them a bit, since
they might arise in future work involving quantum oracles.

One could argue that (i) the purpose of an oracle is to modwrlbaoutinethat an algorithm can call without
understanding its internal structure, and that (ii) givequantum circuit for applying some unitary operatignone
can easily produce a circuit for applying controllgder U1, without understanding anything about the original
circuit's structure. In particular, to produce a circuit fmntrolled¥/, one simply conditions each gate on the control
qubit; while to produce a circuit fdy —', one simply inverts all the gates and reverses their ordiees& considerations
suggest that the answers to questions (1) and (2) shouldledtfes.” On the other hand, it would still be interesting
to know whether disallowing controlleti-or U ! would let us prove more quantum oracle separations. (Natsfth
we disallow these operations, then the set of inequivaleahtym oracles becombsger.)

3If one made the analogous assumptiorclassical complexity—that given an input of length, an algorithm can query the oracle only on
strings of lengthm—one could simplify a great many oracle results without arsglof conceptual content.



3 Quantum Oracle Separations

The aim of this section is to prove Theorem 1.1: that therstexi quantum oraclg such thatQMAY # QCMAVY.
The same ideas will also yield a quantum ordcélsuch thaBQP" /qpoly # BQP"Y /poly.
To prove these oracle separations, we first need a geonertrind about probability measures on quantum states.
Let 1. be the uniform probability measure ov®rdimensional pure states (that is, o@#”" ~!). The following notion
will play a key role in our argument.

Definition 3.1 For all p € [0, 1], a probability measure overCPY ! is calledp-uniform ifpo < u. Equivalently,
o is p-uniform if it can be obtained by starting from and then conditioning on an event that occurs with probgbil
at leastp.

So for example, we obtainauniform measure if we start from and then condition otvg, 1/p bits of classical
information about). Our geometric lemma says that|if) is drawn from ap-uniform measure, then for every
mixed statep, the squared fidelity betweeén) andp has small expectation. More precisely:

Lemma 3.2 Leto be ap-uniform probability measure ovéP"Y ~. Then for allp,

B 1+4logl/p
B wlplv] =0 (FERET).

The proof of Lemma 3.2 is deferred to Section 3.1. In thisisaave assume the lemma, and show how to use
it to prove our main result. In particular, we show that angamfum algorithm need? ( mQ—L) queries to find an
n-qubit marked stat@)), even if givenm bits of classical advice abol{ip).

Theorem 3.3 Suppose we are given oracle access taegqubit unitaryU, and want to decide which of the following
holds:

(i) There exists am-qubit “quantum marked stately)) such thatU |¢) = — |¢), butU |¢) = |¢) whenever
(pl¢) = 05 0r

(i) U = I isthe identity operator.

Then even if we have an-bit classical witness in support of case (i), we still nedd (, / m?il) queries to verify
the witness, with bounded probability of error.

Proof. If m = Q (2™) then the theorem is certainly true, so suppoese: o (2"). Let A be a quantum algorithm that
queriesU. Also, letU, be ann-qubit unitary such thal/,, |) = — [¢), butU, |¢) = |¢) whenever¢|y) = 0.
ThenA's goal is to accept if and only 7 = Uy, for some|y).

For eachn-qubit pure statéy)), let us fix a classical witness € {0, 1} that maximizes the probability that
accepts, givel/,, as oracle. LeS (w) be the set ofy))’s associated with a given witneas Since theS (w)’s form

a partition ofCP?" !, clearly there exists a witness, calkit, such that

i} 1
Pr () € S > 5

Fix thatw* (or in other words, hardwire* into A). Then to prove the theorem, it suffices to establish thefaotg
claim: A cannot distinguish the cagé = Uy, from the casé/ = I by makingo (,/73—11) queries tal/, with high

probability if |¢) is chosen uniformly at random fro@ (w*).

To prove the claim, we use a generalization of the hybrid mugnt of Bennett et al. [10]. Suppose thatnakes
T queriestd/. (Technically speaking, we should also allow queries taradled-U, but this will make no difference
in our analysis.) Then forall <¢ < T, let|®;) be the final state afl, assuming thal/ = I for the firstt queries,
andU = U, for the remainindl” — ¢t queries. Thu$®,) is the final state in case (i), whil@) is the final state in



case (ii). We will argue tha®,) cannot be very far fronfi®,_,), with high probability over the choice of marked
state|v). Intuitively, this is because the computationg®f) and|®;_,) differ in only a single query, and with high
probability that query cannot have much overlap with. We will then conclude, by the triangle inequality, théb)
cannot be far from®) unlessT is large.

More formally, letp, be the marginal state of the query register just beforgthguery, assuming the “control
case"U = 1. Also, letp; = > pi |¢i) (p:| be an arbitrary decomposition pf into pure states. Then for eveiythe
component ofy;) orthogonal tgv) is unaffected by thé'* query. Therefore

[1®0) = [®e-1)l, < Zpi -2 [{@il¥)]

= 22171 1/]|901 901|w>

< 2\/21%' (Plpi) (pil)

(Wlpel),

where the third line uses the Cauchy-Schwarz inequality #ilerage of the square root is at most the square root of
the average). Now let be the uniform probability measure ov&(w™*), and observe that is 2~"-uniform. So by
Lemma 3.2,

E e ~1@l)<2 B [Vl

|[Y)eo P)Eo

‘/|¢>e [(¥]pel)]

1+1n( 1/2 my

(=)

where the second line again uses the Cauchy-Schwarz iriggUgihally,

<2

[H|‘I’T> [®o)][5] < Z e |||‘I’t> |®1-1)ll,] = O (T m2—: 1)

lp)e

by the triangle inequality. This implies that, fgb,) and|®,) to be distinguishable witk2 (1) bias, we must have

T=0Q ( m+1

Using Theorem 3.3, we can straightforwardly show a quantranle separation betwe€MA andQCMA.
Proof of Theorem 1.1. Let L be a unary language chosen uniformly at random. The ofacte {U,,}, ., is as
follows: if 0" € L, thenU, |¢,,) = — |¢,,) for somen-qubit marked statéy,,) chosen uniformly at random, while
U, @) = |¢) whenever |y, ) = 0. Otherwise, ifo™ ¢ L, thenU,, is then-qubit identity operation.

Almost by definition,. € QMAY. For given a quantum witness), the QMA verifier first prepares the state
% (10Y |¢) + 1) |¢)), then applied/,, to the second register conditioned on the first registergodin  Next the
verifier applies a Hadamard gate to the first register, measyrand accepts if and only|if) is observed. 10" € L,
then there exists a withess—namely = |«,,)—that causes the verifier to accept with probability On the other
hand, if0™ ¢ L, thennowitness causes the verifier to accept with nonzero profabili

On the other hand, we claim that¢ QCMAY with probability 1 over the choice of. andU. This can be seen
as follows. Fix aQCMA machineM, and letSy; (n) be the event that/V succeedsn 0™: that is, eithel)” € L
and there exists a string such thatM acceptg0”) |w) with probability at leas®/3, or 0" ¢ L and MY accepts




|0™) |w) with probability at most /3 for all w. Then Theorem 3.3 readily implies that there exists a p@&sititeger
N such that for alh > N,

wl o

FB[SM(’N) |SI\VI(1)5---;SM(TL—1)]§

Hence
F%‘] [S]u (1) A S (2) A - ] =0.

Now, because of the Solovay-Kitaev Theorem [20], the nurobpossibleQCMA machines is only countably infinite.
So by the union bound,
Fg[ﬂM : Sy (1)/\5[\4 (2)/\] =0

aswell. m
We can similarly show a quantum oracle separation betw&#p/qpoly andBQP /poly.

Theorem 3.4 There exists a quantum oradlésuch thaBQPY /qpoly # BQPY /poly.

Proof. In this casel,, will act on 2n qubits. LetL be a binary language chosen uniformly at random, and let
L(z)=1if z € LandL (z) = 0 otherwise. Also, for alh, let|¢,,) be ann-qubit state chosen uniformly at random.
ThenU,, acts as follows: for alk € {0,1}",

Un ([} 2)) = (1)@ 1) |} ,

butU, (|¢) |z)) = |#) |=) wheneverd|s,) = 0. ClearlyL € BQPY /qpoly; we just takd),, ) as the advice. On the
other hand, by essentially the same argument as for Theaterorie can show thdt ¢ BQPU/pon with probability
loverLandU. m

3.1 Proof of Geometric Lemma
In this section we fill in the proof of Lemma 3.2, thereby coetjig the oracle separation theorems.

In proving Lemma 3.2, the first step is to ask the followingstien: among alp-uniform probability measures,
which is the one that maximizés;c, {|<w|0>|2} ? We can think of the set of quantum staf&®" ! as a container,
which contains a fluidr that is gravitationally attracted to the st##®. Then intuitively, the answer is clear: the way
to maximizeE ) ¢, {|<¢|O>|2} is to “fill the container from the bottom,” subject to the diymsonstraintpe < p. In

other words, the optimat should be the uniform measure over the reg®(p) given by|(:|0)| > h (p), whereh (p)
is chosen so that the volume &f(p) is ap fraction of the total volume of P ~'. The following lemma makes this
intuition rigorous.

Lemma 3.5 Among allp-uniform probability measures over CP" ~*, the one that maximizes ¢, [|<¢|0)|2} is
7 (p), the uniform measure over the regi®(p) defined above.

Proof. Since](1|0)|* is nonnegative, we can write

E [ 0 2}:/ Pr [ 0 22,}(1_
Wl = [ e i)l 2 v dy
We claim that setting := 7 (p) maximizes the integrand for every valuewpf Certainly, then, setting := 7 (p)
maximizes the integral itself as well.
To prove the claim, we consider two cases. First, i & (p)?, then

Pr 02>yl =1,
P (@il = ]



which is certainly maximal. Second,jf> h (p)2, then

w2 9] =

¥ >€T(

This is maximal as well, since

Pr [Iwlo)f* > ] <

lp)eo

P ([} > ).

for all p-uniform probability measures. m
Lemma 3.5 completely describes the probability measutethaimizest |, [| (1]0)] } except for one detail:
the value ofh (p) (or equivalently, the radius & (p)). The next lemma completes the picture.

[log1/p
— /1 pl/(N=1) — =Rt I
1-p (C] i

r(l@l0)] > k] = (1-h%)" T,

Lemma 3.6 For all p,

Proof. We will show that for allh,

|w>€u

wherey is the uniform probability measure ov&
yields the lemma.

Let 2 = (zo,...,2n_1) be a complex vector; then I6f = (ro,...,7N_1) and § = (0o, ...,0n_1) be real
vectors such that, = re' for each coordinaté. Also, letD be a Gaussian probability measure®ff, with
density function

PN~ Settingp := Priyyeu [[(1[0)] > h] and solving forh then

P(F) = P(7) = e lI7IE
Z) = (r)—W—Ne 2,

Letd 7 be shorthand fodrg - - - dry—1. Then we can express the probability that|0)| > h as

v [10)] = hf = Pr flzof = h 17271l

|w>e
= Pr [ro > h|7,]
T, 0
Z/ - P(?) ro--"TrnN-1 d?d?
7,0 :r02h|‘7|‘2
1 B 2
= (27T)N/ —e 17112 ro - rN_1 dT
T ro>hH [d || ™
= / / S 2€_Tg7°0d7°0 2N—le—rf—~»—rl2\,71 ridry - ry_1dry_1
T1,.0TN—1=0 %
= h?/(1-h%)gN—1 2
:/ e~ (rittria)n?/( 2 P rdry - ry_1dry_1
r1,.."N—1=0
* N—1,—(ri++r%_,)/(1-h?)
= 2 e 1 N-1 ridry - ry_1dry—1
r1,.."N—1=0
o 2 2 N-1
= / 9¢= 7/ (1=h )rdr>
=0
| ]



By combining Lemmas 3.5 and 3.6, we can now prove Lemma 3a2ifth is p-uniform, then for all mixed states

E [(6lol)] =O(M).

P

) €o N
Proof of Lemma 3.2.1f p < =) then the lemma is certainly true, so supppse e °Y)_ Since the concluding
inequality is linear inp, we can assume without loss of generality thas a pure state. Indeed, by symmetry we
can assume that = |0) (0. So our aim is to upper-bourit ¢, [|<w|0)|2] , Wwhereo is anyp-uniform probability

measure. By Lemma 3.5, we can assume without loss of getyetato = 7 (p) is the uniform measure over &ib)
such that(y|0)| > h (p). Then letting

) =apl0) + -+ an_1|N —1),

r=flasf 4+ fax

we have

|(wI0)] } 9) : loal2h(p) {laoﬂ

1 _ 2
[¢) : r2<1—h(p)* [ i }
fo 1-h(p)* 2N-3 (1 _ 7,2) dr

— 2
fo 1=h(p)” 2N -3 4,

\w)ET (p) [

| \
/\
_

+

=
—

_ (1+10g1/p)

where the last line follows from Lemma 3.@

4 Upper Bound

In this section we show that the lower bound of Theorem 3.3&dally tight. In particular, letV be ann-qubit
guantum oracle, and suppose we are givemabit classical proof thal/ is not the identity, but instead conceals a
marked statéy)) such thatll’ |)) = — [¢)). Then provide®n < m < 2", a quantum algorithm can verify the proof

by makingO (M?”/m) oracle calls td/. This matches our lower bound when> 2n.*

Let N = 2" be the dimension of/’s Hilbert space. Then the idea of our algorithm is to use asimi@f states
1) ..., |on) € CPY 1, atleast one of which has nontrivial overlap with every pstege inCP" . A classical
proof can then help the algorithm by telling it thig) that is closest tdy)). More formally, define thé-ball about

4Whenm < 2n, the best upper bound we know is the trivt[al<\/2”>. However, we conjecture thal <\/2”/m> is achievable in this case
as well.



|¢) to be the set ofy) such that/(¢|)| > h. Then define arh-net for CPY ! of sizeM to be a set of states
|¢1) ..., |par) such that everyy)) € CPY ! is contained in thei-ball about|¢;) for somei.® We will use the
following theorem, which follows from Corollary 1.2 of Bdéczky and Wintsche [11].

Theorem 4.1 ([11]) For all 0 < & < 1, there exists ah-net forCPY ! of size

o <N3/2 log (2 + Nh?) )

(1=~

Boroczky and Wintsche do not provide an explicit condiarcof such am:-net; they only prove that it exisfs.
Later, we will give an explicit construction with only slith worse parameters than those of Theorem 4.1. But first,
let us prove an upper bound on query complexity.

Theorem 4.2 Suppose we have anqubit quantum oraclé/ such that either (if/ = U,, for somely), or (i) U = I
is the identity operator. Then given am-bit classical witness in support of case (i), where> 2n, there exists a

guantum algorithm that verifies the witness us{i]?ngi\ /2" /m + 1) gueries taU.

Proof. By Theorem 4.1, there exists amnetS for CP?" ! of cardinality

23n/21 2_|_2nh2
s|=0 0824 207 )
(1—h?)

Setting|S| = 2™ gives
3n " 1

Solving forh, we obtain

B> \/m—3n/22; O(logn)’

which isQ («/m/Q”) providedm > 2n. So there exists a collection 8f = 2™ states|¢1) , ..., |¢n) € CP? 1,

such that for everyw)), there exists ansuch that(¢;|¢)| > h whereh = Q (\/m/zn).

Given an oraclé/ = U,,,, the classical witness € {0, 1}" will simply encode an indeksuch that(¢;|¢)| > h.
If we prepardq;) and feed it td/, then the probability of finding the marked stéate is |(¢;]¢)|” > h2. Furthermore,
if we do find|¢), we will know we did (i.e. a control qubit will b¢l) instead ofj0)). From these facts, it follows
immediately from the amplitude amplification theorem of @mo[15] and Brassard et al. [12] that we can find

with probability 2 (1) using
1 2m
o( 1) o (yZ 1)
queriestd/. m

Of course, if we care abogbmputationatomplexity as well as query complexity, then it is not enofatan /-
net to exist—we also need the states in/theet to be efficiently preparable. Fortunately, proving mplieit version
of Theorem 4.1 turns out to be simpler than one might expea wi do so with the help of the following inequality.

Lemma4.3Letx; > --- > xy > 0 be nonnegative real numbers witf + --- + 23 = 1. Then for allk €
{1,...,N},

max 71714_'”4_% 7]{

1<t<k Vi N [logy N

5These objects are often calleehets, with the obvious relatioh = cos e.

SNote that we cannot just start from an explicit constructidm sphere-packing, and then double the radius of the sphemget a covering.
We could do that if we wanted a covering@P"¥ —! by smallballs. But in our case is close to zero, which means that the balls already have
close to the maximal radius.
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Proof. Let L = [logy N. Thenforalli € {1,...,L},lets; =232, , +---+ 32, ,, where we adopt the convention
thatz; =0if j > N. Then
51+"'+SL:I%+"'+I?V:15

so certainly there exists ane {1,...,L} such thats; > 1/L. Fix thati. Then since ther;’s are arranged in

i—1 > 54 > —1

There are now two cases. Firstkif< 2¢—1 then

1+ -+ 1 1+ -+ 3g k k k
> > —Toi-1 > - > .
[ NG }— VE VR TV 2EL T\ Nlog, N

Second, iRi~1 < k then

max 1+t >x1+ +a:211> x >
i—1
1<t<k Vi - V92i V2i 2 \/ L - 1og2

This completes the prodf.m
We now use Lemma 4.3 to construct/amet.

max
1<t<k

Theorem 4.4 For all 0 < h < 1, there exists am-net|¢,) , ..., |éar) for CPN 1 of sizeM = 4N . 20(h*Nlog® N),
as well as a quantum algorithm that runs in time polynomidbin/ and that prepares the state;) giveni as input.

Proof. Assume without loss of generality that = 2 and M = 2™ are both powers di, and let|«)) be ann-qubit
target state. Then it suffices to show that a quantum algorittsing

m =logy M =n+2+ O (h*2"n?)

bits of classical advice, can prepare a statesuch that(¢[)| > h in time polynomial inm.

Letk := {WJ Also, let us expresig)) in the computational basis as

andlet|z1),...,|zn) be an ordering of basis states with the property that| > - -- > |a., |- Then by Lemma 4.3,
there exists an integere {1, ..., k} such that

N e o ko [k
Vi =\ N[log, N] V Nn’

Here we can assume that,,...,a,, are all nonzero, since otherwise we simply decrgaseNow let 3, be the
element of{1, —1,4, —i} that is closest ta,/ ||, with ties broken arbitrarily. Then our approximation|tg will

be the following:
1 t
% ; BZ'L

7One might wonder whether thg/1/ [log, N factor can be eliminated. However, a simple example shoatstthan be improved by at most
a constant factor. Suppose := 1/]%' wherew = > ~InN. Thenforallt € {1,..., N}, we have

Jj= 17
Ti4 o 2

~

Vi In N
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To specify|¢), the classical advice just needs to list...,z; ands,,,...,3.,. Sincet < k, this requires at most
k(n+2) < m bits. Given the specification, it is clear that) can be prepared in time polynomial th < m.
Moreover,

1 — ., 1 < o, %
<¢|¢>:%;ﬁ%azi2%;\/§z T

We can therefore sét:= /£, so thatk = 22 Nn. Hence

m<(n+2)(k+1)=(n+2)(2R°Nn+1) =n+2+ 0 (h*2"n?).

]
The following is an immediate consequence of Theorem 4.4.

Corollary 4.5 Suppose we have arqubit quantum oracld/ such that either (iU = U, for some|y), or (ii)
U = I is the identity. Then given an-bit classical witness in support of case (i), there existpiantum algorithm

that verifies the witness usin@ (n\/Q”/m + 1) queries toU, together withO (nQ\/Q”/m + poly (m)) steps of
auxiliary computation.

It is natural to ask whether we could construct a smallerieigl-net, and thereby improve the query complexity
in Corollary 4.5 fromO (n\/2"/m + 1) to the optimalD (\/2n/m + 1). We certainly believe that this is possible,
but it seems to require more complicated techniques frontiery of sphere coverings.

5 Group Non-Membership

The Group Non-Membershiga(NM) problem is defined as follows. We are given a finite gr@gpa subgroup
H < G, and an element € G. The problemis to decide whether H.

But how areGG, H, andx specified? To abstract away the details of this question, iNleuge Babai and Sze-
merédi’s model oblack-box group$8]. In this model, we know generators féf, and we know how to multiply and
invert the elements af/, but we “do not know anything else.” More formally, we areajivaccess to a group oracle
O, which represents each element G by a randomly-chosen labé(z) € {0,1}" for somen > log, |G|. We are
also given the labels of generatdfs, ..., ;) for H. We are promised that every element has a unique label.

Suppose that our quantum computer’s state has the form

@)= Dy ll(@) . L)),

z,yeG, 2z

wherel (x) and/ (y) are labels of group elements ah is a workspace register. Then the ora@lenaps this state
to

O|?) = Z Qgy» ‘é (x),¢ (xy71)> |2) .
z,y€G, 2

Note that if the first register does not contain valid labdlgrmup elements, the® can behave arbitrarily. Thus,
from now on we will ignore labels, and talk directly about tir@up elements they represent. Usifigit is easy to
see that we can perform group inversion (by putting the ileaemente in thez register) and multiplication (by first
invertingy, then puttingy—! in they register), as well as any combination of these operations.

We will show thatGNM has polynomially-bounde@CMA query complexity. In other words, if ¢ H, then
Merlin can provide Arthur with @oly (n)-bit classical witness of that fact, which enables Arthuréafy it with high
probability usingpoly (n) quantum queries to the group oracle

To prove this result, we first need to collect various factsrfrfinite group theory. Caly, ..., gi anefficient
generating sefor a finite groupG if (i) £ = O (log|G|), and (ii) everyz € G is expressible ag;* - - - g;* where
e1,...,ex € {0,1}. The following lemma was shown by Babai and Erdés [7].

12



Lemma 5.1 ([7]) Every finite group= has an efficient generating set.

Given finite group$” andG, we say that functiong, g : I' — G aree-closeif

<e.
Pr(f(a) #g@)<e
Also, recall thatf : ' — G is a homomorphism iff (zy) = f(z) f (y) for all z,y € T. The following two
propositions relate-closeness to homomorphisms.

Proposition 5.2 If two homomorphismg, g : ' — G are (1/2 — ¢)-close for any > 0, thenf = g.

Proof. Fix z € T'; then for ally € T', we havef (z) = f (y) f (v 'z) andg (z) = g (y) g (y"'z). By the union
bound,

Pr fW)=gWAfy ' 2)=gy )] >1- Prify#9()]-Pr [f (v 'z) £g(y '2)] >0.

Hence there existsgasuch thatf (y) = g (y) andf (y'z) = g (y'«). Butthisimplies thaf (z) = g (z). m
In particular, Proposition 5.2 implies that if a functigns 1/5-close to a homomorphism, then itlig5-close to a
uniquehomomorphismi/5 being an arbitrary constant less thgft).

Proposition 5.3 (Ben-Or et al. [9]) Given finite group$’ andG, a functionf : I' — G, and a real numbeg > 0, if

Pr [f(zy) # f(2) f(y)] < ¢

Y

thenf is e-close to a homomorphism.
Together, Propositions 5.2 and 5.3 have the following easyliary.

Corollary 5.4 There is a randomized algorithm which, given finite grolipand G and a functionf : I' — G as
input, make®) (1) oracle queries tgf, accepts with probability if f is a homomorphism, and rejects with probability
at least2/3 if f is not1/5-close to a homomorphism. Also,fifis 1/5-close to some homomorph@nthen there
exists a randomized algorithm that, given an input T", makesO (r) oracle queries tof, and outputsf(x) with
probability at leastl — 1/2".

In the present context, our algorithms are not limited incgpar time, and we can say for simplicity thiatis
represented by its entire multiplication table. It is thesye as the proof will require, to pick elementdofiniformly
at random. By contrasg is represented by oracle access, but there will be no nedtbtise its elements at random.
But note that even if accessowere restricted by an oracle model, it is still possible tkmglements at random using
an algorithm of Babai [5]; this is relevant to the discussimBection 5.1.
Proof. The first algorithm simply choos&3 (1) pairsz,y € T" uniformly at random, accepts jf (zy) = f (z) f (v)
for all of them, and rejects otherwise. Let= O (r). Then the second algorithm choosgs. . ., z;, € T uniformly
at random, and outputs the plurality answer amgig: ) f (217 ') .. ... f (zx) f (2; ‘=) (breaking ties arbitrarily).
]

It follows from the Classification of Finite Simple Groupsththere are at most two finite simple groups of any
particular order (see [13] for example). The following wietlown result is a combination of that fact and of a theorem
due to Neumann [24].

Theorem 5.5 There areN©((°52M)°) groups of orderV up to isomorphisné.

8The most accurate asymptotic result on the number of groupsier IV, in terms of the prime factorization @, appears in a paper by Pyber
[25].
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Finally, recall that the Hidden Subgroup ProbleHSP) is defined as follows. We are given a finite grotip
and oracle access to a functign: G — Z. We are promised that there exists a “hidden subgrdiipX G such
that f () = f (y) if and only if z andy belong to the same left coset &f. The problem is then to output a set of
generators foHH. WhetherHHSP can be solved in quantum polynomial time, for various noakah groups=, is one
of the most actively studied questions in quantum computidgwever, if we only care about query complexity, then
Ettinger, Hayer, and Knill [14] proved the following usefalsult.

Theorem 5.6 ([14]) There is a quantum algorithm such that, given any finite gr@ugs oracular input, solveHSP
using onlypolylog (|G|) quantum queries tg (together with a possibly exponential amount of postprsiogg®

We can now prove Theorem 1.2: ttaNM has polynomially-bounde@CMA query complexity.
Proof of Theorem 1.2.Let GG be a group of order at mo8t, and letO be a group oracle that maps each elemeit of
to ann-bit label. Also, given (the labels of) group element, ..., h,, € G, let H be the subgroup af generated
by (hi,...,hm). Then the problem is to decideif¢ H.

In our QCMA protocol for this problem, Merlin’s witness will consist thfe following:

e An explicit “model group'T", of order at mos2™.

e Alist of elementsyy, ...,y € T, wherek = O (log |T')).
e Acorresponding lisyy, ..., gx € G.

e Anotherlistz, A\1,..., A\, €.

We should be more explicit about the notion of an “explicitbgpI’, and about the syntax of this withess. By
Theorem 5.5, there are at m@sey (™) groups of ordefT’| < 2" up to isomorphism. Since Arthur is allowed unlimited
computatoin and is only restricted in queries, he can coasarfull multiplication table fof® using only the name of its
isomorphism type. The multiplication table is not uniquechuse the elementsibftan be permuted; but for instance
Arthur could construct the lexicographically first suchléalsince Merlin can anticipate Arthur’s constructiorighe
can then refer to elements Bfusing the same construction. He can also refer to elemerdissarice he understands
the oracle. In conclusion, Merlin can specify the withegagisnly poly (n) bits.

If Merlin is honest, then the witness will have the followitigee properties:

(1) 7,---,7 is an efficient generating set for
(2) =z ¢ A, whereA is the subgroup df generated by\y, ..., Ay).

(3) There exists an embeddirig: I' — G, such that (i)f (;) = g; foralli € {1,...,k}, (i) f(,;) = h; for all
je{1,...,m}, and (i) f (z) = =.

Suppose for the moment that (1)-(3) all hold. Then theretgxa embeddingN: I' — @, which maps the set
(y1,-..,y)inT tothe setgy, ..., gx) in G. Furthermore, this embedding satisffee\) = H andf (z) = z. Since
z ¢ A by (2), it follows thatx ¢ H as well, which is what Arthur wanted to check.

So it suffices to verify (1)-(3). In the remainder of the prowk will explain how to do this using a possibly
exponential amount of computation, but oplyly (n) quantum queries to the group oracle

First, since properties (1) and (2) only involve the expligoupI’, not the black-box groug, Arthur can verify
these properties “free of cost.” In other words, regardtédsow much computation he needs, he never has to query
the group oracle.

The nontrivial part is to verify (3). It will be convenient split (3) into the following sub-claims:

(3a) There exists a homomorphigm I — G such tha’g}“v('yl-) =g;foralli e {1,... k}.

9Indeed, foiNormal HSP (which is the special case we care about), Hallgren, Ryssell Ta-Shma [16] improved this result, showing how to
find a hidden subgroup using onty (log |G|) queries tof (again, with exponential postprocessing).
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(3b) f satisfiesf (z) = z andf (\;) = h; forall j € {1,...,m}.
(3¢) fis injective (i.e. is an embedding int®).

To verify (3a), first Arthur fixes a “canonical representatiof each elemeny € . This representation has the
form

Y= Ve

where(v1,...,7%) is the efficient generating set fof, andey,...,e; € {0,1} are bits depending om. Next he
defines a functiorf : I' — G by

) =97 gt

forall v € . By using the canonical representatiomofArthur can evaluatg () using at mosk — 1 queries to
the group oracl®. Finally Arthur appeals to Corollary 5.4. ffis not1/5-close to a homomorphism, then by using
O (1) queries tof, with high probability Arthur can detect thdtis not a homomorphism. In that case Merlin has
been caught cheating, so Arthur rejects. On the other hhyidsil /5-close to some homomorphisfnthen by using

O (log|T'|) queries taf, with high probability Arthur can “correct} to f In that case it remains only to check that
f(y) =g forallic {1,... k}.

Once Arthur has an efficient procedure for computjfvﬁgthat is, a procedure that involves onlyly (n) queries
to O—he can then verify property (3b) directly.

To verify (3c), Arthur runs the algorithm of Ettinger, Hgyeand Knill [14] for the Hidden Subgroup Problem.
Notice that, smcg‘ I' — G is a homomorphism, there must be a “hidden subgrdiip I'—namely the kernel of
f—such thatf is constant on cosets & and distinct on distinct cosets. Furthermq;fes injective if and only if K
is trivial. But deciding whethek is trivial is just an instance dfiSP, and can therefore be solved usingly (n)
guantum queries by Theorem 5.4.

5.1 Computational Complexity

Theorem 1.2 showed that one can always verify group non-reeship using a polynomial-size classical witness,
together with polynomially many quantum queries to the grotacleO. Unfortunately, while thguerycomplexity is
polynomial, thecomputationatomplexity might be exponential. However, as mentionedsicti®n 1.1, we conjecture
that this shortcoming of Theorem 1.2 can be removed, andaNatl is in QCMA for any group oracl®.

In our QCMA protocol, the main computational problem that needs to bedads not the generdlSP, but rather
the Normal Hidden Subgroup Problet{SP)—that is,HSP where the hidden subgroup is normal. This is because
the kernel of a homomorphism is always a normal subgrouplgkéad, Russell, and Ta-Shma [16] showed K&tSP
is in BQP for an explicit groud”, provided that the quantum Fourier transform averan be implemented efficiently
(and its output can be interpreted). Furthermore, MoorekRwre, and Russell [22] showed that many classes of
finite groupsG have an explicit moddl' = G for which this assumption holds.

Even if NHSP is in BQP, there are two remaining obstacles to showing s is in QCMA. First, we need to
be able to verify group non-membership in the explicit magtelupI’, possibly with the help of additional classical
information from Merlin. Second, we need an efficient altiori to compute the functioﬁ: I' — Gforeveryy €T,
even thougrfis explicitly defined only on the generators . . ., yx.

Actually, Laszlo Babai pointed out to us (private commutiara) that there does not exist a notion of an “explicit”
model of a finite group which is suitable for all finite groupglaall algorithms. What we really mean by “explicit”
is a definition such that all steps of our sketched algoritheredficient. More precisely, we need that for every finite
groupd, there should exist an isomorphic grolg2 G with the following properties:

(i) T has afixed list of generatorg, ...,y € T with £ = O (polylog |G|).

(i) Thereis an algorithm to generate an approximately cemélementy € T', expressed as a (polylogarithmically)
short product ofy, . .., v%. (This may be essentially established; see Babai [5].)
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(i) NHSP overI is in BQP. If the Hallgren-Russell-Ta-Shma algorithm is used, th&heuld be an a string
encoding of elements df. There must be an efficient way to prepare the constant pate|B}, which for
instance could be based on an efficient membership test. fhleea should be an algorithm for the quantum
Fourier transform over'. In this case the QFT produces randomly-chosen charactéhe @uotient group
T'/A for some normal subgroup (the hidden subgroup). The characters must be encodedtsbithaasy to
recognize\, or at least confirm that it is trivial.

(iv) GNM overI'is in QCMA. The clasQCMA may even be overkill at this step, since in settled exam@Ea1
isin NP or even inP.

If I is the symmetric grouf,,, or an abelian group expressed as a product of cyclic grouffst is a matrix group
GL(n,Z/p), then the obvious notation for group elements is amenabtee@bove requirements for explicitness.
Moreover, in each of these examples there is an easy gergesati that satisfies (i) and (ii) (exercise for the reader).
However, for general finite groups even this much is not knowtnis known for finite simple groups except for
Chevalley groups of typéss, where it is strongly suspected. We may speculate that tkexggood explicit model
for any non-simple group using its Jordan-Holder compmsiseries. However, there no known polylogarithmic
description of the “glue” in such a composition series.(the data that determines the group extensions); the durren
best result for solvable groups is quasipolylogarithmig[1

Nonetheless, all steps have already been completed foraéel@sses of groups. For exampleTif= Z/r; x
.-+ X Z/ry is abelian, thetNHSP is in BQP by the work of Shor [28] and Kitaev [19(zNM is in P by linear algebra.
Another example i$' = S,,. In this caseNHSP is trivial (since the only normal subgroup.s,) andGNM is in P by
the work of Sims [29]. We optimistically conjecture thatstéps can be completed for arbitrary finite groups.

6 Mimicking Random Quantum Oracles

We have seen, on the one hand, that there exists a quantule separatinddMA from QCMA; and on the other
hand, that separating these classes Isjaasicaloracle seems much more difficult. Together, these resulie e
general question: how much “stronger” are quantum orabl@s tlassical ones? In particular, are there complexity
classe€ andD that can be separated by quantum oracles, but such thagtiagahem by classical oracles is almost
as hard as separating them in the unrelativized world? Wheathe answer, we conjecture tHMA and QCMA
arenot examples of such classes. The reason is that it seems @osssbig only classical oracles, to approximate
guantum oracles similar to ones that would sepg@f from QCMA.

To illustrate, leto be the uniform probability measure ov@t x 2™ unitary diagonal matrices. (In other words,
each diagonal entry aD € o is a random complex number with nortt) Also, let H®™ be a tensor product of
Hadamard matrices. Then lgtbe the probability measure ov&'t x 2™ unitary matrices

U= D,H®"D),_{H®" ... H®"D, H®™

induced by drawing each; independently frona. In other wordslJ € ¢ is obtained by first applying a Hadamard
gate to each qubit, then a rand@fx 2" diagonal matrix, then Hadamard gates again, then anothéonadiagonal
matrix, and so otk times.

Note that we can efficiently apply sucia—at least to polynomially many bits of precision—if givenlagsical
random oracled. To do so, we simply implement the random diagonal matrpas

Y oal = Y wtia, ),

ze{0,1}" z€{0,1}"

whereA (i, z) is a uniformly randomu-bit integer indexed by andz, andw = ¢27%/2",
Now let 1 be the uniform probability measure oVt x 2™ unitary matrices. I < 2™, theng is not close to
w in variation distance, since the former has o@lyk2") degrees of freedom while the latter agk4™).1° On the

10Admittedly, it is still conceivable that the finite-preaisi version ofgy, is close in variation distance to the finite-precision amsof ..
However, a more sophisticated argument that counts digshgble unitaries rules out that possibility as well.
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other hand, we conjecture that/adrawn fromg;, will “look random” to any polynomial-time algorithm, andahthis
property can be used to prove a classical oracle separatarebnQMA andQCMA.

Let us explain what we mean in more detail. Suppose we are gigeess to an-qubit unitary oracld/, and
want to decide whether

(i) U was drawn uniformly at random (that is, from), or
(i) U was drawn uniformly at random conditioned on there existifig-qubit pure states)) and|y) such that

U (102 [0)) = 10" ).

In case (i), the statgg)) and|y) will exist only with negligible probability:* It follows that the above problem
is in QMAY —since if case (i) holds, then a succinct quantum proof af fhct is just+)) itself. We now state three
conjectures about this problem, in increasing order ofaiffy.

Conjecture 6.1 The above problem is not QCMAY . In other words, if case (ii) holds, there is no succinct slaal
proof of that fact that can be verified with high probabilityimg poly (n) quantum queries t¢'.

Presumably Conjecture 6.1 can be proved using ideas sitnitapse in Section 3. If so, then the next step is to
replace the uniform measureby the “pseudorandom” measuge

Conjecture 6.2 Suppose that instead of being drawn framthe unitaryU is drawn fromg;, for somek = Q (n).
Then the probability that there exist/2-qubit states) and |) such thatl/ (|0>®"/2 |¢>) ~ 02 ) is il
negligibly small.

Now suppose we want to decide whether
(") U was drawn fromy, or

(i) U was drawn fromy,, conditioned on there existing/2-qubit stateg:)) and|y) such that/ (|O>®"/2 |1j)>) ~
0)°""% o).

Also, let A be a classical oracle that encodes the diagonal matfiges . , D;, such that
U= D,H®*"D;_1H®"... H®" D, H®".

If Conjecture 6.2 is true, then case (ii’) can be verifieQA*. So to obtain a classical oracle separation between
QMA andQCMA, the one remaining step would be to prove the following.

Conjecture 6.3 Case (ii’) cannot be verified iIQCMA“.

6.1 From Random Oracles to Random Unitaries

The previous discussion immediately suggests even simplestions about the ability of classical oracles to mimic
guantum ones. In particular, couldBQP machine use a classical random oracle to prepare a unifganjom
n-qubit pure state? Also, could it use such an oracle to appydomn-qubit unitary?

In this section we answer the first question in the affirmagwel present partial results about the second question.
We first need a notion that we call the-Smoothing” of a probability measure.

Uindeed, the reason we did not ask fer — 1)-qubit stategy) and|y) such thatJ (|0) |¢)) = |0) |¢) is that such states will exist (almost)
generically. For the choice dfy) gives us2”~! — 1 independent complex variables, whereas the requiremahtiti|0) |+)) have the form
|0) |) imposes only2™—1 constraints. Asking fo(n — 2)-qubit stategy) and|e) such thatl/ (|00) |1)) ~ |00) |¢) might suffice (since now
we have2™~2 — 1 variables versu8 - 22 constraints), but we wish to stay on the safe side.
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Definition 6.4 Let o be a probability measure ovén) € CP?"~'. Then thes-smoothing ofr, or S (o), is the
probability measure obtained by first drawing a state from o, and then drawing a statey) uniformly at random
subject to(p|y) > 1 —e.

Let i be the uniform measure ovéiP?" 1. Also, letQ be a guantum algorithm that queries a classical ordcle
Suppose that, gived’ as input,Q* outputs the pure statg4) € CP?"~'. Thenwe say thaf) “approximates the
uniform measure withia” if, as we range over uniform randorh C {0, 1}", the induced probability measuseover
|t4) satisfied|S: (o) — p|| < e.

Theorem 6.5 For all polynomialsp, there exists a quantum algorith@ that runs in polynomial time, and that
approximates the uniform measure wit@in?("),

Proof Sketch. The algorithm@ is as follows: first prepare a uniform superposition owdit strings. Then, using
the classical random orackas a source of random bits, map this state to

=g X 0 (Vim0 ).

z€{0,1}"™

where eachy, is essentially a Gaussian random variable. More precisetly, (n) = (n+p(n))>. Then each
o, is drawn independently from a complex Gaussian distriloutiith mean0 and variance /g (n), with the two
technicalities that (1), is rounded ta; (n) bits of precision, and (2) the cutdff,.| < 1isimposed. (By atail bound,
with overwhelming probability we will havéy,| < 1 for all z anyway.)

Next measure the second registef®j in the standard basis. The outcopgwill be observed with probability
Q(1/q(n)). Furthermore, conditioned di) being observed, one can check that the distribusi@ver the reduced
state of the first register satisfiés, .., (0) — u|| < 277, (We omit the calculation.) Hence it suffices to repeat
the algorithmO (g (n)) times. m

Theorem 6.5 shows that, by using a classical random oréclee can efficiently prepare a uniformly random
n-qubit stateli4). But what if we want to use a random oracle to apply a uniforratlydomn-qubit unitary U, ?

It is clear that we can do this if we have exponential timeegian oracled, we simply query an exponentially long
prefix A* of A, and then treatl* as an explicit description of a quantum circuit i@x. But what if we can make
only polynomially many quantum queries ## We do not know whether that suffices for applying a randortauyti
indeed, we do not even have a conjecture about this.

What wecanshow is that a single quantum query to the classical otddees not suffice for applying a random
unitary. In particular, suppose every entry ofragubit unitary matrixU 4 is a degred- polynomial in the bits ofd
(as it must be, it/ is the result of a single quantum query). THém can assume at most~ distinct values as we

range over the possibléd’s, as opposed to the ") that would be needed to approximate evergubit unitary.
To prove this statement, we first need a lemma about matritis$ysng a certain algebraic relation.

Lemma 6.6 LetEy, ..., Ey be nonzeraV x N matrices ovefC, and suppose thaﬁ?iE} + EJ-EZT =0forall i # j.
ThenM < 2N.

Proof. Suppose by contradiction thaf > 2N. Let egk) be vector inCY corresponding to th&*" row of E;. Then
the conditionEz-E;f + E,E! = 0implies that

ek) -e§l) + eg-k) D=0

2 2

for all ¢ # j andk, [, where- denotes the complex inner product. Now foréallet & (i) be the minimunk such that
egk) # 0, and consider the vectoeék(l)), ceey eg\’}(M)) € CN. Certainly these vectors are not all orthogonal—indeed,

sinceM > 2N, there must exist # j such thaRe (ez(.k(i)) . elg.k(j))) # 0. There are now two cases:kf(i) = k (j),

then ‘
eEk(z)) e

() | () ) 4

J
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and we are done. On the other hand; {) # k (5), then

) (O (@) (R)

j i i €j

is nonzero. Hence!*”) and egk(j)) must themselves be nonzero. Butifi) > k (j), then this contradicts the
minimality of k (¢), while if & (i) < k (j) then it contradicts the minimality df (). m
We can now prove the main result.

Theorem 6.7 Let U (X) be anN x N matrix, every entry of which is a degréezomplex polynomial in variables
X = (x1,...,21). Supposé/ (X) is unitary for all X € {0,1}*. ThenU (X) can assume at mosf" distinct
values as we range ove¥ € {0,1}".

Proof. By suitable rotation, we can assume without loss of gertgridlat U/ (0’“) istheN x N identityI. Let X; be
the k-bit string with a 1’ only in the i** position, and lef; := U (X;) — I. Then for alli,

BE] = (U (X;) - 1) (U (x)t - IT)
=T1-U(X;)-U(X) +1
=-E;—E.

Next, for alli # j, let X;; be thek-bit string with ‘1's only in thei* and ;" positions. Sincé/ (X) is an affine
function of X, we have

U (Xij) = U (0°) + (U (X3) = U (0%)) + (U (X;) = U (0%))
=I+E +Ej.
Therefore
0=U (X)) U(Xij)' =1
= (I+Ei+Ej)(IT+EJ+E}) — T
- (EZEJ +Ej5j.) + (ElEj +EjEj) + (Ez +Ej) + (Ej +EJT)
= E;E! + E;E].

Here the first line uses unitarity, and the fourth line usesfdet thate; + E] = —E;E] andE; + El = —E;E].
Lemma 6.6 now implies that there can be at nid$tnonzeraF;’s. Hencel (X ') can depend nontrivially on at most
2N bits of X, and can assume at magt¥ values. m

7 Open Problems

The most obvious problems left open by this paper are, fogirdve a classical oracle separation betw@&hA and
QCMA, and second, to prove that the Group Non-Membership proldéemQCMA. We end by listing four other
problems.

(1) The clasQMA (2) is defined similarly tdQMA, except that now there are two quantum provers who are guar-
anteed to share no entanglement. Is there a quantum orkatlee¢o whichQMA (2) # QMA?

(2) Is there a quantum oracle relative to whBAP /qpoly ¢ QMA /poly? This would show that the containment
BQP/qpoly C PP /poly proved in [2] is in some sense close to optimal.
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(3) Can we use the ideas of Section 6 to give a classical orgeliéve to whiclBQP ¢ PH? What about a classical
oracle relative to whiciNP C BQP butPH ¢ BQP?'?

(4) Is there a polynomial-time quantum oracle algorit@msuch that for every.-qubit unitary transformatioty,
there exists a classical oractesuch thatQ“ approximately implement&? Alternatively, would any such
algorithm require more thapoly (n) queries ta4A?3
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