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ABSTRACT
Several researchers, including Leonid Levin, Gerard ’t Hooft,
and Stephen Wolfram, have argued that quantum mechan-
ics will break down before the factoring of large numbers be-
comes possible. If this is true, then there should be a natural
set of quantum states that can account for all quantum com-
puting experiments performed to date, but not for Shor’s
factoring algorithm. We investigate as a candidate the set of
states expressible by a polynomial number of additions and
tensor products. Using a recent lower bound on multilinear
formula size due to Raz, we then show that states arising in
quantum error-correction require nΩ(log n) additions and ten-
sor products even to approximate, which incidentally yields
the first superpolynomial gap between general and multilin-
ear formula size of functions. More broadly, we introduce a
complexity classification of pure quantum states, and prove
many basic facts about this classification. Our goal is to
refine vague ideas about a breakdown of quantum mechan-
ics into specific hypotheses that might be experimentally
testable in the near future.
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1. INTRODUCTION

QC of the sort that factors long numbers seems
firmly rooted in science fiction . . . The present
attitude would be analogous to, say, Maxwell
selling the Daemon of his famous thought exper-
iment as a path to cheaper electricity from heat.
—Leonid Levin [30]

Quantum computing presents a dilemma: is it reasonable to
study a type of computer that has never been built, and
might never be built in one’s lifetime? Some researchers
strongly believe the answer is ‘no.’ Their objections gener-
ally fall into four categories:

(A) There is a fundamental physical reason why large quan-
tum computers can never be built.

(B) Even if (A) fails, large quantum computers will never
be built in practice.

(C) Even if (A) and (B) fail, the speedup offered by quan-
tum computers is of limited theoretical interest.

(D) Even if (A), (B), and (C) fail, the speedup is of limited
practical value.1

The objections can be classified along two axes:

Theoretical Practical
Physical (A) (B)
Algorithmic (C) (D)

This paper focuses on objection (A). Its goal is not to win a
debate about this objection, but to lay the groundwork for a
rigorous discussion, and thus hopefully lead to new science.
Section 2 provides the philosophical motivation for our pa-
per, by examining the arguments of several quantum com-
puting skeptics, including Leonid Levin, Gerard ’t Hooft,
and Stephen Wolfram. It concludes that a key weakness of
their arguments is their failure to answer the following ques-
tion: Exactly what property separates the quantum states we
are sure we can create, from those that suffice for Shor’s

1Because of the ‘even if’ clauses, the objections seem to us
logically independent, so that there are 16 possible positions
regarding them (or 15 if one is against quantum computing).
We ignore the possibility that no speedup exists, in other
words that BPP = BQP. By ‘large quantum computer’
we mean any computer much faster than its best classical
simulation, as a result of asymptotic complexity rather than
the speed of elementary operations. Such a computer need
not be universal; it might be specialized for (say) factoring.



factoring algorithm? We call such a property a Sure/Shor
separator. Section 3 develops a complexity theory of pure
quantum states, that studies possible Sure/Shor separators.
In particular, it introduces tree states, which informally are
those states |ψ〉 ∈ H⊗n

2 expressible by a polynomial-size
‘tree’ of addition and tensor product gates. For example,
α |0〉⊗n + β |1〉⊗n and (α |0〉 + β |1〉)⊗n are both tree states.

Our main results, proved in Section 5, are lower bounds
on tree size for several families of quantum states. Specifi-
cally, we show in Section 5.1 that if C is a coset in Zn2 , then
a uniform superposition over the elements of C cannot be
represented by a tree of size no(log n), with high probability if
C is chosen at random.2 Indeed, with high probability such
states are not even approximated by trees of size no(log n).
These ‘coset states’ are exactly what arise in stabilizer codes,
a type of quantum error-correcting code.

Originally, we had hoped to show a tree size lower bound
for states that arise in Shor’s factoring algorithm—for ex-
ample, a uniform superposition over all multiples of a fixed
positive integer p, written in binary. However, we were only
able to show such a bound assuming a number-theoretic con-
jecture, which is stated in Section 5.2.

Our lower bounds use a sophisticated recent technique of
Raz [35], which was introduced to show that the permanent
and determinant of a matrix require superpolynomial-size
multilinear formulas. Currently, Raz’s technique is only
able to show lower bounds of the form nΩ(log n), but we con-
jecture that 2Ω(n) lower bounds hold in all of the cases dis-
cussed above.

The full version of this paper goes on to address the fol-
lowing question. If the state of a quantum computer at
every time step is a tree state, then can the computer be
simulated classically? In other words, letting TreeBQP be
the class of languages accepted by such a machine, does
TreeBQP = BPP? A positive answer would make tree
states more attractive as a Sure/Shor separator. For once
we admit any states incompatible with the polynomial-time
Church-Turing thesis, it seems like we might as well go all
the way, and admit all states preparable by polynomial-size
quantum circuits! Although we leave this question open,
we do show that TreeBQP ⊆ ΣP

3 ∩ ΠP
3 , where ΣP

3 ∩ ΠP
3 is the

third level of the polynomial hierarchy PH. By contrast, it
is conjectured that BQP 6⊂ PH, though admittedly not on
strong evidence.

We conclude in Section 6 with some open problems.

1.1 The Experimental Situation
An earlier version of this paper advanced the thesis that

all quantum states prepared to date are best seen as tree
states. It also proposed an experiment whose goals would
be to (1) prepare coset states that provably have large tree
size, and (2) demonstrate by tomography that these states
were indeed prepared. We argued that such an experiment
would do more than test the feasibility of quantum error-
correction—it would provide an important new test of quan-
tum mechanics itself. We have not changed this opinion.
However, we have since learned that there exist condensed-
matter systems that have already been experimentally stud-
ied, and whose states very likely have superpolynomial tree

2This result has a corollary of independent complexity-
theoretic interest—the first superpolynomial gap between
formula size and multilinear formula size of functions f :
{0, 1}n → R.

size. An example is the magnetic salt LiHoxY1−xF4 con-
sidered by Ghosh et al. [18], which, like the cluster states
of Briegel and Raussendorf [9], basically consists of a lattice
of spins subject to pairwise nearest-neighbor Hamiltonians.
So, in evaluating an experimental claim that a system’s state
has superpolynomial tree size, we now believe there are three
crucial issues:

(1) How much experimental control is available? It is one
thing to infer a system’s state from bulk properties such as
magnetic susceptibility and specific heat, and quite another
to prepare a system in that state by (say) applying a known
pulse sequence.

(2) How explicitly can we write down the hypothesized
state? Do we know all pairwise interaction strengths to
within some accuracy? If not, can we at least specify a
probability distribution from which they were drawn? Also,
for proving lower bounds, knowing a system’s Hamiltonian
is not enough; we need to be able to solve to obtain an
explicit formula for the amplitudes at a particular time t.

(3) Does the state contain localized subsystems that can
be interpreted as qubits? Or is the state a “soup” of free-
wandering fermions or bosons? If the latter, it makes no
sense to talk about the state’s tree size; a different complex-
ity measure would be needed.

Let us make two further points. First, since tree size is an
asymptotic notion, when we say that an n-qubit state |ψn〉
was “prepared,” what we really mean is that (say) |ψ50〉 or
|ψ100〉 was prepared, and that we have no reason to suppose
that preparing |ψ10000〉 or |ψ10000000〉 would be fundamen-
tally different. Second, for simplicity we consider only pure
states, but one can imagine several ways of extending our
formalism to mixed states. For example, given a mixed
state ρ, we could minimize tree size over all purifications of
ρ, or minimize the expected (or maximum) tree size over all
decompositions ρ =

∑
i αi |ψi〉 〈ψi|.

1.2 Recent Developments
Since this paper was first written, there have been three

exciting developments of purely mathematical nature. First,
we managed to ‘derandomize’ our lower bounds to show that
certain explicit coset states have tree size nΩ(log n). Second,
we showed exponential lower bounds on the “manifestly or-
thogonal” tree size of coset states, a notion defined in Section
3. The main ideas of these two developments are given in
Section 5.1.

The third development is an nΩ(log n) tree size lower bound
on 2-dimensional cluster states as proposed by Briegel and
Raussendorf [9]. These states have the form

1

2n/2

∑

x

(
∏

i,j

(−1)xijxi(j+1)+xijx(i+1)j

)
|x〉

where x = (xij) is a
√
n × √

n array of bits and i, j ∈
{1, . . . ,√n} are indices that wrap around. Intriguingly,
the 1-dimensional analogues of cluster states (called spin
chains) have polynomially-bounded tree size.

Cluster states have attracted a great deal of attention re-
cently, mostly because of their application to quantum com-
puting via 1-qubit measurements only [34]. However, Dür
and Briegel [13] gave another interesting property of cluster
states: they are “persistently entangled,” in the sense that
one can distill n-partite entanglement from them even after
each qubit has interacted with a heat bath for an amount of



time independent of n. Persistence of entanglement turns
out to be closely related to how we show tree size lower
bounds using Raz’s technique. In physical terms, Raz’s
technique involves measuring most of a state’s qubits, then
partitioning the unmeasured qubits into two subsystems of
equal size, and arguing that with high probability those two
subsystems are still almost maximally entangled. In light
of this connection between large tree size and robustness to
decoherence, it is not so surprising that the first states for
which we obtained an nΩ(log n) tree size lower bound are the
states arising in quantum error-correction.3

2. HOW QUANTUM MECHANICS COULD
FAIL

This section discusses objection (A), that quantum com-
puting is impossible for a fundamental physical reason. Al-
though this objection has been raised by several physicists,
including Gerard ’t Hooft [23] and Stephen Wolfram [39],
we will begin with the arguments of Leonid Levin [30, 31],
since those are the best known to computer scientists.4 The
following is a sample of points made by Levin that we were
able to understand. We should mention that Levin does
not consider our sample to be an accurate summary of his
views; thus, readers are encouraged to consult [30, 31] where
Levin makes further points, for example about a distinction
between topological and metric approximation.

First, Levin draws an analogy between quantum comput-
ing and the unit-cost arithmetic model, suggesting that if
we reject the latter as extravagant, then we should also re-
ject the former. “[Shamir] proved . . . that factoring (on
infeasibility of which RSA depends) can be done in polyno-
mial number of arithmetic operations. This result uses a
so-called ‘unit-cost model,’ which charges one unit for each
arithmetic operation, however long the operands . . . The
closed-minded cryptographers, however, were not convinced
and this result brought a dismissal of the unit-cost model,
not RSA” [30]. Levin then says about quantum comput-
ing: “Another, not dissimilar, attack is raging this very mo-
ment.”

Second, in a newsgroup discussion [31] involving Levin,
Daniel Gottesman, and others, Gottesman began a defense
of quantum error-correction as follows: “We know linearity
and all other laws of quantum mechanics are at least approx-
imately true. Let us fix, for the sake of convenience, some
degree of accuracy to which this approximation is correct—
say, 20 digits.” Levin interjected: “To this accuracy all
these amplitudes are 0.” Later Levin again said: “Rounded

to 10−4 (if not to 10−104

:-), all amplitudes in your algo-
rithm would be 0.” To us, the most natural interpretation
of these remarks is that Levin wishes to subject amplitudes
to additive rather than multiplicative error. That is, he

3The connection is not exact: Dür and Briegel [13] showed
that even spin chains are persistently entangled, whereas
these have polynomial tree size as mentioned previously. So
it would be interesting to study formally the relation be-
tween tree size and persistence of entanglement.
4Since this paper was written, Oded Goldreich [19] has
also put forward an argument against quantum computing.
Compared to Levin’s arguments, Goldreich’s is easily under-
stood: he believes that Shor states have exponential “non-
degeneracy” and therefore take exponential time to prepare,
and that there is no burden on those who hold this view to
suggest a definition of non-degeneracy.

imagines an error process that corrupts the amplitude αx
of each basis state |x〉 to αx ± ε, rather than to αx (1 ± ε)
as is assumed in results on quantum fault-tolerance due to
Aharonov and Ben-Or [3] among others.5 In the additive
case, clearly only classical computation is possible, since an
adversary could corrupt all but O (1/ε) amplitudes to 0.

Third, Levin sees no reason even to hypothesize that quan-
tum mechanics remains valid to the accuracy needed for
quantum computing. “We have never seen a physical law
valid to over a dozen decimals. Typically, every few new
decimal places require major rethinking of most basic con-
cepts. Are quantum amplitudes still complex numbers to
such accuracies or do they become quaternions, colored gra-
phs, or sick-humored gremlins?” [30]

Fourth, Levin rejects the idea that quantum computing re-
search “wins either way”—either by building quantum com-
puters, or by discovering that our current understanding
of quantum mechanics is incomplete. In his words [30]:
“[Consider] this scenario. With few q-bits, QC is eventu-
ally made to work. The progress stops, though, long before
QC factoring starts competing with pencils. The QC peo-
ple then demand some noble [sic] prize for the correction to
the Quantum Mechanics. But the committee wants more
specifics than simply a nonworking machine, so something
like observing the state of the QC is needed. Then they
find the Universe too small for observing individual states
of the needed dimensions and accuracy. (Raising sufficient
funds to compete with pencil factoring may justify a Nobel
Prize in Economics.)”

Levin points out that, by a simple counting argument, a
‘generic’ state |ψ〉 ∈ H⊗n

2 is indistinguishable from the set
of states |ϕ〉 such that |〈ψ|ϕ〉| ≤ ε by quantum circuits of
subexponential size. “So, what thought experiments can
probe the QC to be in the state described with the accuracy
needed? I would allow to use the resources of the entire
Universe, but not more!”

A few responses to Levin’s arguments can be offered im-
mediately. First, even classically, one can flip a coin a thou-
sand times to produce probabilities of order 2−1000. Should
one dismiss such probabilities as unphysical, or subject them
to additive rather than multiplicative noise? At the very
least, it is not obvious that amplitudes should behave dif-
ferently than probabilities with respect to error—since both
evolve linearly, and neither is directly observable.

Second, if Levin believes that quantum mechanics will fail,
but is agnostic about what will replace it, then his argument
can be turned around. How do we know that the successor
to quantum mechanics will limit us to BPP, rather than
letting us solve (say) PSPACE-complete problems? This is
more than a logical point. Abrams and Lloyd [2] argue
that a wide class of nonlinear variants of the Schrödinger
equation would allow NP-complete and even #P-complete
problems to be solved in polynomial time. And Penrose
[33], who proposed a model for ‘objective collapse’ of the
wavefunction, believes that his proposal takes us outside the
Kleene hierarchy!

Third, to falsify quantum mechanics, it would suffice to
show that a quantum computer evolved to some state far
from the state that quantum mechanics predicts. Measur-

5In personal correspondence, Levin denied this interpreta-
tion, claiming that it makes no sense to discuss any equa-
tions governing a quantum computer—whether subject to
additive, multiplicative, or any other kind of error.



ing the exact state is unnecessary. Nobel prizes have been
awarded in the past ‘merely’ for falsifying a previously held
theory, rather than replacing it by a new one. An example
is the physics Nobel awarded to Fitch [14] and Cronin [12]
in 1980 for discovering CP symmetry violation.

Perhaps the key to understanding Levin’s unease about
quantum computing lies in his remark that “we have never
seen a physical law valid to over a dozen decimals.” Here
he touches on a serious epistemological question: How far
should we extrapolate from today’s experiments to where quan-
tum mechanics has never been tested? We will try to ad-
dress this question by reviewing the evidence for quantum
mechanics. For our purposes it will not suffice to declare the
predictions of quantum mechanics “verified to one part in a
trillion,” because we need to distinguish at least three dif-
ferent types of prediction: interference, entanglement, and
Schrödinger cats. Let us consider these in turn.

(1) Interference. If the different paths that an electron
could take in its orbit around a nucleus did not interfere de-
structively, canceling each other out, then electrons would
not have quantized energy levels. So being accelerating
electric charges, they would lose energy and spiral into their
respective nuclei, and all matter would disintegrate. That
this has not happened—together with the results of (for ex-
ample) single-photon double-slit experiments—is compelling
evidence for the reality of quantum interference.

(2) Entanglement. One might accept that a single par-
ticle’s position is described by a wave in three-dimensional
phase space, but deny that two particles are described by
a wave in six -dimensional phase space. However, the Bell
inequality experiments of Aspect et al. [7] and successors
have convinced all but a few physicists that quantum entan-
glement exists, can be maintained over large distances, and
cannot be explained by local hidden-variable theories.

(3) Schrödinger Cats. Accepting two- and three-
particle entanglement is not the same as accepting that
whole molecules, cats, humans, and galaxies can be in co-
herent superposition states. However, recently Arndt et al.
[6] have performed the double-slit interference experiment
using C60 molecules (buckyballs) instead of photons; while
Friedman et al. [15] have found evidence that a supercon-
ducting current, consisting of billions of electrons, can enter
a coherent superposition of flowing clockwise around a coil
and flowing counterclockwise (see Leggett [29] for a survey
of such experiments). Though short of cats, these experi-
ments at least allow us to say the following: if we could build
a general-purpose quantum computer with as many compo-
nents as have already been placed into coherent superposi-
tion, then on certain problems, that computer would outper-
form any computer in the world today.

Having reviewed some of the evidence for quantum me-
chanics, we must now ask what alternatives have been pro-
posed that might also explain the evidence. The simplest al-
ternatives are those in which quantum states “spontaneously
collapse” with some probability, as in the GRW (Ghirardi-
Rimini-Weber) theory [17]. (Penrose [33] has proposed an-
other such theory, but as mentioned earlier, his suggests
that the quantum computing model is too restrictive.) The
drawbacks of the GRW theory include violations of energy
conservation, and parameters that must be fine-tuned to
avoid conflicting with experiments. More relevant for us,
though, is that even if the GRW theory were true, fairly
large quantum computers could still be built.

A second class of alternatives includes those of ’t Hooft
[23] and Wolfram [39], in which something like a determin-
istic cellular automaton underlies quantum mechanics. On
the basis of his theory, ’t Hooft predicts that “[i]t will never
be possible to construct a ‘quantum computer’ that can fac-
tor a large number faster, and within a smaller region of
space, than a classical machine would do, if the latter could
be built out of parts at least as large and as slow as the
Planckian dimensions” [23]. Similarly, Wolfram states that
“[i]ndeed within the usual formalism [of quantum mechan-
ics] one can construct quantum computers that may be able
to solve at least a few specific problems exponentially faster
than ordinary Turing machines. But particularly after my
discoveries . . . I strongly suspect that even if this is formally
the case, it will still not turn out to be a true representation
of ultimate physical reality, but will instead just be found
to reflect various idealizations made in the models used so
far” [39, p.771].

The obvious question then is how these theories account
for Bell inequality violations. We confess to being unable to
understand ’t Hooft’s answer to this question, except that
he believes that the usual notions of causality and locality
might no longer apply in quantum gravity. As for Wolfram’s
theory, which involves “long-range threads” to account for
Bell inequality violations, we argued in [1] that it fails Wol-
fram’s own desiderata of causal and relativistic invariance.

So the challenge for quantum computing skeptics is clear.
Ideally, come up with an alternative to quantum mechanics—
even an idealized toy theory—that can account for all present-
day experiments, yet would not allow large-scale quantum
computation. Failing that, at least say what you take quan-
tum mechanics’ domain of validity to be. More concretely,
propose a natural set S of quantum states that you believe
corresponds to possible physical states of affairs.6 The set
S must contain all “Sure states” (informally, the states that
have already been demonstrated in the lab), but no “Shor
states” (again informally, the states that can be shown to
suffice for factoring, say, 500-digit numbers). If S satis-
fies both of these constraints, then we call S a Sure/Shor
separator (see Figure 1).

Of course, an alternative theory need not involve a sharp
cutoff between possible and impossible states. So it is
perfectly acceptable for a skeptic to define a “complexity
measure” C (|ψ〉) for quantum states, and then say some-
thing like the following: If |ψn〉 is a state of n spins, and
C (|ψn〉) is at most, say, n2, then I predict that |ψn〉 can
be prepared using only “polynomial effort.” Also, once pre-
pared, |ψn〉 will be governed by standard quantum mechanics
to extremely high precision. All states created to date have
had small values of C (|ψn〉). However, if C (|ψn〉) grows
as, say, 2n, then I predict that |ψn〉 requires “exponential ef-
fort” to prepare, or else is not even approximately governed
by quantum mechanics. The states that arise in Shor’s fac-
toring algorithm have exponential values of C (|ψn〉). So
as my Sure/Shor separator, I propose the set of all infinite
families of states {|ψn〉}n≥1, where |ψn〉 has n qubits, such

that C (|ψn〉) ≤ p (n) for some polynomial p.
To understand the importance of Sure/Shor separators, it

is helpful to think through some examples. A major theme
of Levin’s arguments was that exponentially small ampli-

6A skeptic might also specify what happens if a state |ψ〉 ∈ S
is acted on by a unitary U such that U |ψ〉 /∈ S, but this will
not be insisted upon.



Sure States (already 
demonstrated)

Shor States (suffice for 
nontrivial factoring)

Allowed by local hidden 
variable theories

Allowed by GRW theory

Figure 1: A Sure/Shor separator must contain all
Sure states but no Shor states. That is why neither
local hidden variables nor the GRW theory yields a
Sure/Shor separator.

tudes are somehow unphysical. However, clearly we cannot
reject all states with tiny amplitudes—for would anyone dis-
pute that the state 2−5000 (|0〉 + |1〉)⊗10000 is formed when-
ever 10, 000 photons are each polarized at 45◦? Indeed, once
we accept |ψ〉 and |ϕ〉 as Sure states, we are almost forced
to accept |ψ〉⊗ |ϕ〉 as well—since we can imagine, if we like,
that |ψ〉 and |ϕ〉 are prepared in two separate laboratories.
So considering a Shor state such as

|Φ〉 =
1

2n/2

2n−1∑

r=0

|r〉 |xr modN〉 ,

what property of this state could quantum computing skep-
tics latch onto as being physically extravagant? They might
complain that |Φ〉 involves entanglement across hundreds or
thousands of particles; but as mentioned earlier, there are
other states with that same property, namely the “Schröding-
er cats”

(
|0〉⊗n + |1〉⊗n

)
/
√

2, that should be regarded as
Sure states. Alternatively, the skeptics might object to
the combination of exponentially small amplitudes with en-
tanglement across hundreds of particles. However, simply
viewing a Schrödinger cat state in the Hadamard basis pro-
duces an equal superposition over all strings of even parity,
which has both properties. We seem to be on a slippery
slope leading to all of quantum mechanics! Is there any
defensible place to draw a line?

The dilemma above is what led us to propose tree states
as a candidate Sure/Shor separator. The idea, which might
seem more natural to logicians than to physicists, is this.
Once we accept the linear combination and tensor product
rules of quantum mechanics—allowing α |ψ〉+β |ϕ〉 and |ψ〉⊗
|ϕ〉 into our set S of possible states whenever |ψ〉 , |ϕ〉 ∈ S—
one of our few remaining hopes for keeping S a proper subset
of the set of all states is to impose some restriction on how
those two rules can be iteratively applied. In particular, we
could let S be the closure of {|0〉 , |1〉} under a polynomial
number of linear combinations and tensor products. That
is, S is the set of all infinite families of states {|ψn〉}n≥1

with |ψn〉 ∈ H⊗n
2 , such that |ψn〉 can be expressed as a

+

⊗

|1〉1 |1〉2

⊗

++

|0〉1 |1〉1 |0〉2 |1〉2

1
2

1
2

1
2

1
2

1−1

Figure 2: Expressing (|00〉 + |01〉 + |10〉 − |11〉) /2 by a
tree of linear combination and tensor product gates,
with scalar multiplication along edges. Subscripts
denote the identity of a qubit.

“tree” involving at most p (n) addition, tensor product, |0〉,
and |1〉 gates for some polynomial p (see Figure 2).

One can check that S so defined is rich enough to include
Schrödinger cats, collections of Bell pairs, and many other
examples of Sure states. Indeed, it is not obvious that there
are any Sure states not in S; whether there are hinges on
considerations such as those in Section 1.1. For the reasons
discussed in that section, we would not defend the idea that
“all states in Nature are tree states” as a serious physical
hypothesis. Our point is simply that to debate objection
(A), we need a foil—a way the world could be such that
(i) large-scale quantum computing is impossible, but (ii) no
experiment has yet detected any deviation from quantum
mechanics. Several of the obvious ideas for such a foil are
nonstarters. Limiting the class of quantum states to those
with a certain kind of polynomial-size representation is the
simplest example of a foil we could come up with. Our goal
in this paper is to investigate where that idea leads.

3. CLASSIFYING QUANTUM STATES
In both quantum and classical complexity theory, the ob-

jects studied are usually sets of languages or Boolean func-
tions. However, a generic n-qubit quantum state requires
exponentially many classical bits to describe, and this sug-
gests looking at the complexity of quantum states themselves.
That is, which states have polynomial-size classical descrip-
tions of various kinds? This question has been studied from
several angles by Aharonov and Ta-Shma [4]; Janzing, Woc-
jan, and Beth [24]; Vidal [38]; and Green et al. [22]. Here
we propose a unified framework for the question. For sim-
plicity, we limit ourselves to pure states |ψn〉 ∈ H⊗n

2 with the
fixed orthogonal basis {|x〉 : x ∈ {0, 1}n}. Also, by ‘states’
we mean infinite families of states {|ψn〉}n≥1.

Like complexity classes, pure quantum states can be or-
ganized into a hierarchy (see Figure 3). At the bottom are
the classical basis states, which have the form |x〉 for some
x ∈ {0, 1}n. We can generalize classical states in two di-
rections: to the class ⊗1 of separable states, which have the
form (α1 |0〉 + β1 |1〉)⊗· · ·⊗(αn |0〉 + βn |1〉); and to the class
Σ1, which consists of all states |ψn〉 that are superpositions
of at most p (n) classical states, where p is a polynomial. At
the next level, ⊗2 contains the states that can be written as a
tensor product of Σ1 states, with qubits permuted arbitrar-
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Figure 3: Relations among quantum state classes.

ily. Likewise, Σ2 contains the states that can be written as
a linear combination of a polynomial number of ⊗1 states.
We can continue indefinitely to Σ3, ⊗3, etc. Containing
the whole ‘tensor-sum hierarchy’ ∪kΣk = ∪k⊗k is the class
Tree, of all states expressible by a polynomial-size tree of ad-
ditions and tensor products nested arbitrarily. (Formally,
Tree consists of all states |ψn〉 such that TS (|ψn〉) ≤ p (n)
for some polynomial p, where the tree size TS (|ψn〉) will be
defined shortly.) Four other classes deserve mention:

Circuit, a circuit analog of Tree, contains the states |ψn〉 =∑
x αx |x〉 such that for all n, there exists a multilinear al-

gebraic circuit of size p (n) over the complex numbers that
outputs αx given x as input, for some polynomial p.

AmpP contains the states |ψn〉 =
∑
x αx |x〉 such that for

all n, b, there exists a classical circuit of size p (n+ b) that
outputs αx to b bits of precision given x as input, for some
polynomial p.

Vidal contains the states that are ‘polynomially entangled’
in the sense of Vidal [38]. Given a partition of {1, . . . , n}
into A and B, let χA (|ψn〉) be the minimum k for which |ψn〉
can be written as

∑k
i=1 αi

∣∣ϕAi
〉
⊗
∣∣ϕBi

〉
, where

∣∣ϕAi
〉

and
∣∣ϕBi

〉

are states of qubits in A and B respectively. (χA (|ψn〉) is
known as the Schmidt rank.) Let χ (|ψn〉) = maxA χA (|ψn〉).
Then |ψn〉 ∈ Vidal if and only if χ (|ψn〉) ≤ p (n) for some
polynomial p.

ΨP contains the states |ψn〉 such that for all n and ε >
0, there exists a quantum circuit of size p (n+ log (1/ε))
that maps the all-0 state to a state some part of which has
trace distance at most 1− ε from |ψn〉, for some polynomial
p. Because of the Solovay-Kitaev Theorem [25, 32], ΨP is
invariant under the choice of universal gate set.

We now formalize the notion of tree size of a quantum
state, which will be used throughout this paper.

Definition 1. A quantum state tree over H⊗n
2 is a rooted

tree where each leaf vertex is labeled with α |0〉 + β |1〉 for
some α, β ∈ C, and each non-leaf vertex (called a gate) is
labeled with either + or ⊗. Each vertex v is also labeled
with a set S (v) ⊆ {1, . . . , n}, such that

(i) If v is a leaf then |S (v)| = 1,

(ii) If v is the root then S (v) = {1, . . . , n},
(iii) If v is a + gate and w is a child of v, then S (w) =

S (v),

(iv) If v is a ⊗ gate and w1, . . . , wk are the children of v,
then S (w1) , . . . , S (wk) are pairwise disjoint and form
a partition of S (v).

Finally, if v is a + gate, then the outgoing edges of v are
labeled with complex numbers. For each v, the subtree rooted
at v represents a quantum state of the qubits in S (v) in the
obvious way. We require this state to be normalized for each
v.7

We say a tree is orthogonal if it satisfies the further condition
that if v is a + gate, then any two children w1, w2 of v
represent |ψ1〉 , |ψ2〉 with 〈ψ1|ψ2〉 = 0. If the condition
〈ψ1|ψ2〉 = 0 can be replaced by the stronger condition that
for all basis states |x〉, either 〈ψ1|x〉 = 0 or 〈ψ2|x〉 = 0, then
we say the tree is manifestly orthogonal.

For reasons of convenience, we define the size |T | of a
tree T to be the number of leaf vertices. Then given a
state |ψ〉 ∈ H⊗n

2 , the tree size TS (|ψ〉) is the minimum
size of a tree that represents |ψ〉. The orthogonal tree size
OTS (|ψ〉) and manifestly orthogonal tree size MOTS (|ψ〉)
are defined similarly. Then OTree is the class of |ψn〉 such
that OTS (|ψn〉) ≤ p (n) for some polynomial p, and MOTree

is the class such that MOTS (|ψn〉) ≤ p (n) for some p.
It is easy to see that

n ≤ TS (|ψ〉) ≤ OTS(|ψ〉) ≤ MOTS (|ψ〉) ≤ n2n

for every |ψ〉, and that the set of |ψ〉 such that TS (|ψ〉) < 2n

has measure 0 in H⊗n
2 . Two other important properties of

TS and OTS are that they are invariant under local8 basis
changes; and that if |φ〉 is obtained from |ψ〉 by applying a k-
qubit unitary, then TS (|φ〉) ≤ 4k TS (|ψ〉) and OTS (|φ〉) ≤
4k OTS (|ψ〉).

We can also define the ε-approximate tree size TSε (|ψ〉)
to be the minimum size of a tree representing a state |ϕ〉 such
that |〈ψ|ϕ〉|2 ≥ 1−ε, and define OTSε (|ψ〉) and MOTSε (|ψ〉)
similarly.

Definition 2. An arithmetic formula (over the ring C
and n variables) is a rooted binary tree where each leaf ver-
tex is labeled with either a complex number or a variable in
{x1, . . . , xn}, and each non-leaf vertex is labeled with either
+ or ×. Such a tree represents a polynomial p (x1, . . . , xn)
in the obvious way. We call a polynomial multilinear if
no variable appears raised to a higher power than 1, and an
arithmetic formula multilinear if the polynomials computed
by each of its subtrees are multilinear.

The size |Φ| of a multilinear formula Φ is the number of
leaf vertices. Given a multilinear polynomial p, the multi-
linear formula size MFS (p) is the minimum size of a mul-
tilinear formula that represents p. Then given a function
f : {0, 1}n → C, we define

MFS (f) = min
p : p(x)=f(x) ∀x∈{0,1}n

MFS (p) .

7Requiring only the whole tree to represent a normalized
state clearly yields no further generality.
8Several people told us that a reasonable complexity mea-
sure must be invariant under all basis changes. Alas, this
would imply that all pure states have the same complexity!



(Actually p turns out to be unique.) We can also define the
ε-approximate multilinear formula size of f ,

MFSε (f) = min
p : ‖p−f‖2

2≤ε
MFS (p)

where ‖p− f‖2
2 =

∑
x∈{0,1}n |p (x) − f (x)|2. Now given a

state |ψ〉 =
∑
x∈{0,1}n αx |x〉 in H⊗n

2 , let fψ be the function

from {0, 1}n to C defined by fψ (x) = αx.

Theorem 3. For all |ψ〉,
(i) MFS (fψ) ≤ TS (|ψ〉).
(ii) TS (|ψ〉) = O (MFS (fψ) + n).

(iii) MFSδ (fψ) ≤ TSε (|ψ〉) where δ = 2 − 2
√

1 − ε.

(iv) TS2ε (|ψ〉) = O (MFSε (fψ) + n).

We conclude this section with some results about the quan-
tum state hierarchy in Figure 3: Proposition 4 shows simple
inclusions and separations, while Proposition 5 shows that
separations higher in the hierarchy would imply major com-
plexity class separations (and vice versa).

Proposition 4.

(i) Tree ∪ Vidal ⊆ Circuit ⊆ AmpP.

(ii) All states in Vidal have tree size nO(log n).

(iii) Σ2 ⊆ Vidal but ⊗2 6⊂ Vidal.

(iv) ⊗2 ( MOTree.

(v) Σ1, Σ2, Σ3, ⊗1, ⊗2, and ⊗3 are all distinct. Also,
⊗3 6= Σ4 ∩ ⊗4.

Proposition 5.

(i) BQP = P#P implies AmpP ⊆ ΨP.

(ii) AmpP ⊆ ΨP implies NP ⊆ BQP/poly.

(iii) P = P#P implies ΨP ⊆ AmpP.

(iv) ΨP ⊆ AmpP implies BQP ⊆ P/poly.

4. BASIC RESULTS
Before studying the tree size of specific quantum states,

we would like to know in general how tree size behaves as a
complexity measure. In this section we state three rather
nice properties of tree size (again, proofs are omitted from
this abstract).

Theorem 6. For all ε > 0, there exists a tree represent-
ing |ψ〉 of size O

(
TS (|ψ〉)1+ε

)
and depth O (log TS (|ψ〉)),

and a manifestly orthogonal tree of size O
(
MOTS (|ψ〉)1+ε

)

and depth O (log MOTS (|ψ〉)).

Theorem 7. Any |ψ〉 can be prepared by a quantum cir-
cuit of size polynomial in OTS(|ψ〉). Thus OTree ⊆ ΨP.

Theorem 8. If |ψ〉 ∈ H⊗n
2 is chosen uniformly at ran-

dom under the Haar measure, then TS1/16 (|ψ〉) = 2Ω(n)

with probability 1 − o (1).

A corollary of Theorem 8 is the following ‘nonamplification’
property: there exist states that can be approximated to
within, say, 1% by trees of polynomial size, but that require
exponentially large trees to approximate to within a smaller
margin (say 0.01%).

Corollary 9. For all δ ∈ (0, 1], there exists a state |ψ〉
such that TSδ (|ψ〉) = n but TSε (|ψ〉) = 2Ω(n) where ε =
δ/32 − δ2/4096.

5. LOWER BOUNDS
We want to show that certain quantum states of interest

to us are not represented by trees of polynomial size. At
first this seems like a hopeless task. Proving superpolyno-
mial formula-size lower bounds for ‘explicit’ functions is a
notorious open problem, as it would imply complexity class
separations such as NC1 6= P.

Here, though, we are only concerned with multilinear for-
mulas. Could this make it easier to prove a lower bound?
The answer is not obvious, but very recently, for reasons
unrelated to quantum computing, Raz [35] showed the first
superpolynomial lower bounds on multilinear formula size.
In particular, he showed that multilinear formulas comput-
ing the permanent or determinant of an n × n matrix over
any field have size nΩ(log n).

Raz’s technique is a beautiful combination of the Furst-
Saxe-Sipser method of random restrictions [16], with matrix
rank arguments as used in communication complexity. We
now outline the method. Given a function f : {0, 1}n → C,
let a k-restriction R (for 0 ≤ k ≤ n/2) set n − 2k of the
variables of f to either 0 or 1, and partition the remain-
ing 2k variables into two collections y = (y1, . . . , yk) and
z = (z1, . . . , zk). This yields a restricted function f|R (y, z) :

{0, 1}k × {0, 1}k → C. Then let Mf |R be a 2k × 2k ma-

trix whose rows are labeled by assignments y ∈ {0, 1}k, and

whose columns are labeled by assignments z ∈ {0, 1}k. The
(y, z) entry of Mf |R equals f|R (y, z). Let rank

(
Mf |R

)
be

the rank of Mf |R over the complex numbers. The follow-

ing is a special case9 of Raz’s main theorem [35]; recall that
MFS (f) is the minimum size of a multilinear formula for f .

Theorem 10 (Raz). Let Dk be the uniform distribu-
tion over k-restrictions of f , meaning that y1, . . . , yk and
z1, . . . , zk are chosen uniformly at random, and each of the
remaining n−2k variables is set to 1 with independent prob-
ability 1/2 and to 0 otherwise. Set k = nδ, and suppose that
for some constants δ ∈ (0, 1/3] and c > 0,

Pr
R∈Dk

[
rank

(
Mf |R

)
≥ c2k

]
= Ω (1) .

Then MFS (f) = nΩ(log n).

A simple extension of Theorem 10 yields lower bounds on ap-
proximate tree size. Given an N×N matrix M = (mij), let
rankε (M) = minL : ‖L−M‖2

2≤ε
rank (L) where ‖L−M‖2

2 =
∑N
i,j=1 |lij −mij |2.
Corollary 11. Letting Dk be as before, suppose that for

some κ,

Pr
R∈Dk

[
rankδ

(
Mf |R

)
≥ c2k

]
=

1

κ
+ Ω (1)

where ‖f‖2
2 = 1 and δ = κε22k/2n. Then MFSε (f) =

nΩ(log n).

We will apply Raz’s technique to obtain nΩ(log n) tree size
lower bounds for two classes of quantum states: states aris-
ing in quantum error-correction in Section 5.1, and (assum-
ing a number-theoretic conjecture) states arising in Shor’s
factoring algorithm in Section 5.2.
9Raz uses a distribution over restrictions that is more tai-
lored to the permanent and determinant functions, but ex-
amining his proof, it is easy to see that our distribution
works equally well.



5.1 Coset States
Let the elements of Zn2 be labeled by n-bit strings. Given

a coset C in Zn2 , we define the coset state |C〉 as follows:

|C〉 =
1√
|C|

∑

x∈C

|x〉 .

Coset states arise as codewords in the class of quantum
error-correcting codes known as stabilizer codes [11, 20, 37].
Our interest in these states, however, arises from their large
tree size rather than their error-correcting properties.

For an integer k ≥ 0, let Ek,n be the following distribution
over cosets C. Choose a k×n matrix A and k× 1 vector v
by setting each entry to 0 or 1 uniformly and independently.
Then let C = {x | Ax ≡ v} (here all congruences are mod
2). By Theorem 3, it suffices to consider the multilinear
formula size of the function fC (x), which is 1 if x ∈ C and

0 otherwise. Throughout this subsection we set k = n1/3.

Theorem 12. If C is drawn from Ek,n, then MFS (fC) =

nΩ(log n) (and hence TS (|C〉) = nΩ(log n)), with probability
Ω (1) over C.

Proof. Let R be a random k-restriction of fC : that is,
it renames 2k randomly chosen inputs y1, . . . , yk, z1, . . . , zk,
and restricts the remaining n−2k inputs to 0 or 1 each with
independent probability 1/2. Let MC|R be the 2k × 2k ma-
trix whose (y, z) entry is fC|R (y, z); then we need to show

that rank
(
MC|R

)
is large with high probability. Let Ay

be the k × k submatrix of the k × n matrix A consisting
of all rows that correspond to yi for some i ∈ {1, . . . , k}.
Similarly, let Az be the k × k submatrix consisting of all
rows that correspond to zi for some i ∈ {1, . . . , k}. Then
it is easy to see that, so long as Ay and Az are both in-
vertible, for all 2k settings of y there exists a unique set-
ting of z for which fC|R (y, z) = 1. This then implies that
MC|R is a permutation of the identity matrix, and hence

that rank
(
MC|R

)
= 2k. Now, the probability that a ran-

dom k × k matrix over Z2 is invertible is

1

2
· 3

4
· · · · · 2k − 1

2k
> 0.288.

So the probability that Ay and Az are both invertible is at
least 0.2882 . By Markov’s inequality, it follows that for at
least an 0.04 fraction of C’s, rank

(
MC|R

)
= 2k for at least

an 0.04 fraction of R’s. Theorem 10 then yields the desired
result.

Since coset states are easily prepared by polynomial-size
quantum circuits, a corollary of Theorem 12 is that ΨP 6⊂
Tree. Since fC clearly has a (non-multilinear) arithmetic
formula of size O (nk), a second corollary is the following.

Corollary 13. There exists a family of functions gn :
{0, 1}n → R that has polynomial-size arithmetic formulas,
but no polynomial-size multilinear formulas.

The reason Corollary 13 does not follow from Raz’s results
is that polynomial-size formulas for the permanent and de-
terminant are not known; the smallest known formulas for
the determinant have size nO(log n) (see [10]).

We have shown that not all coset states are tree states,
but it is still conceivable that all coset states are extremely
well approximated by tree states. Let us now rule out the
latter possibility. We first need a lemma about matrix rank,
which follows from the Hoffman-Wielandt inequality.

Lemma 14. Let M be an N × N complex matrix, and
let IN be the N ×N identity matrix. Then ‖M − IN‖2

2 ≥
N − rank (M).

Let f̂C (x) be fC (x) normalized to have
∥∥∥f̂C

∥∥∥
2

2
= 1.

Theorem 15. For ε < 0.02, if C is drawn from Ek,n,
then MFSε

(
f̂C
)

= nΩ(logn) with probability Ω (1) over C.

Proof. As in Theorem 12, we look at the matrix MC|R

induced by a random k-restriction R of f̂C . We have already
seen that for at least an 0.04 fraction of C’s, MC|R is a

permutation of I2k/
√

|C| for at least an 0.04 fraction of
R’s, where I2k is the identity. In this case rankδ

(
MC|R

)
≥

2k − δ |C| by Lemma 14. Furthermore, since for these C’s
there exists an R that makes the matrices Ay and Az from
Theorem 12 invertible, it follows that the k equations that
define C are linearly independent and solvable. Therefore
|C| = 2n−k. So taking δ = κε22k/2n with κ = 1/ (2ε), we
have

Pr
R∈Dk

[
rankδ

(
MC|R

)
≥ 2k−1

]
≥ 0.04 > 2ε =

1

κ
,

and Corollary 11 yields the desired result.

A corollary of Theorem 15 and of Theorem 3, part (iii), is

that TSε (|C〉) = nΩ(log n) with probability Ω (1) over C, for
ε < 0.0199.

Let us say a little about how to derandomize the lower
bound for coset states. In the proof of Theorem 12, all we
used about the matrix A was that a random k×k submatrix
has full rank with Ω (1) probability. If we switch from
the field F2 to F2d for some d ≥ log2 n, then it is easy to
construct explicit k × n matrices with this same property.
For example, let

V =




1 2 · · · n
12 22 · · · n2

...
...

...
1k 2k · · · nk




be the transpose of the Vandermonde matrix, where 1, . . . , n
are labels of elements in F2d . Any k × k submatrix of V
has full rank, because the Reed-Solomon (RS) code that V
represents is a perfect erasure code. Hence, there exists
an explicit state of n “qupits” with p = 2d that has tree
size nΩ(log n)—namely the uniform superposition over all el-
ements of the set {x | V x = 0}.

To replace qupits by qubits, we can concatenate the RS
and Hadamard codes to obtain a binary linear erasure code
with parameters almost as good as those of the original RS
code. Such a code yields an explicit k×n binary matrix V ′,
with k ≥ nδ for some constant δ > 0, such that a random
k × k submatrix has full rank with Ω (1) probability. We
thank Andrej Bogdanov for this observation.

An earlier version of this paper used Raz’s techniques to
show a separation between tree size and manifestly orthog-
onal tree size. Recently, using ad hoc techniques, we man-
aged the following tight characterization of MOTS (|C〉):

Theorem 16. For all cosets C = {x | Ax ≡ b} in Zn2 , we
have MOTS (|C〉) = M (A) where M (A) equals

min
(
2rank(AI)+rank(AJ )−rank(A) (M (AI) +M (AJ))

)
.



Here the minimum is over all partitions (AI , AJ) of the
columns of A such that AI and AJ are both nonempty. (If
n = 1 then M (A) = 1.)

Theorem 16 has the following corollaries. First, if C is

drawn from Ek,n, then MOTS (|C〉) = (n/k)Ω(k) with prob-
ability Ω (1). We thus obtain exponential lower bounds
on manifestly orthogonal tree size (this also works if C is
one of the explicit cosets discussed above). Second, set-
ting k = log n, there exist orthogonal tree states |C〉 with

MOTS (|C〉) = nΩ(log n). Thus OTree 6= MOTree. Third,
there exists an O (3n poly (n))-time algorithm that computes
MOTS (|C〉) given C as input. (We do not know whether
computing MOTS (|C〉) is NP-complete but suspect it is.)

5.2 Shor States
Since the motivation for our theory was to study possible

Sure/Shor separators, an obvious question is, do states aris-
ing in Shor’s algorithm have superpolynoial tree size? Unfor-
tunately, we are only able to answer this question assuming
a number-theoretic conjecture. To formalize the question,
let p be a prime and a an integer with 0 ≤ a < p < 2n.
Then letting w = b(2n − a− 1) /pc, define the ‘Shor state’

|a+ pZ〉 = w−1/2∑w
i=0 |a+ pi〉, where each integer is writ-

ten as an n-bit string. This is a possible state of the first
register in Shor’s factoring algorithm, after the second reg-
ister is measured but before the Fourier transform is ap-
plied.10 So a lower bound on TS (|a+ pZ〉) would imply an
equivalent lower bound for the joint state of the two regis-
ters. It is not hard to see that we can set a = 0 without
loss of generality and consider |pZ〉, and that TS (|pZ〉) =
O (min {np, n2n/p}). We now state our number-theoretic
conjecture.

Conjecture 17. Let the set A consist of 5+log2

(
n1/3

)

elements of
{
20, . . . , 2n−1

}
chosen uniformly at random. For

all 32n1/3 subsets B ⊆ A, let S contain the sum of the ele-
ments of B, and let S (mod p) = {xmod p : x ∈ S}. If p is

a prime chosen uniformly at random from
[
n1/3, 1.1n1/3

]
,

then Prp
[
|S (mod p)| ≥ 3n1/3/4

]
≥ 3/4.

Proposition 18. Conjecture 17 implies that, if we choose

a prime p uniformly from the range
[
2n

1/c

, 1.1 · 2n1/c
]
, then

with Ω (1) probability, TS (|pZ〉) = nΩ(logn) and TSε (|pZ〉) =

nΩ(log n) for some fixed ε > 0.

In an earlier version of this paper, Conjecture 17 was stated
without any restriction on how the set S is formed. The re-
sulting conjecture was far more general than we needed, and
indeed was falsified by Carl Pomerance (personal communi-
cation). On the other hand, Don Coppersmith (personal
communication) has made partial progress toward proving
our revised conjecture.

6. CONCLUSION AND OPEN PROBLEMS
A crucial step in quantum computing was to separate the

question of whether quantum computers can be built from
the question of what one could do with them. This sepa-
ration allowed computer scientists to make great advances

10In general there is no reason for p to be prime, but this
seems like a convenient assumption.

on the latter question, despite knowing nothing about the
former. We have argued, however, that the tools of com-
putational complexity theory are relevant to both questions.
The claim that large-scale quantum computing is possible in
principle is really a claim that certain states can exist—that
quantum mechanics will not break down if we try to prepare
those states. Furthermore, what distinguishes these states
from states we have seen must be more than precision in
amplitudes, or the number of qubits maintained coherently.
The distinguishing property must instead be some sort of
complexity. That is, Sure states must have succinct repre-
sentations of a type that Shor states do not.

We have tried to show that, by adopting this viewpoint,
we make the debate about whether quantum computing is
possible less ideological and more scientific. By studying
particular examples of Sure/Shor separators, quantum com-
puting skeptics would strengthen their case—for they would
then have a plausible research program aimed at identifying
what, exactly, the barriers to quantum computation are.
We hope, however, that the ‘complexity theory of quantum
states’ initiated in this paper will be taken up by quan-
tum computing proponents as well. This theory offers a
new perspective on the transition from classical to quantum
computing, and a new connection between quantum com-
puting and the powerful circuit lower bound techniques of
classical complexity theory.

We end with some open problems.
(1) Can Raz’s technique be improved to show exponential

tree size lower bounds?
(2) Can we prove Conjecture 17, implying an nΩ(log n)

tree size lower bound for Shor states?
(3) Let |ϕ〉 be a uniform superposition over all n-bit strings

of Hamming weight n/2. It is easy to show by divide-and-

conquer that TS (|ϕ〉) = nO(log n). Is this upper bound
tight? More generally, can we show a superpolynomial tree
size lower bound for any state with permutation symmetry?

(4) Is Tree = OTree? That is, are there tree states that
are not orthogonal tree states?

(5) Is the tensor-sum hierarchy of Section 3 infinite? That
is, do we have Σk 6= Σk+1 for all k?

(6) Is TreeBQP = BPP? That is, can a quantum com-
puter that is always in a tree state be simulated classically?
The key question seems to be whether the concept class of
multilinear formulas is efficiently learnable.

(7) Is there a practical method to compute the tree size
of, say, 10-qubit states? Such a method would have great
value in interpreting experimental results.

Acknowledgments
I thank Ran Raz for fruitful correspondence and for shar-
ing an early version of his paper; Leonid Levin for clarify-
ing his views; the anonymous reviewers for their comments;
and Andrej Bogdanov, Don Coppersmith, Viatcheslav Do-
brovitski, Ray Laflamme, Anthony Leggett, Mike Mosca,
Ashwin Nayak, Carl Pomerance, John Preskill, Alexander
Razborov, Barbara Terhal, Umesh Vazirani, Guifre Vidal,
and Avi Wigderson for helpful discussions.

7. REFERENCES
[1] S. Aaronson. Book review on A New Kind of Science,

Quantum Information and Computation (QIC) 2(5),
2002. quant-ph/0206089.



[2] D. S. Abrams and S. Lloyd. Nonlinear quantum
mechanics implies polynomial-time solution for
NP-complete and #P problems, Phys. Rev. Lett.
81:3992–3995, 1998. quant-ph/9801041.

[3] D. Aharonov and M. Ben-Or. Fault-tolerant quantum
computation with constant error, Proc. ACM STOC,
pp. 176–188, 1997. quant-ph/9906129.

[4] D. Aharonov and A. Ta-Shma. Adiabatic quantum
state generation and statistical zero knowledge, Proc.
ACM STOC, pp. 20–29, 2003. quant-ph/0301023.

[5] A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani,
and A. Wigderson. The quantum communication
complexity of sampling, SIAM J. Comput.
32:1570–1585, 2003.

[6] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van
der Zouw, and A. Zeilinger. Wave-particle duality of
C60 molecules, Nature 401:680–682, 1999.

[7] A. Aspect, P. Grangier, and G. Roger. Experimental
realization of Einstein-Podolsky-Rosen-Bohm
gedankenexperiment: a new violation of Bell’s
inequalities, Phys. Rev. Lett. 49:91–94, 1982.

[8] S. L. Braunstein, C. M. Caves, N. Linden, S. Popescu,
and R. Schack. Separability of very noisy mixed states
and implications for NMR quantum computing, Phys.
Rev. Lett. 83:1054–1057, 1999. quant-ph/9811018.

[9] H. J. Briegel and R. Raussendorf. Persistent
entanglement in arrays of interacting particles, Phys.
Rev. Lett. 86:910–913, 2001. quant-ph/0004051.

[10] P. Bürgisser, M. Clausen, and M. A. Shokrollahi.
Algebraic Complexity Theory, Springer-Verlag, 1997.

[11] A. R. Calderbank and P. W. Shor. Good quantum
error-correcting codes exist, Phys. Rev. A
54:1098–1105, 1996.

[12] J. Cronin. CP symmetry violation—the search for its
origin, Nobel Lecture, December 8, 1980.

[13] W. Dür and H. J. Briegel. Stability of macroscopic
entanglement under decoherence, submitted, 2003.
quant-ph/0307180.

[14] V. Fitch. The discovery of charge-conjugation parity
asymmetry, Nobel Lecture, December 8, 1980.

[15] J. R. Friedman, V. Patel, W. Chen, S. K. Tolpygo,
and J. E. Lukens. Quantum superposition of distinct
macroscopic states, Nature 406:43–46, 2000.

[16] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits,
and the polynomial time hierarchy, Math. Systems
Theory 17:13–27, 1984.

[17] G. C. Ghirardi, A. Rimini, and T. Weber. Unified
dynamics for microscopic and macroscopic systems,
Phys. Rev. D, 34:470, 1986.

[18] S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N.
Coppersmith. Entangled quantum state of magnetic
dipoles, Nature 425:48–51, 2003. cond-mat/0402456.

[19] O. Goldreich. On quantum computing, 2004.
www.wisdom.weizmann.ac.il/˜oded/on-qc.html

[20] D. Gottesman. Class of quantum error-correcting
codes saturating the quantum Hamming bound, Phys.
Rev. A. 54:1862–1868, 1996. quant-ph/9604038.

[21] D. Gottesman. The Heisenberg representation of
quantum computers, Int. Conf. on Group Theoretic
Methods in Physics, 1998. quant-ph/9807006.

[22] F. Green, S. Homer, C. Moore, and C. Pollett.
Counting, fanout, and the complexity of quantum
ACC, Quantum Information and Computation
2(1):35–65, 2002. quant-ph/0106017.

[23] G. ’t Hooft. Quantum gravity as a dissipative
deterministic system, Classical and Quantum Gravity
16:3263–3279, 1999.

[24] D. Janzing, P. Wocjan, and T. Beth. Cooling and low
energy state preparation for 3-local Hamiltonians are
FQMA-complete, manuscript, 2003.
quant-ph/0303186.

[25] A. Yu. Kitaev. Quantum computation: algorithms
and error correction, Russian Math. Surveys
52(6):1191-1249, 1997.

[26] E. Knill, R. Laflamme, R. Martinez, and C.
Negrevergne. Implementation of the five qubit error
correction benchmark, Phys. Rev. Lett. 86:5811, 2001.
quant-ph/0101034.

[27] E. Knill, R. Laflamme, R. Martinez, and C.-H. Tseng.
An algorithmic benchmark for quantum information
processing, Nature 404:368–370, 2000.
quant-ph/9908051.

[28] E. Knill, R. Laflamme, and W. Zurek. Resilient
quantum computation, Science 279:342, 1998.
quant-ph/9702058.

[29] A. J. Leggett. Testing the limits of quantum
mechanics: motivation, state of play, prospects, J.
Phys. Condensed Matter 14:R415–451, 2002.

[30] L. Levin. Polynomial time and extravagant models, in
The tale of one-way functions, Problems of Information
Transmission 39(1), 2003.

[31] L. Levin, D. Gottesman, P. Shor, et al. Discussion on
sci.physics.research newsgroup, February-March 2000.

[32] M. A. Nielsen and I. L. Chuang. Quantum
Computation and Quantum Information, Cambridge
Univ. Press, 2000.

[33] R. Penrose. The Emperor’s New Mind, Oxford Univ.
Press, 1989.

[34] R. Raussendorf, D. E. Browne, and H. J. Briegel.
Measurement-based quantum computation on cluster
states, Phys. Rev. A 68:022312, 2003.
quant-ph/0301052.

[35] R. Raz. Multi-linear formulas for permanent and
determinant are of super-polynomial size, this
Proceedings, 2004.

[36] P. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer, SIAM J. Comput. 26(5):1484–1509, 1997.
quant-ph/9508027.

[37] A. Steane. Multiple particle interference and
quantum error correction, Proc. Roy. Soc. Lond. A,
452:2551–2577, 1996. quant-ph/9601029.

[38] G. Vidal. Efficient classical simulation of slightly
entangled quantum computations, Phys. Rev. Lett.
91:147902, 2003. quant-ph/0301063.

[39] S. Wolfram. A New Kind of Science, Wolfram Media,
2002.


