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Abstract

In differential privacy (DP), we want to query a database about n users, in a way that “leaks
at most ε about any individual user,” even conditioned on any outcome of the query. Meanwhile,
in gentle measurement, we want to measure n quantum states, in a way that “damages the states
by at most α,” even conditioned on any outcome of the measurement. In both cases, we can
achieve the goal by techniques like deliberately adding noise to the outcome before returning
it. This paper proves a new and general connection between the two subjects. Specifically,
we show that on products of n quantum states, any measurement that is α-gentle for small α is
also O (α)-DP, and any product measurement that is ε-DP is also O (ε

√
n)-gentle.

Illustrating the power of this connection, we apply it to the recently studied problem of
shadow tomography. Given an unknown d-dimensional quantum state ρ, as well as known two-
outcome measurements E1, . . . , Em, shadow tomography asks us to estimate Pr [Ei accepts ρ],
for every i ∈ [m], by measuring few copies of ρ. Using our connection theorem, together with a
quantum analog of the so-called private multiplicative weights algorithm of Hardt and Rothblum,

we give a protocol to solve this problem using O
(
(logm)

2
(log d)

2
)

copies of ρ, compared to

Aaronson’s previous bound of Õ
(
(logm)

4
(log d)

)
. Our protocol has the advantages of being

online (that is, the Ei’s are processed one at a time), gentle, and conceptually simple.
Other applications of our connection include new lower bounds for shadow tomography from

lower bounds on DP, and a result on the safe use of estimation algorithms as subroutines inside
larger quantum algorithms.
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1 Introduction

This paper is about a new mathematical connection between two concepts—gentle measurement
in quantum mechanics, and differential privacy in classical computer science—and the applications
of this connection to the design of new quantum measurement procedures and algorithms. Since
the paper is meant to be accessible to researchers in both fields (and beyond), we begin by saying
a few words about each of the concepts separately.

1.1 Gentle Measurement

In quantum mechanics, measurement is, famously, an inherently destructive process. For example,
if we measure a qubit α |0⟩+ β |1⟩ in the {|0⟩ , |1⟩} basis, we “force the qubit to decide” whether to
be |0⟩ (with probability |α|2) or |1⟩ (with probability |β|2). The qubit’s state then “collapses” to
whichever choice it made. There’s no way to measure again, unless of course we happen to have
(or know how to prepare) a second qubit in the same state.1

Even in quantum mechanics, though, not all measurements on all states are destructive. For
example, if a qubit happens to be in the |0⟩ state already, then measuring in the {|0⟩ , |1⟩} basis
causes no damage at all. And if the qubit is the state |ψ⟩ =

√
1− ε2 |0⟩ + ε |1⟩ for small ε, then

measuring in the {|0⟩ , |1⟩} basis causes only minimal damage, since the result is almost always that
the qubit “snaps” to |0⟩ ≈ |ψ⟩. More generally, the principle is this:

A measurement M applied to a state |ψ⟩ necessarily severely damages |ψ⟩ if, and only
if, the outcome of M is highly unpredictable even to someone who already knows |ψ⟩.

This principle, which can be quantified in various ways, is called information/disturbance trade-
off : if M creates lots of new (random) information, then it must also cause lots of disturbance to
|ψ⟩, and vice versa.

A corollary is that, if someone who knew |ψ⟩ could usually predict the measurement outcome
in advance, then applying M need not damage |ψ⟩ by much. Note that this corollary does not
describe only trivial or uninteresting measurements, since in general the measurer does not know
|ψ⟩ in advance—that’s why she’s measuring it!2

Indeed, so-called gentle measurements, which can be limited in how much damage they cause,
have found numerous applications in experimental physics, the foundations of quantum mechanics,
and quantum computing theory.3 Experimentalists, for example, know how to perform a mea-
surement on a large number of identically prepared particles, in a way that reveals the particles’

1This destructiveness is not unique to quantum mechanics: it has a close analogue in classical Bayesian condition-
ing, where a probability distribution can “collapse” to a single point when we make an observation. But in classical
probability, the “collapse” is purely internal and mental, in the sense that we could undo it by simply forgetting the
observation. In quantum mechanics, by contrast, collapse causes an objective change to the measured system, one
that could also be detected by someone else who later measured the system.

2And also, even if she did know a description of |ψ⟩, she might still find predicting the outcome of a measurement
on |ψ⟩ to be computationally intractable.

3Physicists more often refer to “weak measurement,” a related but not identical concept, which typically means
that the measurement returns very little information about the state (in this paper, we’ll call such measurements “ε-
trivial”). All weak measurements can be implemented gently, and we’ll show in Lemma 25 that the only measurements
that are gentle on all states are weak. But measurements that are gentle on large sets of interesting states (such as
product states) can be far from weak, a point that will be crucial for us.
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quantum state to high accuracy while causing very little damage.4 More theoretically, gentle mea-
surement has also played a central role in proposals for publicly-verifiable quantum money that can
be verified many times, quantum software that can be evaluated on many inputs, and so forth (see
[4, 6]). Gentle measurement is also needed in work on the nonabelian hidden subgroup problem
[24], and on quantum advice complexity classes like BQP/qpoly (see [2, 3]).

Let’s now define a bit more formally what we’ll mean, in this paper, by a quantum measurement
being “gentle.”

Definition 1 (Gentle Measurements) Given a set S of quantum mixed states in some Hilbert
space, an implementation of a measurement M ,5 and a parameter α ∈ [0, 1], we define M to be
α-gentle on S if for all states ρ ∈ S, and all possible outcomes y of applying M to ρ, we have

∥ρM→y − ρ∥tr ≤ α. (1)

Here ∥·∥tr represents trace distance, the standard distance metric on quantum states, while ρM→y

represents the new, “collapsed” state assuming that the measurement outcome was y. (For a review
of these and other quantum information concepts, see Sections 2.2 and 2.5.)

More generally, we say M is (α, δ)-gentle on S if for all states ρ ∈ S, inequality (1) holds with
probability at least 1− δ over the possible outcomes y of applying M to ρ. We recover α-gentleness
by setting δ = 0.

The most common choices for S will be the set of product states ρ = ρ1 ⊗ · · · ⊗ ρn, and the set
of all states.

If a measurement M is specified by its output probabilities only (technically, as a “POVM”),
then we say that M is α-gentle if and only if there exists an α-gentle implementation of it.

As an example, suppose we have n qubits in a pure product state:

|ψ⟩ = (α1 |0⟩+ β1 |1⟩)⊗ · · · ⊗ (αn |0⟩+ βn |1⟩) .

Then consider the measurement M that simply returns the total Hamming weight. This mea-
surement is not α-gentle for any nontrivial α. So for example, if we apply M to the equal

superposition
(
|0⟩+|1⟩√

2

)⊗n
, we’ll collapse the superposition over possible Hamming weights—from a

Gaussian wavepacket (as the physicists might call it) of width Θ (
√
n) centered at n/2, all the way

down to a single random Hamming weight.
By contrast, now consider a measurement Lσ that returns the Hamming weight, plus a random

noise term η of average magnitude σ ≫
√
n. As an example, we could take this noise to follow a

Laplace distribution:

Pr [η = k] =
1

Z
e−|k|/σ, (2)

where

Z =
2

1− e−1/σ
− 1 ≈ 2σ − 1

4With a single particle, this is of course impossible.
5In this paper, by an “implementation” of a measurement M , we mean a specification from which, given a state ρ,

one can calculate not only the probabilities of the various outcomes y, but also the post-measurement states ρM→y.

4



for large σ. We can implement the measurement Lσ as follows. Given |ψ⟩, which we now think
of as a superposition

∑
X∈{0,1}n αX |X⟩ over n-bit strings, first prepare alongside |ψ⟩ the state

|η⟩ :=
∞∑

k=−∞

√
Pr [η = k] |k⟩ .

(In practice, we would of course impose a cutoff on |k|.) Next, perform the unitary transformation∑
X∈{0,1}n

∞∑
k=−∞

αX

√
Pr [η = k] |X⟩ |k⟩ →

∑
X∈{0,1}n

∞∑
k=−∞

αX

√
Pr [η = k] |X⟩ ||X|+ k⟩ .

Finally, measure the ||X|+ k⟩ register in the standard basis and output the result.
It turns out that this noisy measurement Lσ is O (

√
n/σ)-gentle.6 Intuitively, this is because

the various Hamming weights that are well-represented in the “Gaussian wavepacket” |ψ⟩—e.g., in

the example |ψ⟩ =
(
|0⟩+|1⟩√

2

)⊗n
, those Hamming weights w such that

∣∣w − n
2

∣∣ = O (
√
n)—lead to

probability distributions over measurement outcomes that mostly overlap. In other words, when
we observe an outcome of the form |X|+ k, the intrinsic variation in |X| within the superposition
is dominated by the variation in k.

1.2 Differential Privacy

Differential privacy (DP) is a young subfield of computer science—younger than quantum comput-
ing, actually—that’s seen tremendous growth since its beginnings around 2006 [20, 21, 44]. Though
as we’ll see, DP’s concepts turn out to have much broader applicability, the original motivating
problem is as follows. Suppose that a hospital (or bank, or social media site) has a database of
sensitive personal records. The hospital wants to let medical researchers query its database in such
a way that

(1) the researchers can learn as much accurate statistical information as possible about the patient
population (e.g., how many of them have colon cancer), but

(2) each patient has a mathematical guarantee that, by opting to participate in the database,
she’s exposing to the researchers “only a negligible amount” of data about herself that would
otherwise be private.

The question is, how should we design the queries to balance these two apparently conflicting
demands?

More formally, call two databases X,X ′ neighbors if they differ only in a single entry xi. Then
here is the key definition:

Definition 2 (Differential Privacy [20]) Given a randomized algorithm A that queries a database
X, as well as a parameter ε ≥ 0, we define A to be ε-DP if for all databases X,X ′ that are neigh-
bors, and all possible outputs y of A, we have

Pr [A (X) = y] ≤ eε Pr
[
A
(
X ′) = y

]
.

Here the probabilities are over the internal randomness used by A.

6While there are other ways to prove that Lσ is O (
√
n/σ)-gentle, the nicest proof we know will deduce it as an

immediate corollary of this paper’s main results.
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In place of eε, one could also use the more intuitive 1 + ε. However, the choice of eε has the
advantages that it composes nicely and is symmetric under inversions.

As an example—which should look familiar!—suppose the databases X are n-bit strings, and
consider the algorithm that simply returns the Hamming weight |X|. This algorithm is not ε-DP
for any ε, since flipping just a single bit of X can change the probability of an output (namely,
the new Hamming weight) from 0 to 1. By contrast, now consider the algorithm Lσ that returns
the Hamming weight |X|, plus a Laplace noise term η that’s distributed according to equation (2).
For any two neighboring databases X,X ′, and any possible output y, we have

Pr [Lσ (X) = y]

Pr [Lσ (X ′) = y]
=
e−|y−|X||/σ

e−|y−|X′||/σ ≤ e
1/σ. (3)

So we see that Lσ is 1
σ -DP. Yet, as long as σ is not too enormous, the output |X|+ η still provides

a useful estimate of |X|.
Requiring multiplicative closeness in the probabilities of every output y might seem overly

strong. But if we relaxed the definition to an additive one, we’d need to admit the algorithm that
simply chooses a user i ∈ [n] uniformly at random and publishes all of her data. This algorithm
is manifestly not “private,” and yet it satisfies a strong additive guarantee: if user i changes her
data, that will affect the probability distribution over outputs by at most 1

n in variation distance.
On the other hand, one can check that this algorithm is not ε-DP for any finite ε.

DP has been applied in deployed systems, for example at Apple and Google; see for example
[42] for discussion. The concept has also found application to other problems, not obviously related
to privacy—for example, adaptive data analysis (for more see Section 1.7). But what does DP
have to do with quantum information in general, or gentle measurement in particular?

1.3 The Connection

Given two quantum mixed states ρ, σ on n registers each, call them neighbors if it’s possible to reach
either σ from ρ, or ρ from σ, by performing a general quantum operation (a so-called superoperator)
on a single register only. In the special case where ρ = ρ1⊗· · ·⊗ρn and σ = σ1⊗· · ·⊗σn are both
product states, this reduces to saying: ρ and σ are neighbors if and only if ρi ̸= σi for at most one
i.

Using this notion, we can easily generalize the definition of differential privacy from Section 1.2
to the quantum setting:

Definition 3 (Quantum Differential Privacy) Given a set S of quantum mixed states each on
n registers, a measurement M , and a parameter ε ≥ 0, we define M to be ε-DP on S if for all
states ρ, σ ∈ S that are neighbors, and all possible outputs y of M , we have

Pr [M (ρ) = y] ≤ eε Pr [M (σ) = y] . (4)

Here the probabilities are over the intrinsic randomness of the measurement outcome.
More generally, we say M is (ε, δ)-DP on S if for all neighboring states ρ, σ ∈ S, inequality (4)

holds with probability at least 1− δ over the possible outcomes y of applying M to ρ. We recover
ε-DP by setting δ = 0.7

7This is a slightly nonstandard definition of (ε, δ)-DP, but can be related to the standard definition by a nontrivial
result. See e.g. Vadhan [44, Lemma 1.5].
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The most common choices for S will be the set of product states ρ = ρ1 ⊗ · · · ⊗ ρn, and the set
of all states.

Note that unlike with gentleness, the property of being ε-DP depends only on the output
probabilities, and not at all on the post-measurement states (i.e., on the “implementation” of the
measurement).

Perhaps the first question we should ask is: are there any nontrivial quantum measurements
that satisfy the above definition? Indeed there are.

Recall the DP algorithm Lσ from Section 1.2, which returns the Hamming weight |X| of an
n-bit input database X, plus Laplace noise η of average magnitude σ. We can promote Lσ to
a quantum measurement on n-qubit states, by implementing it using the procedure described in
Section 1.1. We then have the following:

Proposition 4 Lσ is 1
σ -DP on the set of all n-qubit states.

Proof. Since Lσ only involves measuring the Hamming weight in the computational basis, for any
n-qubit state ρ we can write

Pr [Lσ (ρ) = y] =
∑

X∈{0,1}n
ρX,X Pr [Lσ (X) = y] .

Also, if we act on a single register of ρ, and then measure in the computational basis (which by
the above, we can do without loss of generality), we map each database X to a distribution over
neighbors X ′ of X. The proposition now follows from convexity together with equation (3).

Stepping back, we’ve seen that simply measuring the Hamming weight of an n-qubit state is
neither gentle nor private. And yet the same fix—namely, adding random noise to the measurement
outcome before returning it—makes the measurement both gentle and private. Is this convergence,
between gentle quantum measurement and differential privacy, just a coincidence?

Our main result asserts that it’s not a coincidence: there’s a strong two-way connection between
the two notions.

Theorem 5 (Main Result) For all quantum measurements M on n registers:

(1) If M is α-gentle on product states for α ≤ 1
4.01 , then M is O (α)-DP on product states.8

(2) If M is ε-DP on product states, and is a product measurement,9 then M is O (ε
√
n)-gentle

on product states.10

Again, here a “measurement” M corresponds to a specification of output probabilities; for M
to be α-gentle means that there exists an α-gentle implementation of M .

Intuitively, it’s far from obvious that gentleness and differential privacy should be connected in
this way. After all, the definition of α-gentleness makes no reference to the notion of “neighboring”
states. Conversely, the definition of ε-DP is exclusively concerned with output probabilities, and

8Indeed, it suffices for α to be bounded below 1
4
by any fixed constant (which then affects the multiplier in the

O (α)). Similar remarks apply wherever constants like 1
4.01

appear in this paper.
9That is, if M can be implemented by first applying a classical algorithm to the outcomes of separate POVM

measurements on the n registers, and then uncomputing the outcomes of those n measurements.
10On non-product states, M will still produce the correct output probabilities, but it need not be gentle.

7



makes no reference to post-measurement states. Our goal is to explain why gentleness and DP are
connected in this way, and to explore the consequences of the connection.

We’ll see some applications of Theorem 5 shortly, in Sections 1.4 and 1.5. Before we do so,
however, let’s make a few comments about the theorem statement.

At first glance, part (2) of the theorem seems weaker than part (1)—especially because of the√
n blowup in parameters—but it’s the part that carries many of the interesting implications. In

Section 5, we’ll show that the
√
n blowup is unavoidable. Indeed the measurement Lσ, with

σ = Θ(
√
n), already demonstrates this.

By contrast, the condition that M is a product measurement is not clearly necessary; one of
the central open problems we leave is whether that condition can be removed. In Appendix 12,
we’ll give examples of quantum DP measurements that can’t be approximated by any product or
(we conjecture) even LOCC measurements. However, all the examples we currently know of such
measurements are extremely artificial.

The restriction to product states might seem strange, but it’s provably unavoidable if we want
Theorem 5 to say anything about nontrivial measurements. As we’ll show in Section 3, there is a
counterpart of Theorem 5 for states that could have arbitrary correlation or entanglement among
the registers. It turns out, however, that if a measurement M is α-gentle on all states for α≪ 1

4 ,
then M is close to trivial (i.e., it barely depends on the input state at all). And conversely, if M
is ε-DP, then the best we can deduce is that M is O (εn)-gentle on all states, rather than O (ε

√
n)-

gentle. While that might sound like a merely quantitative gap, the trouble is, again, that the
only measurements that are ε-DP for ε≪ 1

n are close to trivial. By contrast, plenty of interesting
measurements are ε-DP for ε≪ 1√

n
.

One might wonder whether our reductions between privacy and gentleness preserve computa-
tional efficiency. In one direction—turning gentleness into privacy—the answer is clearly yes, since
an α-gentle measurement is O (α)-DP; nothing further needs to be done. However, in the other
direction—turning privacy into gentleness—we can implement a gentle measurement M efficiently
only if we have an efficient algorithm to “QSample” M ’s output distribution on a given input.
QSampling is a term coined in 2003 by Aharonov and Ta-Shma [9], which just means that we can
efficiently prepare a superposition over outputs of the form∑

y

√
Pr [y] |y⟩ ,

which is not entangled with any “garbage” dependent on y. In practice, most DP algorithms
that we know about do give rise to efficient QSampling procedures, but this property doesn’t
follow automatically from a DP algorithm’s being efficient. In Section 7, we’ll explore the issue of
computational efficiency further, and give nontrivial conditions under which efficiency is preserved.

1.4 Applications

Can we exploit the connection between gentle measurement and differential privacy to port results
from one field to the other, as was done with the connections between communication complexity
and circuit lower bounds, cryptography and learning, etc.? The second main contribution of this
paper is to use Theorem 5, together with previous work in DP, to derive new results in quantum
measurement theory and quantum algorithms.11

11Some of these applications could also have been obtained by “brute force” (e.g., directly designing and analyzing
the desired gentle measurements), but the connection to DP will both guide us to the correct statements, and enable
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As a tiny warmup application, notice that Lσ, the Laplace noise measurement from Section
1.2, is a “product measurement,” in the sense that it can be implemented via an algorithm that
measures each register separately. And thus, by combining part (2) of Theorem 5 with Proposition
4, we immediately obtain the following:

Corollary 6 (Gentleness of Laplace Noise Measurement) Lσ is O (
√
n/σ)-gentle on prod-

uct states.

As far as we know, proving Corollary 6 directly would require a laborious calculation.
Here is another application. In the early days of quantum computing, Bennett et al. [11] ob-

served that a quantum algorithm can safely invoke other quantum algorithms for decision problems
as subroutines inside of a superposition—or in terms of complexity classes, that BQPBQP = BQP.
The proof uses amplification, to push down the subroutine’s error probability, combined with un-
computing, to eliminate any “garbage” that the subroutine leaves entangled with its input. How-
ever, this straightforward uncomputing strategy no longer works for subroutines whose purpose
is to estimate an expectation value to within ±ε (say, the acceptance probability of a quantum
circuit).

In Section 7, we’ll point out one simple solution to this problem: namely, run the subroutine
nO(1) times in parallel, then estimate the desired expectation values by simulating gentle measure-
ments on the resulting states. If we implement this idea using the Laplace noise measurement Lσ,
then Corollary 6 yields the following:

Theorem 7 Without loss of generality, a BQP algorithm can at any point estimate Pr [C accepts]
to within ± 1

nO(1) , on any superposition containing descriptions of quantum circuits C, while main-
taining the superposition’s coherence.

While it’s possible to prove Theorem 7 “bare-handedly,” without knowing about the connection
between gentleness and DP, the point is that the floodgates are now open. Given a quantum
algorithm P , which is run as a subroutine inside a larger quantum algorithm Q, there are many
things that Q might want to know about P ’s output behavior, beyond just additive estimates for
specific probabilities. Whatever the details, Theorem 5 reduces the task to designing a suitable
efficient DP algorithm, or finding such an algorithm in the literature. Gentleness then follows
automatically.

1.5 Shadow Tomography

In Section 6, we present our “flagship” application for the connection between gentleness and DP:
a new quantum measurement procedure, called Quantum Private Multiplicative Weights (QPMW),
which achieves parameters and properties that weren’t previously known.

QPMW addresses a task that Aaronson [5], in 2016, called shadow tomography. Here we’re
given n copies of an unknown d-dimensional mixed state ρ. We’re also given known two-outcome
measurements E1, . . . , Em. Our goal is to learn Pr [Ei (ρ) accepts] to within an additive error of
±ε, for every i ∈ [m], with high success probability (say, at least 2/3), by carefully measuring the

the simplest proofs of them that we know. Meanwhile, our applications to so-called shadow tomography of quantum
states, described in Section 1.5, will make essential use of sophisticated algorithms and lower bounds from the DP
literature.
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ρ’s. Setting aside computational difficulty, how many copies of ρ are information-theoretically
necessary for this?

At one extreme of parameters, and suppressing the dependence on ε, it’s clear that n = Õ (m)
copies of ρ suffice, since we could just apply each Ei to different copies. At a different extreme,
it’s also clear that n = Õ

(
d2
)
copies suffice—or not “clear,” but it follows from celebrated recent

work by O’Donnell and Wright [36] and (independently) Haah et al. [26], who showed that Õ
(
d2
)

copies of ρ are necessary and sufficient for full quantum state tomography : that is, reconstructing
the entire state ρ to suitable precision.

But what if we only want to learn the “shadow” that ρ casts on the measurements E1, . . . , Em?
Aaronson [5] raised the question of whether shadow tomography might be possible using a number
of copies n that scales only polylogarithmically in bothm and d—so in particular, that’s polynomial
even if m and d are both exponential. While this seemed overly ambitious, Aaronson was unable
to rule it out; and indeed, last year he showed:

Theorem 8 (Aaronson [6]) There exists an explicit procedure to perform shadow tomography
using

n = Õ

(
(logm)4 (log d)

ε4

)
copies of ρ. Here the Õ hides factors of log logm, log log d, and log 1

ε .

Shortly afterward, Brandão et al. [14] gave a different shadow tomography procedure, based
on semidefinite programming, which achieved the same sample complexity as Aaronson’s but was
more efficient computationally.

However, these developments left several questions open:

(1) What is the true sample complexity of shadow tomography? The best lower bound in [6] is

that Ω

(
min{d2,logm}

ε2

)
copies are needed.

(2) The procedures of [6, 14] destroy the copies of ρ in the process of measuring them. Is there
a shadow tomography procedure that’s also gentle?

(3) The procedures of [6, 14] require the full list E1, . . . , Em to be known in advance. Is there
a shadow tomography procedure that’s online—i.e., that receives the measurements one by
one, and estimates each Pr [Ei accepts ρ] immediately after receiving Ei?

In Section 6, by exploiting our connection between gentleness and DP, and by quantizing a
known classical DP algorithm called Private Multiplicative Weights [27], we prove a new shadow
tomography theorem that addresses all of the above questions.

Theorem 9 (Quantum PMW) There exists an explicit procedure, Quantum Private Multiplica-
tive Weights (QPMW), that performs shadow tomography with success probability 1− β using

n = O

((
log2m+ log 1

δ

)
· log2 d · log 1

β

ε8

)

copies of ρ, and which is also online and (ε, δ)-gentle.
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Most notably, QPMW is both online and gentle; the previous procedures [6, 14] were neither.
Because of its simplicity and its online nature, QPMW seems better suited than its predecessors
to potential experimental realization.

Meanwhile, compared to Theorem 8, Theorem 9 improves the dependence on m from (logm)4

to (logm)2. The dependence on d and 1/ε is worse, but we conjecture that this is an artifact of
our analysis, and that porting so-called “advanced composition” [22] to the quantum setting would
ameliorate the situation. The running time of QPMW is roughly O (mL) + dO(1), where L is the
time needed to implement a single Ei; this improves on the O (mL) + dO(log log d) running time of
Aaronson’s procedure, and matches an improvement from dO(log log d) to dO(1) in Brandão et al. [14].

It’s hard to give a simple intuition for the improvement in m-dependence from O
(
log4m

)
to

O
(
log2m

)
. Loosely, though, gentleness (derived from DP) lets QPMW be online, and being online

lets QPMW avoid the “gentle search procedure,” a key subroutine in Aaronson’s earlier procedure
[6] that was responsible for the log4m factor. In any case, we wish to stress that quantitative
improvements in sample complexity are not the main point here. The point, rather, is that the
connection between DP and gentleness leads to an entirely new approach to shadow tomography.

The DP/gentleness connection turns out to be useful not just for upper bounds on the sample
complexity of shadow tomography, but also lower bounds. In Section 6.3, we’ll combine a recent
lower bound on DP algorithms [16] with part (1) of Theorem 5 (i.e., the gentleness implies DP
direction), to deduce a new lower bound on the sample complexity of gentle shadow tomography,
where here “gentle” means “gentle on all product state inputs.” We’ll also use recent work from
adaptive data analysis [35] to observe a lower bound on the sample complexity of online shadow
tomography—showing that, for the latter task, QPMW’s sample complexity is optimal up to poly-
nomial factors.

Finally, in Section 7.2, we prove lower bounds on the computational complexity of gentle and
online shadow tomography, by deducing them as corollaries of recent lower cryptographic bounds
for differential privacy and adaptive data analysis [43, 28, 40]. Assuming the existence of a one-way
function that takes 2Ω(n) time to invert, these lower bounds say that any algorithm for online or
gentle shadow tomography needs dΩ(1) time, so in that respect the QPMW procedure is optimal
for those tasks.

We stress that all our lower bounds for shadow tomography—both information-theoretic and
computational—are obtained by using this paper’s machinery to port known classical results to
our setting. Thus, all of the lower bounds apply equally well to the “classical special case” of
shadow tomography, where we are trying to learn properties of a probability distribution D given
independent samples from D, and none of them yet say anything specific to quantum mechanics.

1.6 Techniques

Relating Gentleness to DP. In the proof of our main result—i.e., the connection between
gentleness and differential privacy—the easy direction is that gentleness implies DP. This direc-
tion produces only constant loss in parameters, and does not even have much to do with quan-
tum mechanics. We consider the contrapositive: if a measurement M is not DP, then there
are two neighboring states, call them ρ and σ, as well as a measurement outcome y, such that
Pr [M (ρ) outputs y] and Pr [M (σ) outputs y] differ by a large multiplicative factor. But in that
case, we can study what happens if we apply M to the equal mixture ρ+σ

2 , and then condition on
outcome y. Here we can use Bayes’ theorem to show that the post-measurement state will not be
close to ρ+σ

2 —intuitively, because it will have “more ρ than σ” or vice versa. Therefore M is not
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gentle on product states (for if ρ and σ are neighbors and are themselves product states, then ρ+σ
2

is a product state).
The harder direction is to show that ε-DP implies O (ε

√
n)-gentleness (for product states, and

at least for a restricted class of measurements). We work up to this result in a sequence of steps.
The first is to prove a purely classical analogue: namely, any ε-DP classical algorithm is 2ε

√
n-

gentle on product distributions, D = D1 × · · · × Dn—and indeed, the posterior distribution Dy,
conditioned on some output y, has KL-divergence at most 2ε2n from D. While this step has
echoes in earlier work on adaptive data analysis [19, 18, 38] (see Section 1.7), we provide our own
proof for completeness. Our proof uses the ε-DP property of A, together with the fact that D is a
product distribution, to show that, if we reveal a sample from Dy a single register at a time, from
the 1st to the nth, then the expected KL-divergence from D increases by at most 2ε2 per register,
and is therefore at most 2ε2n overall.

The second step is to prove an analogous result if the classical algorithm A is applied, not to a
sample from the distribution D, but in superposition to each component of the “QSampling” state

|ψ⟩ :=
∑
x

√
Pr
D

[x] |x⟩ .

To prove this, we let |ψy⟩ be the post-measurement state conditioned on outcome y, and then
upper-bound the trace distance,

∥|ψ⟩⟨ψ| − |ψy⟩⟨ψy|∥tr =
√

1− |⟨ψ|ψy⟩|2,

in terms of the square root of the KL-divergence between Dy and D, which we previously showed
was O (ε

√
n). (To do that, in turn, we use the Hellinger distance between Dy and D as an

intermediate measure.)
The last step is to generalize from algorithms A that act separately on each computational

basis state to measurements M that can apply a separate POVM to each register, and also from
pure product states to mixed product states. We achieve these generalizations using standard
manipulations in quantum information. We expect that further generalizations are possible with
more work.

Shadow Tomography. The analysis of Quantum Private Multiplicative Weights (QPMW),
our new online, gentle procedure for shadow tomography, is our technically most demanding re-
sult. The QPMW procedure itself is relatively simple,12 and is directly inspired by an analogous
procedure from classical differential privacy, the so-called Private Multiplicative Weights (PMW)
algorithm of Hardt and Rothblum [27] from 2010.

Given a database X ∈ [d]n, of n records x1, . . . , xn drawn independently from some underlying
probability distribution D, the goal of PMW is to answer an enormous number of statistical queries
about D, possibly as many as exp (n) of them, in a way that preserves the overall differential privacy
of X. Here the queries need to be answered one by one, as they arrive, and could be chosen by an
adaptive adversary.

12Indeed, QPMW is arguably simpler than previous shadow tomography procedures, especially because it com-
pletely avoids the use of the so-called Quantum OR Bound of Harrow, Lin, and Montanaro [31]. QPMW could, in
fact, be used to give an independent proof of the OR Bound, one where the procedure would moreover be gentle
(albeit, possibly with worse sample complexity).
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PMW achieves this by maintaining, at all times, a current hypothesis H about D. Whenever a
new query arrives, the first thing PMW does is to check whether H and X lead to approximately
the same answer for that query. If the answers are equal to within some threshold, then PMW
simply answers the query using H, without looking further at X. Only if H and X disagree
substantially does PMW query X a second time—both to learn the correct answer to the current
query, and to use that answer to update the hypothesis H. For both types of queries, PMW uses
the standard DP trick of adding a small amount of Laplace noise to any statistics gathered from
X, before using those statistics for anything else.

It’s clear, by construction, that this strange two-pronged approach will always return approxi-
mately correct answers, with high probability. But why does it help in preserving privacy? The
privacy analysis depends on proving three facts:

(1) Each query leads to only a negligible loss in privacy (say, ∼ 1/ exp (n)), unless it has an
appreciably large probability of triggering an update.

(2) Even when an update is triggered, the loss in privacy is still modest, say ∼ 1/
√
n.

(3) The number of updates is always extremely small, say O (log d). This is true for “the usual
multiplicative weights reasons.”

Once one understands the connection between privacy and gentleness, it’s natural to wonder
whether a quantum analogue of PMW might let one apply a huge sequence of measurements
E1 . . . , Em, one at a time, to a small collection of identical quantum states ρ⊗n (where, say, n ≤
(logm)O(1)), in a way that yields accurate estimates of Pr [Ei (ρ) accepts] for every i, without
destroying the states in the process or even damaging them too much. This, of course, is precisely
the problem of (gentle, online) shadow tomography.

In Section 6, we prove that indeed this is possible. Our QPMW algorithm is just the “obvious”
quantum generalization of PMW. That is, QPMW at all times maintains a current hypothesis, σ,
about the unknown quantum state ρ. Initially σ is the maximally mixed state I/d. Whenever a
new measurement Et arrives, QPMW first checks whether

Pr [Et (σ) accepts] ≈ Pr [Et (ρ) accepts] ,

with the check being done using a thresholded version of the Laplace noise measurement from
Section 1.1. If the answer is yes, then QPMW simply returns Pr [Et (σ) accepts] as its estimate for
Pr [Et (ρ) accepts], without measuring the actual quantum states any further. Only if the answer is
no does QPMW measure a second time—both to learn an accurate estimate for Pr [Et (ρ) accepts],
and to use that estimate to update its hypothesis σ. This second measurement also involves the
deliberate addition of Laplace noise.

Intuitively, the reason why we might expect this to work is that each round of PMW leaks
very little privacy—and by our central connection between DP and gentleness, that suggests that
we can implement each round of QPMW in a way that damages the states very little. However,
formalizing this requires substantial new ideas, which are not contained in the classical analyses of
PMW.

Of course, if we had a sufficiently general theorem about privacy implying gentleness, then per-
haps everything we needed would follow immediately from that theorem, combined with the privacy
of PMW. However, our existing implication—applying, as it does, only to product measurements
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on product states, and saying nothing about adaptively chosen sequences of measurements—will
force us to work harder.

The core difficulty concerns what, before, we called step (1) in the analysis of PMW: namely,
the connection between loss in privacy and the probability of triggering an update. We note
that while, by construction, the answer in each round is close to the answer on the current state
in the registers, we need the answer to be accurate with respect to the original state ρ. The
algorithm’s gentleness plays an essential role in proving accuracy: it’s only because of gentleness
that we know that the state in the registers hasn’t been corrupted, and that the algorithm’s answers
are accurate with respect to the original state. We further note that, since we want to handle
many measurements, and the damage from these measurements will accumulate, we truly need to
show that the overwhelming majority of measurements result in only negligible damage.

The original analysis [27] conditioned on so-called “borderline rounds,” which are rounds that
have a reasonable probability of triggering an update, and argued that the privacy loss in other
rounds was zero. In the quantum setting, however, this is a non-starter: so long as there is some
probability of an update, the damage is never zero. Instead, we show how to bound the damage
each no-update round would cause to the original state as a function of the probability that it could
have triggered an update. Thus, rounds that are likely to trigger an update (of which there are
few) can cause damage, but rounds that are unlikely to trigger an update (of which there are many)
each cause very little damage once we condition on “no update.” Since the number of updates is
bounded, this is a promising start. Bounding the damage as a function of the probability of an
update requires a delicate analysis, leveraging the differential privacy of the Laplace measurement
and the fact that we have a product state in the registers, which induces a Gaussian distribution
on the answers before noise is added to each measurement (see Claim 43).

In the classical setting, once we bound the privacy loss per round, we can apply composition
theorems to bound the loss across rounds. Crucially, this composition maintains multiplicative
guarantees on the closeness of probabilities. But damage to quantum states (in the trace distance
metric, for example) is additive, not multiplicative. Indeed, even if the amplitudes in a quantum
state |ψ⟩ were to change by only small multiplicative amounts, that could easily turn into an
additive change when we rotate |ψ⟩ to a different basis—a phenomenon with no classical analog.
So once |ψ⟩ becomes even slightly corrupted, why doesn’t this sever the multiplicative connection
between damage and the probability of an update—thereby preventing the necessary updates from
happening, and allowing |ψ⟩ to become corrupted even further, and so forth, until inaccurate
answers are returned?

We address these worries using several tools. The first is a “Damage Lemma,” Lemma 17,
which tightly connects the probability of an update being triggered in the “real” world, where the
state ρ⊗n is slightly damaged by each measurement round, to its probability of being triggered in
the “ideal” world, where the algorithm gets a fresh copy of ρ⊗n at each round. This lemma is
quite general and might find other uses. With this lemma in place, we divide the execution of
the QPMW algorithm into epochs, where each epoch has a constant probability of triggering an
update. By the connection between damage and update probabilities, this means that the sum
of the damage incurred by an “ideal” execution would be bounded, and by the Damage Lemma
the total damage in the “real” execution remains bounded as well. Since, moreover, each epoch
triggers an update with constant probability, and the number of updates is bounded, the number
of epochs will be bounded too. This gives us a bound on the total damage to the state, and is
crucial both for proving gentleness and for proving accuracy.
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Other Results. The paper’s other results are proved using a variety of techniques. In
Appendix 10, for example, we show that any measurement that’s 0-DP on product states (i.e.,
accepts all product states with the same probability) is actually 0-DP on all states, and hence
trivial. Though simple, this result makes essential use of the fact that the separable mixed states
have positive density within the set of all mixed states, and would be false if amplitudes were reals
rather than complex numbers. Since most results in quantum information are insensitive to the
distinction between real and complex quantum mechanics, it’s noteworthy to find an exception.

To prove, in Appendix 13, a weak form of composition for quantum DP algorithms, we use the
same “Damage Lemma” (Lemma 17) that we used for the analysis of QPMW. In that appendix,
however, we also construct an example, involving DP measurements in two incompatible bases,
that shows why any composition theorem for quantum DP will come with caveats that weren’t
needed classically.

To prove, in Section 5, that our “DP implies gentleness” implications are asymptotically optimal,
we use the Laplace noise measurement Lσ as a separating example. When σ = Θ(n), we get a
measurement that’s O

(
1
n

)
-DP, but not α-gentle on arbitrary states for any α = o (1). When

σ = Θ(
√
n), we get a measurement that’s O( 1√

n
)-DP, but not α-gentle on product states for any

α = o (1).

1.7 Related Work

To our knowledge, this paper is the first to make the connection between gentle measurement of
quantum states and differential privacy. Nevertheless, there were two previous papers that tried
to combine quantum information and differential privacy in other ways; there was a previous study
of gentle tomography; and there was a celebrated (purely classical) connection between differential
privacy and so-called adaptive data analysis, which in some ways foreshadowed our connection
between DP and gentle measurement.

Quantum information and DP. Senekane et al. [39] discuss first applying a classical DP
algorithm to classical data, and then encoding the output into a quantum state for use in a quantum
machine learning algorithm. Naturally this composition preserves DP, but the DP and quantum
aspects don’t seem to interact much.

Zhou and Ying [46] define and study an interesting notion of “quantum DP,” which however is
very different from ours. Given an algorithm A that takes a quantum state as input and produces
another quantum state as output, they define A to be (∆, ε, δ)-DP if for all states ρ, σ with trace
distance at most ∆, and all 2-outcome measurements M ,

Pr [M (A (ρ)) accepts] ≤ eε Pr [M (A (σ)) accepts] + δ.

In other words: unlike us, Zhou and Ying don’t consider A’s behavior on two databases that differ
in a single entry (but which could have arbitrarily large trace distance)—only on two states that
are actually close as quantum states. For them, essentially, a DP algorithm is a quantum channel
that converts “mere” closeness in trace distance into a stronger, multiplicative kind of closeness
between quantum states. Zhou and Ying’s main results are that

(1) the standard depolarizing and amplitude-damping channels (i.e., just adding noise to a quan-
tum state, like in the simplest models of decoherence) are DP in their sense, and
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(2) their notion of quantum DP satisfies many composition theorems, including advanced com-
position.

These results are interesting and non-obvious, but only tangentially related to what we do.

Gentle tomography. Bennett, Harrow, and Lloyd [12] studied the task of “gentle quantum
state tomography”—that is, recovering a full description of a quantum state ρ from identical copies
ρ⊗n, without appreciably damaging the ρ⊗n’s. Their notion of “gentleness” was very similar to
ours. To achieve the task, they gave a protocol that, like many of our protocols, deliberately
adds noise to the measurement outcomes before returning them (although they used a randomized
binning strategy rather than Laplace noise). They did not make a connection to differential privacy,
and also did not consider shadow tomography, or any other tasks besides full tomography.

DP and adaptive data analysis. Perhaps the work that most clearly anticipated ours, at a
technical level, had nothing to do with quantum information at all. Dwork et al. [19] studied the
problem of adaptive data analysis: given a dataset, drawn i.i.d. from an underlying distribution,
the goal is accurately to answer a long sequence of adaptively chosen statistical queries or analyses.
Each query can be chosen as a function of the answers to all previous queries. Accuracy is
measured with respect to the underlying distribution, rather than the specific dataset drawn, and
the goal is to avoid overfitting. A sequence of works [19, 18, 10] showed that differentially private
mechanisms are particularly well-suited to this application, and can be used to guarantee adaptive
accuracy automatically.

Let X be the dataset, with n entries drawn i.i.d. from a distribution D. A priori, before any
queries are answered, an observer’s view of the dataset X is that it is a draw from the distribution
Dn. As queries are answered, this view might change. One way to prevent overfitting is to
guarantee that the query answers do not change the observer’s view much: i.e., that the a-posteriori
view of X’s distribution, conditioned on the observed answers, is almost unchanged. This can be
interpreted as “classical gentleness.” At a technical level, our results use the fact that in the above
scenario, if we run a classical DP algorithm A on the database X, then conditioning on A(X)
outputting any particular value y results in a bounded change to the prior (see Lemma 32). We
note that a similar result follows from the work of Dwork et al. [18] and Rogers et al. [38] (their
results are phrased in terms of the so-called “max information”).

While there are technical and conceptual connections, the setting of quantum measurement
or shadow tomography (even without gentleness) presents altogether different challenges from the
adaptive data analysis setting. Most notably, as we discussed in Section 1.1, running an algorithm
on a quantum state can collapse the state. This is a physical phenomenon, not just a change in a
particular observer’s prior and posterior views as was the case classically. In particular, quantum
measurements that collapse the state cannot be forgotten or undone. Restricting our attention
to computing the average of two-outcome measurements over n registers, this difference is best
illustrated by the fact that, in the quantum setting, computing accurate answers to a large collection
of non-adaptive measurements is already a challenging task (even without requiring gentleness).
In the classical setting, on the other hand, if the measurements are specified non-adaptively then
the näıve algorithm that simply outputs the empirical mean for each measurement performs quite
well; the only challenge is answering an adaptively specified sequence of measurements.
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2 Preliminaries

2.1 Classical Probability Theory

Given two probability distributions D = (px)x and D′ = (qx)x, we’ll use all three of the following
measures of distance between them:∥∥D −D′∥∥ :=

1

2

∑
x

|px − qx| (trace distance)

KL
(
D,D′) :=∑

x

px ln
px
qx

(Kullback-Leibler divergence)

H2
(
D,D′) := 1−

∑
x

√
pxqx (squared Hellinger distance)

Interestingly, Hellinger distance was invented in 1909, prior to the discovery of quantum mechanics,
and is used for purely classical purposes in probability theory. But, as it involves the square roots
of probabilities, it might be said to have a “secret affinity” for quantum mechanics that occasionally
reveals itself, as it will in this paper.

Proposition 10 (Pinsker’s Inequality) ∥D − D′∥ ≤
√
2KL (D,D′).

The following is less well-known, but we’ll need it as well:

Proposition 11 (e.g. [37, p. 99]) H (D,D′) ≤
√

KL (D,D′).

2.2 Quantum Information Basics

In the following sections, we’ll briefly review some standard notation and definitions from quantum
information. More details can be found, for example, in Nielsen and Chuang [34].

A d-dimensional pure state is a unit vector in Cd, which we write in ket notation as

|ψ⟩ =
d∑

i=1

αi |i⟩ .

Here |1⟩ , . . . , |d⟩ is an orthonormal basis for Cd, and the αi’s are complex numbers called amplitudes
satisfying |α1|2 + · · ·+ |αd|2 = 1. The state |ψ⟩ is also called a superposition over the basis states
|1⟩ , . . . , |d⟩, which we can think of as the possible classical states of the system.13 We also denote
by ⟨ψ| the conjugate transpose of |ψ⟩ (thus, |ψ⟩ is a column vector while ⟨ψ| is a row vector). The
unit-norm condition can then be written succinctly as ⟨ψ|ψ⟩ = 1; and more generally, the complex
inner product between |ψ⟩ and |φ⟩ can be written ⟨ψ|φ⟩.

In the special case d = 2, we call |ψ⟩ a qubit, and typically label the orthonormal basis vectors
by |0⟩ and |1⟩. It’s also convenient to give standard names to the following two superpositions of
|0⟩ and |1⟩:

|+⟩ := |0⟩+ |1⟩√
2

, |−⟩ := |0⟩ − |1⟩√
2

.

13Note that any linear combination of the basis states |1⟩ , . . . , |d⟩, and not just |1⟩ , . . . , |d⟩ themselves, is called a
“pure state.”
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The reader might be familiar with two types of operations that we can apply to pure states.
First, given any unitary matrix U , we can map |ψ⟩ to U |ψ⟩. Second, we can measure |ψ⟩ in the
|1⟩ , . . . , |d⟩ basis. Doing so returns the outcome |i⟩ with probability |αi|2 = |⟨ψ|i⟩|2. Furthermore,
the state |ψ⟩ then “collapses” to |i⟩.

More generally, we could measure |ψ⟩ with respect to any orthonormal basis |v1⟩ , . . . , |vd⟩,
which is equivalent to first applying a unitary U that maps each |vi⟩ to |i⟩, then measuring in the
|1⟩ , . . . , |d⟩ basis, and finally applying U †, where † denotes conjugate transpose. This returns the
outcome |vi⟩ with probability |⟨ψ|vi⟩|2, whereupon the state collapses to |vi⟩. A measurement of
this type is called a projective measurement.

2.3 Mixed States, Superoperators, Quantum Operations, and POVMs

In general, we may have ordinary probabilistic uncertainty about which quantum superposition we
have. This leads us tomixed states, the most general kind of state in quantum mechanics. Formally,
a d-dimensional mixed state ρ is a d × d positive semidefinite matrix that satisfies Tr (ρ) = 1.
Equivalently, ρ is a convex combination of outer products of pure states with themselves (without
loss of generality, at most d pure states):

ρ =

d∑
i=1

pi|ψi⟩⟨ψi|,

where p1, . . . , pd ≥ 0 and p1 + · · · + pd = 1. This can be interpreted as a probability distribution
wherein each |ψi⟩ occurs with probability pi, though note that different distributions can give rise
to the same ρ. In the special case where ρ = |ψ⟩⟨ψ| has rank 1, it represents a pure state (i.e., a
superposition). In the special case where ρ is diagonal, it represents a classical probability distri-
bution over |1⟩ , . . . , |d⟩. The maximally mixed state, I

d where I is the identity matrix, corresponds
to the uniform distribution over |1⟩ , . . . , |d⟩, and has the unique property of being unaffected by
unitary transformations.

We can restate the basic rules of quantum mechanics in terms of mixed states, as follows. First,
a unitary transformation U maps ρ to UρU †. Second, a measurement of ρ in the |1⟩ , . . . , |d⟩ basis
returns the outcome |i⟩ with probability ρii = ⟨i|ρ|i⟩, whereupon ρ collapses to |i⟩ ⟨i|. Likewise, a
measurement in the |v1⟩ , . . . , |vd⟩ basis returns |vi⟩ with probability ⟨vi|ρ|vi⟩, whereupon ρ collapses
to |vi⟩⟨vi|.

More generally, a superoperator S, the most general (norm-preserving) mapping from mixed
states to mixed states allowed by quantum mechanics, maps ρ to the mixed state

S (ρ) =
k∑

i=1

BiρB
†
i ,

where B1, . . . , Bk can be any matrices satisfying

k∑
i=1

B†
iBi = I.

Here ρ and S (ρ) do not even need to have the same dimension. Superoperators encompass unitary
transformations, measurements, and other interactions with an external environment in a single
formalism.
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Even more generally still, if we have S as above where B1, . . . , Bk only satisfy

k∑
i=1

B†
iBi ≼ I,

then we call S a quantum operation.14 If S is a quantum operation, then S (ρ) is Hermitian and
positive semidefinite, but it might not be a normalized mixed state, because its trace might be
less than 1. Quantum operations are useful for capturing the effects of superoperators when we
additionally condition on some event happening (e.g., a measurement outcome being “accept”).
The event’s probability is then Tr (S (ρ)), and the final mixed state conditioned on the event is

S(ρ)
Tr(S(ρ)) .

Quantum operations act linearly on mixed states, in the sense that

S (pρ+ qσ) = pS (ρ) + qS (σ) .

Although any measurement can be represented by a superoperator, when discussing measure-
ments it’s convenient to use a related formalism called “POVMs” (Positive Operator Valued Mea-
sures). POVMs capture all measurements allowed by quantum mechanics, including those whose
implementations might involve ancillary systems besides the ones being measured. In this formal-
ism, a measurement M is given by a list of d× d positive semidefinite matrices E1, . . . , Ek, which
satisfy E1 + · · ·+ Ek = I. The rule is:

Pr [M (ρ) returns outcome i] = Tr (Eiρ) .

Importantly, specifying the Ei’s doesn’t uniquely determine the post-measurement states (i.e., what
happens to ρ if the outcome is i). Thus, by an implementation of the measurement M , in this

paper we’ll mean a list of d × d matrices B1, . . . , Bk, which satisfy B†
iBi = Ei. For a given

implementation, if the measurement outcome is i, then the post-measurement state is

BiρB
†
i

Tr
(
BiρB

†
i

) .
Note that the mapping

ρ→
k∑

i=1

BiρB
†
i

is a superoperator, that each individual mapping ρ → BiρB
†
i is a quantum operation, and that

Tr
(
BiρB

†
i

)
= Tr (Eiρ) is the probability of outcome i.

In the special case of two-outcome POVMs (E1, E2), we’ll sometimes identify the POVM itself
with the “accept” outcome E1, treating the “reject” outcome E2 = I− E1 as implied.

14In the literature, these are also called “non-trace-increasing completely positive maps.”
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2.4 Separable and Entangled

A pure state |ψ⟩ on n registers is called a product state if it can be written as a tensor product,

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ .

Any pure state that cannot be so written is called entangled. A famous example of an entangled
pure state is the Bell pair, |00⟩+|11⟩√

2
.

A mixed state ρ is likewise called a product state if it can be written as a tensor product

ρ = ρ1 ⊗ · · · ⊗ ρn.

Also, ρ is called separable if it can be written as a convex combination of product states, and
entangled if it can’t be. Unlike a pure state, a mixed state can be separable but non-product,
meaning that it has classical correlations but no entanglement, as with the example |00⟩⟨00|+|11⟩⟨11|

2
(i.e., 00 and 11 with equal probabilities).

A measurement M on an n-register state is called product if there exist POVMs M1, . . . ,Mn

such that M can be implemented as follows:

• For each i ∈ [n], apply Mi to the ith register.

• Return some function of the n classical measurement outcomes, possibly together with aux-
iliary randomness.

In the special case where M1, . . . ,Mn are all projective measurements, we call M a product-of-
projectives.

More generally, we call M mixture-of-products if the POVMs M1, . . . ,Mn can be chosen ran-
domly, from some correlated probability distribution, in advance of applying them.

More generally still, we call M LOCC—the acronym stands for Local Operations and Classical
Communication—if M can be implemented by applying a POVM to some register i1 ∈ [n], then
(depending on the outcome) applying another POVM to some register i2 ∈ [n], and so on, then
finally returning some function of the classical measurement outcomes, possibly together with
auxiliary randomness. Here we allow any finite, adaptively chosen sequence of POVMs, which
could include repeated POVMs applied to the same register.

Let us stress that, even if a measurement happens to be product, or mixture-of-products, or
LOCC, if we want to implement the measurement gently, we might need to apply a quantum circuit
that acts on all n registers coherently. This is because, if we measure the registers separately, we’ll
generate garbage—i.e., information about the state besides the final measurement outcome—that
might destroy gentleness. Only if we’ve taken care to do everything in coherent superposition,
simulating the “measurements” on the individual registers (and the computations on the outcomes
of those measurements) using ancilla qubits, can we later uncompute the garbage. This is likely
to be a significant challenge for experimental implementation of gentle measurements like the ones
discussed in this paper, since coherent measurements across n registers are much harder than
incoherent ones to realize in practice. On the other hand, this issue makes no difference for DP,
since even if the garbage isn’t uncomputed, it need not be revealed to the end user.15

15Or to say it another way, the definition of quantum DP talks only about the probabilities of outcomes, not about
the post-measurement states.
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2.5 Distance Between Quantum States

Given a Hermitian matrix A, its trace norm is defined as

∥A∥tr :=
1

2

d∑
i=1

|λi| ,

where λ1, . . . , λd are the eigenvalues of A. In particular, given two mixed states ρ and σ, their
trace distance is defined as ∥ρ− σ∥tr.

Trace distance is a metric on mixed states—i.e., it’s reflexive, symmetric, and satisfies the
triangle inequality. It’s equal to

max
M

(Pr [M (ρ) accepts]− Pr [M (σ) accepts]) ,

where the maximum is taken over all possible two-outcome measurements M . As such, trace
distance generalizes the total variation distance between classical probability distributions, reducing
to the latter when ρ and σ are both diagonal matrices.

We’ll find the following facts useful.

Proposition 12 (Contractivity of Trace Norm [34, p. 406]) Let S be any quantum opera-
tion, and let A be a Hermitian matrix. Then

∥S (A)∥tr ≤ ∥A∥tr .

So in particular, for any two mixed states ρ and σ and any quantum operation S, we have

∥S (ρ)− S (σ)∥tr = ∥S (ρ− σ)∥tr ≤ ∥ρ− σ∥tr .

As an especially useful example, a superoperator that “traces out” (discards) part of its input state
can never increase trace distance.

Proposition 13 (Convexity of Trace Norm) For all Hermitian matrices A,B and p, q ≥ 0,

∥pA+ qB∥tr ≤ p ∥A∥tr + q ∥B∥tr .

The triangle inequality for trace distance is just a special case of the above. As another useful
special case, for all mixed states ρ, σ, ρ′, σ′ and probabilities p,∥∥(pρ+ (1− p)σ)−

(
pρ′ + (1− p)σ′

)∥∥
tr
≤ p

∥∥ρ− ρ′∥∥
tr
+ (1− p)

∥∥σ − σ′∥∥
tr
.

Finally, trace distance ∥ρ− σ∥tr takes an especially simple form if ρ = |ψ⟩⟨ψ| and σ = |ϕ⟩⟨ϕ|
are both pure states.

Proposition 14 For all |ψ⟩ , |ϕ⟩,

∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr =
√

1− |⟨ψ|ϕ⟩|2.
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2.6 Additivity of Damage

In this section, we prove the extremely useful fact that, if we apply quantum operations to a
quantum state ρ in succession, then we can bound the total damage caused to ρ in trace distance
by the sum of the damages that each operation would cause were it applied to ρ individually. This
fact is related to the so-called “Quantum Union Bound” (see [3, 45]), but it’s both simpler to state
and easier to prove.

Lemma 15 Let ρ be a mixed state, and let S be any quantum operation. Suppose ∥ρ′ − ρ∥tr ≤ ε
and ∥S (ρ)− ρ∥tr ≤ δ. Then ∥S (ρ′)− ρ∥tr ≤ ε+ δ.

Proof. We have ∥∥S (ρ′)− ρ∥∥
tr
=
∥∥S (ρ+ (ρ′ − ρ))− ρ∥∥

tr

=
∥∥S (ρ′ − ρ)+ (S (ρ)− ρ)

∥∥
tr

≤
∥∥ρ′ − ρ∥∥

tr
+ ∥S (ρ)− ρ∥tr

≤ ε+ δ.

Here the second line used the linearity of quantum operations, and the third used the triangle
inequality for trace distance as well as Proposition 12 (i.e., the fact that applying a quantum
operation can never increase the trace norm).

Lemma 15 has the following immediate corollary.

Corollary 16 Let ρ be a mixed state and let S1, . . . , Sm be quantum operations. Suppose that for
all i, we have

∥Si (ρ)− ρ∥tr ≤ εi.

Then
∥Sm (Sm−1 (· · ·S1 (ρ)))− ρ∥tr ≤ ε1 + · · ·+ εm.

Proof. Suppose by induction on m that

∥Sm−1 (Sm−2 (· · ·S1 (ρ)))− ρ∥tr ≤ ε1 + · · ·+ εm−1.

Then

∥Sm (Sm−1 (· · ·S1 (ρ)))− ρ∥tr ≤ ∥Sm−1 (Sm−2 (· · ·S1 (ρ)))− ρ∥tr + ∥Sm (ρ)− ρ∥tr
≤ ε1 + · · ·+ εm.

by Lemma 15.
Corollary 16 is the reason why “gentleness composes”: that is, applying an α1-gentle mea-

surement to a state ρ, followed by an α2-gentle measurement, yields an overall (α1 + α2)-gentle
measurement. By contrast, it’s not clear to what extent DP composes in the quantum setting,
because of the interaction between the DP requirement and damage to the state. For more about
this issue see Appendix 13.

Note that, by simply specializing Corollary 16 to diagonal ρ and classical operations S1, . . . , Sm,
we obtain an analogous statement for classical variation distance.
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In Section 6, when we analyze our shadow tomography protocol, we’ll also need a lemma that
upper-bounds the damage caused by a sequence of measurements conditional on the measurements
all accepting—or equivalently, by a sequence of quantum operations where we normalize the final
result. Fortunately, the formalism of quantum operations and trace norm can accommodate this
case as well.

Lemma 17 (Damage Lemma) Let ρ be a mixed state. For all i ∈ [m], let Si be a quantum op-
eration, which “accepts” a state σ with probability Tr (Si (σ)) > 0, and yields the post-measurement

state Si(σ)
Tr(Si(σ))

when it does. Suppose that for all i ∈ [m], we have∥∥∥∥ Si (ρ)

Tr (Si (ρ))
− ρ
∥∥∥∥
tr

≤ εi.

Let pi := Tr (Si (ρ)) be the probability that Si accepts the “ideal” state ρ, and let

qi :=
Tr (Si (· · ·S1 (ρ)))
Tr (Si−1 (· · ·S1 (ρ)))

be the probability that Si accepts the state that it actually receives, if S1, . . . , Si−1 are first applied
to ρ and if we condition on their accepting. Given any subset T ⊆ [m], let

pT :=
∏
i∈T

pi, qT :=
∏
i∈T

qi.

Then for all T ,

|pT − qT | ≤
ε1 + · · ·+ εm

q[m]\T
.

Also, ∥∥∥∥ Sm (· · ·S1 (ρ))
Tr (Sm (· · ·S1 (ρ)))

− ρ
∥∥∥∥
tr

≤ 2

q[m]
(ε1 + · · ·+ εm) .

Proof. For all i ∈ [m], let

Ei :=
Si (ρ)

Tr (Si (ρ))
− ρ.

Then by hypothesis, ∥Ei∥tr ≤ εi. Also,

Si (ρ) = pi (ρ+ Ei) .

We can now write:

S1 (ρ) = p1 (ρ+ E1) ,

S2 (S1 (ρ)) = p1 (S2 (ρ) + S2 (E1))

= p1 (p2 (ρ+ E2) + S2 (E1)) ,

S3 (S2 (S1 (ρ))) = p1 (p2 (S3 (ρ) + S3 (E2)) + S3 (S2 (E1)))

= p1 (p2 (p3 (ρ+ E3) + S3 (E2)) + S3 (S2 (E1))) ,
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and so on until

Sm (· · ·S1 (ρ)) = p[m]ρ+ p[m]Em + p[m−1]Sm (Em−1)

+ p[m−2]Sm (Sm−1 (Em−2)) + · · ·+ p[1]Sm (· · ·S2 (E1)) .

More generally, suppose we define

S′
i (σ) :=

{
Si (σ) if i ∈ T
Si(σ)
qi

otherwise,

so that
Tr
(
S′
m

(
· · ·S′

1 (ρ)
))

=
q1 · · · qm∏

i/∈T qi
= qT

is just the probability that Si accepts for all i ∈ T , if S1, . . . , Sm are applied in sequence. Then re-
peating the manipulations above gives us the following modified equation, in which all the products
of pi’s are restricted to range only over i ∈ T :

S′
m

(
· · ·S′

1 (ρ)
)
= pT (ρ+Em) + pT∩[m−1]S

′
m (Em−1)

+ pT∩[m−2]S
′
m

(
S′
m−1 (Em−2)

)
+ · · ·+ pT∩[1]S

′
m

(
· · ·S′

2 (E1)
)
.

Hence∥∥S′
m

(
· · ·S′

1 (ρ)
)
− pTρ

∥∥
tr
≤ pT ∥Em∥tr + pT∩[m−1]

∥∥S′
m (Em−1)

∥∥
tr
+ · · ·+ pT∩[1]

∥∥S′
m

(
· · ·S′

2 (E1)
)∥∥

tr

≤∥Em∥tr +
∥∥S′

m (Em−1)
∥∥
tr
+ · · ·+

∥∥S′
m

(
· · ·S′

2 (E1)
)∥∥

tr

≤εm +
εm−1

q{m}\T
+ · · ·+ ε1

q{2,...,m}\T

≤ε1 + · · ·+ εm
q[m]\T

,

where the second line used the fact that all the products of pi’s are upper-bounded by 1. This
means that

|qT − pT | =
∣∣Tr (S′

m

(
· · ·S′

1 (ρ)
))
− pT

∣∣ ≤ ε1 + · · ·+ εm
q[m]\T

,

thereby proving the first part of the lemma.
For the second part, let us take the special case T = [m]. Then q[m]\T = 1, and the inequalities

above reduce to ∥∥Sm (· · ·S1 (ρ))− p[m]ρ
∥∥
tr
≤ ε1 + · · ·+ εm,∣∣q[m] − p[m]

∣∣ ≤ ε1 + · · ·+ εm.

So the triangle inequality gives∥∥Sm (· · ·S1 (ρ))− q[m]ρ
∥∥
tr
≤
∥∥Sm (· · ·S1 (ρ))− p[m]ρ

∥∥
tr
+
∥∥p[m]ρ− q[m]ρ

∥∥
tr

≤ ε1 + · · ·+ εm +
∣∣p[m] − q[m]

∣∣
≤ 2 (ε1 + · · ·+ εm) .
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Hence ∥∥∥∥Sm (· · ·S1 (ρ))
q[m]

− ρ
∥∥∥∥
tr

≤ 2

q[m]
(ε1 + · · ·+ εm) .

As we’ll show in Appendix 13, Lemma 17 implies a limited sort of composition for quantum
DP algorithms. Namely, we can sequentially compose k quantum DP algorithms and have the
result remain accurate and DP, so long as the total damage incurred to the quantum state (in trace
distance) is always small compared to the joint probability of the observed outcomes y1, . . . , yk.
We can sometimes ensure the latter property, in turn, by using our main result, the connection
between DP and gentleness.

Note that we can combine Lemmas 17 and 15, to say that, even if we apply a final superoperator
Sm+1 after applying the quantum operations S1, . . . , Sm and then conditioning on their results, the
total damage to our initial state ρ is at most ∥Sm+1 (ρ)− ρ∥tr plus the damage bound from Lemma
17. (This wouldn’t be true if we’d composed in the opposite order, since conditioning could amplify

earlier damage to ρ by an O
(
1
p

)
factor.) This fact will also be used in Section 6.

2.7 Pure vs. Mixed States

We now prove some propositions to show that, when considering differential privacy and gentle
measurements, we can restrict attention to pure states without loss of generality; our conclusions
will then automatically carry over to mixed states. We start with the easy fact that DP on pure
states implies DP on mixed states.

Proposition 18 If a measurement M is ε-DP on pure product states, then M is ε-DP on mixed
product states as well. Likewise, if M is ε-DP on all pure states, then M is ε-DP on all mixed
states.

Proof. Suppose we seek to maximize the ratio

Pr [M (ρ) = y]

Pr [M (σ) = y]

over product states ρ = ρ1 ⊗ · · · ⊗ ρn and σ = σ1 ⊗ · · · ⊗ σn that differ only on the ith register.
Then holding the other n− 1 registers fixed, we’re maximizing over ρi and minimizing over σi. By
convexity, the maximum and minimum will both always be achieved by pure states. A second
appeal to convexity then shows that the maximum ratio is also achieved when the other n − 1
registers are set to pure states as well.

For the second part, the argument is the same, except that we simply maximize Pr [M (ρ) = y]
over all ρ, and minimize Pr [M (σ) = y] over all σ.

Next we want to prove that gentleness on pure states implies gentleness on mixed states. This
turns out to be true, but surprisingly tricky to prove.16 We first prove a key lemma, which might
be of independent interest.

16An earlier version of this paper gave a simple but wrong proof.
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Lemma 19 (Balanced Decompositions of Mixed States) Let ρ be any mixed state of rank
r, let E be any two-outcome POVM, and let q = Tr (Eρ). Then there exists a decomposition

ρ =

r∑
i=1

pi |ψi⟩ ⟨ψi|

such that ⟨ψi|E|ψi⟩ = q for all i ∈ [r].

Proof. By induction on the rank r. The base case (r = 1) is immediate. For r ≥ 2, let

Supp (ρ) := {|ψ⟩ : ρ− ε |ψ⟩ ⟨ψ| < 0 for some ε > 0} ,

where < denotes the semidefinite ordering. Then Supp (ρ) consists exactly of the pure states |ψ⟩ in
the subspace spanned by ρ’s eigenvectors. Furthermore, for any decomposition ρ =

∑r
i=1 λi |vi⟩ ⟨vi|,

we have |vi⟩ ∈ Supp (ρ) for all i ∈ [r], and also

r∑
i=1

λi ⟨vi|E|vi⟩ = q.

It follows that there exist pure states |v⟩ , |w⟩ ∈ Supp (ρ) such that ⟨v|E|v⟩ ≤ q whereas ⟨w|E|w⟩ ≥
q—for example, two of the above |vi⟩’s. But implies by continuity that there also exists a pure
state, of the form |x⟩ = a |v⟩+ b |w⟩, such that ⟨x|E|x⟩ = q exactly. Since Supp (ρ) corresponds to
a subspace, we then have |x⟩ ∈ Supp (ρ) as well.

In the decomposition of ρ that we are constructing, we now fix |ψ1⟩ := |x⟩, and we fix p1 to be
the largest ε such that ρ− ε |x⟩ ⟨x| < 0. Letting

σ :=
ρ− p1 |ψ1⟩ ⟨ψ1|

1− p1
,

we observe that σ is then a mixed state of rank r− 1, and also that Tr (Eσ) = Tr (Eρ) = q. So in
order to find the remainder of the decomposition—that is, |ψ2⟩ , . . . , |ψr⟩ and p2, . . . , pr—it suffices
to apply the lemma recursively to σ, appealing to the induction hypothesis.

Using Lemma 19, we can now show that gentleness on all pure states implies gentleness on
mixed states.

Proposition 20 If the measurement M is α-gentle on all pure states, then M is α-gentle on all
mixed states as well.

Proof. Fix an implementation of M ; the same implementation that achieves gentleness on pure
states will also achieve gentleness on mixed states.

Suppose we applyM to ρ. Fix a possible outcome y ofM , and let E = Ey be its corresponding
POVM element. Then let

ρ =

r∑
i=1

pi |ψi⟩ ⟨ψi|

be the decomposition guaranteed by Lemma 19: that is, one such that ⟨ψi|E|ψi⟩ = Tr (Eρ) for all
i ∈ [r]. By hypothesis, M is α-gentle on each of the pure states |ψ1⟩ , . . . , |ψr⟩. This means that,
if we condition on outcome y, then the post-measurement state has the form

ρy =
r∑

i=1

pi
∣∣ψ′

i

⟩ ⟨
ψ′
i

∣∣ ,
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where ∥|ψ′
i⟩⟨ψ′

i| − |ψi⟩⟨ψi|∥tr ≤ α for all i ∈ [r], and where the pi’s are unaffected because ⟨ψi|E|ψi⟩
had the same value for all i. By Proposition 13, this implies that ∥ρy − ρ∥tr ≤ α as well.

The last step is to show that gentleness on pure product states implies gentleness on mixed
product states.

Proposition 21 If the measurement M is α-gentle on pure product states, then M is α-gentle on
mixed product states as well.

Proof. Again, fix an implementation of M , and suppose we apply M to the product state ρ =
ρ1 ⊗ · · · ⊗ ρn. Fix a possible outcome y of M , and let

q := Pr [M (ρ1 ⊗ · · · ⊗ ρn) outputs y] .

As a first step, imagine that ρ2, . . . , ρn are fixed and that M is acting on ρ1 only. Then using
Lemma 19, we can find a decomposition

ρ1 =

r1∑
i=1

p1,i |ψ1,i⟩ ⟨ψ1,i|

such that for all i ∈ [r1],

Pr [M (|ψ1,i⟩ ⟨ψ1,i| ⊗ ρ2 ⊗ · · · ⊗ ρn) outputs y] = q.

Next, for each i ∈ [r1], imagine that |ψ1,i⟩ and ρ3, . . . , ρn are fixed and that M is acting on ρ2 only.
Then again using Lemma 19, we can find a decomposition dependent on |ψ1,i⟩,

ρ2 =

r2∑
j=1

p2,j|i
∣∣ψ2,j|i

⟩ ⟨
ψ2,j|i

∣∣ ,
such that for all j ∈ [r2],

Pr
[
M
(
|ψ1,i⟩ ⟨ψ1,i| ⊗

∣∣ψ2,j|i
⟩ ⟨
ψ2,j|i

∣∣⊗ ρ3 ⊗ · · · ⊗ ρn) outputs y
]
= q.

Continuing in this manner yields a decomposition of ρ1 ⊗ · · · ⊗ ρn into a mixture of pure product
states, on every one of which M outputs y with the same probability q. The remainder of the
argument proceeds exactly as in Proposition 20.

3 Basic Relations Among DP, Gentleness, and Triviality

In this section, we prove our first connection between the differential privacy and the gentleness of
quantum measurements:

Theorem 22 If a measurement M is ε-DP on all states, then M is O (εn)-gentle on all states.
Conversely, if M is α-gentle on all states for α ≤ 1

4.01 , then M is O (α)-DP on all states.
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Unfortunately, Theorem 22 is weaker than it might look, since as we’ll see, it relates DP to
gentleness only in a regime where M is “nearly trivial.” Later, we’ll restrict our attention to
product states, which will lead to a much more interesting connection between DP and gentleness.
Nevertheless, Theorem 22 serves as an instructive warmup to our main results, and the tools used
to prove it will later be reused.

Note that all the results in this section also have classical analogues—we simply need to replace
“all (mixed) states” by “all probability distributions” in each definition and statement—and those
classical analogues might be of interest as well.

Let’s first define formally what we mean by a measurement being “nearly trivial.”

Definition 23 (Triviality) Given a set S of mixed states, a measurement M , and a parameter
ε ≥ 0, we say M is ε-trivial on S if for all states ρ, σ ∈ S, and all possible outcomes y of M , we
have

Pr [M (ρ) outputs y] ≤ eε Pr [M (σ) outputs y] .

For M to be ε-trivial, full stop, means that M is ε-trivial on the set of all states.

In particular,M is 0-trivial if and only ifM ’s output probabilities are completely independent of
ρ. Note also that ε-trivial immediately implies ε-DP. Like ε-DP (but unlike α-gentleness), the def-
inition of ε-triviality depends only on the outcome probabilities, and not on the post-measurement
states.

The following proposition gives a slightly weaker condition that already suffices for a measure-
ment to be ε-trivial.

Proposition 24 Given a measurement M and parameter ε ≥ 0, suppose that for every two or-
thogonal pure states |ψ⟩ and |ϕ⟩, and every possible outcome y of M , we have

Pr [M (|ψ⟩) outputs y] ≤ eε Pr [M (|ϕ⟩) outputs y] .

Then M is ε-trivial.

Proof. Let E1 + · · · + Ek = I be the POVM elements of M . Assume without loss of generality
that the outcome y corresponds to the element E = E1. Then by assumption,

⟨ψ|E|ψ⟩ ≤ eε ⟨ϕ|E|ϕ⟩ (5)

for all orthogonal |ψ⟩ , |ϕ⟩. But this means that all of E’s eigenvalues must be within an eε

multiplicative factor of each other. So (5) holds for all |ψ⟩ , |ϕ⟩, not just all orthogonal |ψ⟩ , |ϕ⟩.
By convexity, we then have

Tr (Eρ) ≤ eεTr (Eσ)

for all ρ, σ as well.
Using Proposition 24, we now show that gentleness on all states implies near-triviality.

Lemma 25 Suppose M is α-gentle on all states. Then M is ln
(
1+4α
1−4α

)
-trivial—so in particular,

O (α)-trivial, provided α ≤ 1
4.01 .
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Proof. Given mixed states ρ and σ, let’s first consider the special case where ρ and σ are perfectly
distinguishable (that is, ∥ρ− σ∥tr = 1). For any outcome y, let p := Pr [M (ρ) outputs y] and
q := Pr [M (σ) outputs y], and assume without loss of generality that p ≥ q and p > 0. Also,
fix an α-gentle implementation of M . Let ρy and σy be the post-measurement states for ρ and
σ respectively, if the outcome of applying M is y. Now consider the mixed state ξ := ρ+σ

2 . Its
post-measurement state is

ξy =
pρy + qσy
p+ q

.

So let δ := p
p+q −

1
2 . Then

ξ − ξy =
1

2
ρ+

1

2
σ − p

p+ q
ρy −

q

p+ q
σy

=
p

p+ q
(ρ− ρy) +

q

p+ q
(σ − σy)− δ (ρ− σ) .

So by the triangle inequality,

δ ∥ρ− σ∥tr ≤ ∥ξ − ξy∥tr +
p

p+ q
∥ρ− ρy∥tr +

q

p+ q
∥σ − σy∥tr

≤ 2α,

since ∥ξ − ξy∥tr and ∥ρ− ρy∥tr and ∥σ − σy∥tr are all at most α by our gentleness assumption.
Furthermore, by assumption, ∥ρ− σ∥tr = 1. Thus we simply get δ ≤ 2α. Or

Pr [M (ρ) outputs y]

Pr [M (σ) outputs y]
=
p

q
=

1
2 + δ
1
2 − δ

≤ 1 + 4α

1− 4α
.

And by Proposition 24, if the above holds for perfectly distinguishable states ρ, σ (so in particular,

for orthogonal pure states), then it holds for all ρ, σ as well. Hence M is ln
(
1+4α
1−4α

)
-trivial.

An immediate corollary of Lemma 25 is this:

Corollary 26 If M is α-gentle on all states, then M is ln
(
1+4α
1−4α

)
-DP on all states.

Indeed, since the reasoning applied independently to each measurement outcome y, we get the
following stronger conclusion, which will be useful when we analyze shadow tomography:

Corollary 27 If M is (α, δ)-gentle on all states, then M is
(
ln
(
1+4α
1−4α

)
, δ
)
-DP on all states.

Notice that the central gambit in the proof of Lemma 25, namely defining ξ := ρ+σ
2 , generally

maps product states to non-product states. It turns out that this is inherent: Lemma 25 does not
have an analogue that assumes only gentleness on product states. Or rather: if we assume only
gentleness on product states, then we can deduce DP (and will do so, in Lemma 30), but will not
be able to deduce triviality. And this is to be expected, since there are nontrivial DP algorithms,
and indeed our main result (Theorem 5) shows that these algorithms lead to measurements that
are gentle on product states.

We next prove a converse to Lemma 25: that near-triviality implies gentleness.
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Lemma 28 (Trivial=⇒Gentle) SupposeM is ε-trivial. ThenM is (eε − 1)-gentle on all states—
so in particular, O (ε)-gentle, provided (say) ε ≤ 1.

Proof. Again, let E1 + · · ·+Ek = I be the POVM elements of M , and recall that we can use any
solutions to the equations Ei = A†

iAi to define the possible post-measurement states after M is
applied. Without loss of generality, focus on E = E1 and A = A1.

Since M is ε-trivial, all of E’s eigenvalues must be within an eε multiplicative factor of each
other. Also, since E is Hermitian, we can diagonalize it as U †DU , where U is unitary and D is a
diagonal matrix of E’s eigenvalues. Let’s make the choice A := U †√DU . Then for some constant
0 < c < 1, we can write

√
D as c (I + δV ), where δ ≤ 1− e−ε/2, and V is a diagonal matrix whose

entries are all at most 1 in absolute value.
Let |ψ⟩ be a pure state to which M is applied, and assume ⟨ψ|E|ψ⟩ > 0. Then conditioning

on outcome E leads to the post-measurement state

U †√DU |ψ⟩∥∥∥U †
√
DU |ψ⟩

∥∥∥ .
Therefore the post-measurement state is

cU † (I + δV )U |ψ⟩
∥cU † (I + δV )U |ψ⟩∥

=
|ψ⟩+ δU †V U |ψ⟩
∥|ψ⟩+ δU †V U |ψ⟩∥

By Proposition 14, the trace distance between this state and |ψ⟩ is at most the Euclidean distance,
which in turn is at most

1 + δ

1− δ
− 1 ≤ 2− e−ε/2

e−ε/2
− 1 ≤ eε − 1.

Thus, we’ve given an implementation of M that is (eε − 1)-gentle on pure states. By Proposition
20, this implies that M is (eε − 1)-gentle on mixed states as well.

Finally, we prove that if a measurement is ε-DP for sufficiently small ε, then it’s nearly trivial.

Proposition 29 (Sufficiently DP Is Trivial) If M is ε-DP on all states, then M is 2εn-trivial
on all states.

Proof. Let ρ, σ be any mixed states on n registers. Also, let Si be a superoperator that simply
swaps out the ith register for some fixed state—say the maximally mixed state I/d, if the registers
are d-dimensional.17 Then by applying all n of the Si’s to ρ or σ, one at a time, we can map the
entire input state to I/dn. Thus, for any output possible y of M , if we repeatedly invoke the fact
that M is ε-DP, once for each Si, we find that

Pr [M (ρ) outputs y] ≤ eεn Pr [M (I/dn) outputs y] .

Likewise,
Pr [M (σ) outputs y] ≥ e−εn Pr [M (I/dn) outputs y] .

Hence
Pr [M (ρ) outputs y] ≤ e2εn Pr [M (σ) outputs y] .

17Or if we preferred unitary transformations, we could also achieve the same effect by (for example) applying a
Haar-random unitary U to the ith register, and then appealing to convexity.
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One can show, by a similar argument, that ifM is ε-DP on product states, thenM is 2εn-trivial
on product states. Again, though, this is only interesting in the regime ε≪ 1

n , whereas our results
in Section 4 will be able to handle measurements that are ε-DP on product states for ε up to about
1√
n
.

Combining Lemma 25, Lemma 29, and Lemma 28 now completes the proof of Theorem 22.
Again, the problem with Theorem 22 is that, while it relates the privacy of a measurement M

to its gentleness, it does so only as an “accidental byproduct” of showing that sufficiently private
and sufficiently gentle measurements are both nearly trivial. To get a more interesting connection
between privacy and gentleness, we’ll need to restrict our attention to product states, as our main
result (Theorem 5) does.

4 Proof of Main Result

In this section we prove Theorem 5, the two-way connection between gentleness and differential
privacy on product states. Unlike Theorem 22, this connection will work even for measurements
that are very far from trivial.

4.1 Gentleness Implies DP on Product States

We’ll start by proving the “easy” direction: that gentleness on product states implies differential
privacy on product states. For this, we can reapply Lemma 25 from the previous section.

Lemma 30 (Gentleness=⇒DP on Product States) If M is α-gentle on product states, then

M is ln
(
1+4α
1−4α

)
-DP on product states as well—so in particular, O (α)-DP on product states, pro-

vided α ≤ 1
4.01 . Likewise, if M is (α, δ)-gentle on product states then M is

(
ln
(
1+4α
1−4α

)
, δ
)
-DP on

product states.

Proof. Let ρ = ρ1 ⊗ · · · ⊗ ρn and σ = σ1 ⊗ · · · ⊗ σn be two product states that differ only on
the ith register. Also, fix an implementation of M that is α-gentle on product states. Then for
any outcome y, let ρy and σy be the post-measurement states for ρ and σ respectively assuming
that M returns outcome y, and let ρy,i and σy,i be the restrictions (i.e., partial traces) of ρy and
σy respectively to the ith register. Then by Proposition 12, together with the assumption of
α-gentleness, we have

∥ρy,i − ρi∥tr ≤ ∥ρy − ρ∥tr ≤ α,

and likewise
∥σy,i − σi∥tr ≤ ∥σy − σ∥tr ≤ α.

But now we can apply Lemma 25—which implies that, if we think ofM as acting on the ith register

only, with the other n − 1 registers held fixed, then M must be ln
(
1+4α
1−4α

)
-trivial. Moreover, the

preceding statement holds for all i, and all settings of the other n− 1 registers. But that’s simply

another way of saying that M is ln
(
1+4α
1−4α

)
-DP on product states.

The last part follows simply because the argument applies for each possible output y indepen-
dently.
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This proves part (1) of Theorem 5.
Note that as α approaches 1

4 , the bound on the DP parameter diverges. Certainly the DP
parameter needs to diverge as α approaches 1

2 , since (for example) measuring a single qubit in the
{|0⟩ , |1⟩} basis, outputting the result, and then replacing the qubit by the maximally mixed state
is 1

2 -gentle but preserves no privacy whatsoever. We leave it as an open problem to close the gap
between 1

4 and 1
2 .

4.2 DP Implies Gentleness on Product States

For the other direction, we’ll proceed in stages. We’ll start by proving that ε-DP implies O (ε
√
n)-

gentleness for classical product distributions. Later we’ll extend this result to the quantum setting.
We’ll need a claim, originally proved in [22], that’s found many uses in classical DP.

Claim 31 ([22]) Suppose two probability distributions, D = (px)x∈[d] and D′ = (qx)x∈[d], satisfy∣∣∣∣ln pxqx
∣∣∣∣ ≤ ε

for all x ∈ [d]. Then the KL-divergence,

KL
(
D,D′) = d∑

x=1

px ln
px
qx
,

satisfies KL (D,D′) ≤ 2ε2.

We can now prove a classical “DP implies gentleness” result. As noted previously, similar
results follow from the work of Dwork et al. [18] and Rogers et al. [38] (phrased in terms of the
so-called “max information”), but we provide a self-contained proof.

Lemma 32 (Classical DP=⇒Gentleness) Let A be a classical ε-DP algorithm, and let D be
a product distribution over databases X. Then for all possible outputs y of A, the posterior
distribution Dy satisfies ∥Dy −D∥ ≤ 2ε

√
n, and indeed the stronger bound KL (Dy,D) ≤ 2ε2n.

Proof. Fix any output y. We want to compare the prior distribution D = D1 × · · · × Dn over
databases X to the posterior distribution Dy, which is obtained by conditioning on the event
A (X) = y. To do this, consider a process wherein we draw a database X = (x1, . . . , xn) from Dy,
by first drawing x1 from the marginal distribution over the first entry conditioned on A (X) = y,
then drawing x2 from the marginal distribution over the second entry conditioned on A (X) = y
and on x1, and so on up to xn.

Let’s call the ith distribution above Ti; note that Ti depends both on y and on x1, . . . , xi−1.
These are distributions over [d], our “data universe.” We claim that, for every possible value v ∈ [d]
for xi, the log-ratio between v’s probabilities under Ti and under Di must be upper-bounded in

32



magnitude by ε. To show this, let W := (x1, . . . , xi−1) and Z := (xi+1, . . . , xn). Then

PrTi [v]

PrDi [v]
=

Pr [v | y,W ]

Pr [v]

=
Pr [v | y,W ]

Pr [v | W ]

=
Pr [y | W, v]
Pr [y | W ]

=

∑
Z Pr [Z | W, v] Pr [y | W, v, Z]∑

Z Pr [Z | W ] Pr [y | W,Z]

=

∑
Z Pr [Z] Pr [y | W, v, Z]∑
Z Pr [Z] Pr [y | W,Z]

.

Here the second and last lines used the assumption that D = D1×· · ·×Dn is a product distribution.
Also, by differential privacy,

e−ε ≤ Pr [y | W, v, Z]
Pr [y | W,Z]

≤ eε

for all y,W, v, Z. Therefore convex combinations of the above probabilities are also within an eε

multiplicative factor of one another, so ∣∣∣∣ln PrTi [v]

PrDi [v]

∣∣∣∣ ≤ ε.
By Claim 31, this means that the expected log-ratio between PrTi [v] and PrDi [v], with respect

to xi drawn from Ti, is upper-bounded by 2ε2:

KL (Ti,Di) = Ev∼Ti

[
ln

PrTi [v]

PrDi [v]

]
≤ 2ε2.

Furthermore, the expected sum of the log-ratios—i.e., the KL-divergence between Dy and D
themselves—is just the sum of the expected log-ratios:

KL (Dy,D) =
n∑

i=1

E [KL (Ti,Di)] ≤ 2ε2n,

where the expectations here are over the choices for the Ti’s (which, however, are irrelevant to the
upper bound). So by Pinsker’s inequality (Proposition 10),

∥Dy −D∥ ≤
√

2KL (Dy,D) ≤ 2ε
√
n.

Having shown that ε-DP implies O (ε
√
n)-gentleness for classical product distributions, we now

begin the task of extending the result to quantum product states.

Lemma 33 Suppose the measurement M is ε-DP on product states, and is a product-of-projectives
(i.e., consists of a classical algorithm applied to the outcomes of nonadaptive projective measure-
ments on the n registers). Then M is O (ε

√
n)-gentle on product states.
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Proof. By Proposition 21, it suffices to give an implementation of M that is O (ε
√
n)-gentle on

pure product states. Thus, let

|ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ =
∑

X∈[d]n
αX |X⟩

be a pure product state on n registers. By applying suitable local unitaries, we can assume without
loss of generality that M simply measures each |ψi⟩ in the computational basis, obtaining the
string |X⟩ = |x1⟩ · · · |xn⟩ with probability |αX |2. It then outputs a sample from some probability
distributionMX , depending on X, over the possible outputs y. We need to show how to sample
fromMX in an O (ε

√
n)-gentle manner.

Our implementation is as follows: first map the state |ψ⟩ to∑
X∈[d]n:Pr[X]>0, y

αX |X⟩
√

Pr [y|X] |y⟩ .

Note that, as long as we do not care about computational complexity, the above mapping can
always be implemented somehow, although implementing it efficiently requires an efficient algo-
rithm for “QSampling” the probability distributions MX . Next, measure the |y⟩ register in the
computational basis, and condition on getting some particular result y.

Then by the rules of quantum mechanics and Bayes’ rule, the state of the first register is just

|ψy⟩ :=
∑

X∈[d]n:Pr[X]>0 αX

√
Pr [y|X] |X⟩√∑

X∈[d]n:Pr[X]>0 |αX |2 Pr [y|X]

=

∑
X∈[d]n:Pr[X]>0 αX

√
Pr [y|X] |X⟩√

Pr [y]

=
∑

X∈[d]n:Pr[X]>0

αX

√
Pr [y|X]

Pr [y]
|X⟩

=
∑

X∈[d]n:Pr[X]>0

αX

√
Pr [X|y]
Pr [X]

|X⟩

=
∑

X∈[d]n:Pr[X]>0

αX

|αX |
√

Pr [X|y] |X⟩ .

Let D be the distribution over X ∈ [d]n defined by PrD [X] = |αX |2; note that D is a product
distribution, to which Lemma 32 applies. Also, let Dy be D conditioned on the event that M
outputs y. Then we see above that |ψy⟩ is a pure state that precisely corresponds to Dy—in the
sense that, if we measure |ψy⟩ in the computational basis, we’ll see a sample from Dy. The one
complication is that |ψy⟩ has an additional set of degrees of freedom, namely the unit-norm phases
αX
|αX | . However, even these phases go away when we calculate the inner products ⟨ψ|ψy⟩ (which
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involve complex conjugates). In more detail:

⟨ψ|ψy⟩ =
∑

X∈[d]n:Pr[X]>0

α∗
X

αX

|αX |
√

Pr [X|y]

=
∑

X∈[d]n
|αX |

√
Pr [X|y]

=
∑

X∈[d]n

√
Pr [X] Pr [X|y]

= 1−H2 (D,Dy) .

Here H2 (D,Dy) is the squared Hellinger distance between the probability distributions D and Dy

(see Section 2.1). So in particular, ⟨ψ|ψy⟩ strictly relates the distributions D and Dy, and has
nothing further to do with quantum mechanics.

We can now upper-bound the trace distance between |ψ⟩ and |ψy⟩—and hence, the gentleness
of M on |ψ⟩—by

∥|ψ⟩⟨ψ| − |ψy⟩⟨ψy|∥tr =
√

1− |⟨ψ|ψy⟩|2

=

√
1− (1−H2 (D,Dy))

2

=
√

2H2 (D,Dy)−H4 (D,Dy)

≤
√
2H (D,Dy)

≤
√

2KL (Dy,D)

≤ 2
√
2 · ε
√
n.

Here the first line used Proposition 14, the second-to-last line used Proposition 11, and the last
line used Lemma 32.

Note that, if we’d upper-bounded the Hellinger distance H (D,Dy) by the square root of the
variation distance, ∥D − Dy∥ = O (ε

√
n), we’d only get an upper bound of O

(√
εn1/4

)
, rather than

the O (ε
√
n) that we wanted. To avoid that loss, here we exploited the fact that Lemma 32 upper-

bounded the KL-divergence rather than only the variation distance, and we also used Proposition
11, which upper-bounds Hellinger distance directly in terms of KL-divergence, bypassing variation
distance.

We now prove the final lemma needed to complete the proof of Theorem 5, by generalizing
Lemma 33 from projective measurements to POVMs.

Lemma 34 If M is any product measurement that is ε-DP on product states, then M is O (ε
√
n)-

gentle on product states.

Proof. Again, by Proposition 21, it suffices to restrict attention to pure states. We will give a
reduction to the situation already handled in Lemma 33. Suppose we start with the product state

|ψ⟩ := |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ .
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Next we apply a POVM to each |ψi⟩. This can be modeled as follows: for each i, we apply a
unitary transformation Ui to |ψi⟩ together with some ancilla qubits that are initially in the state
|0 · · · 0⟩. This yields a new state that we can write as

|ϕi⟩ :=
∑
x∈[k]

ax |x⟩ |vix⟩ .

Here |x⟩ represents a classical computational basis state that the POVM will measure, while |vix⟩
represents “garbage”: some normalized state that depends only on i and x, need not be in the
computational basis, and will not be measured.

So now we have
|ϕ⟩ := |ϕ1⟩ ⊗ · · · ⊗ |ϕn⟩ .

Next, we apply our classical algorithm to the basis states |x1⟩ , . . . , |xn⟩, and then we condition on
the algorithm outputting y. This yields a new state |ϕy⟩. What can we say about the relation
between |ϕ⟩ and |ϕy⟩?

Let’s reorganize |ϕ⟩ by collecting (x1, . . . , xn) into a single register that we’ll call X, and also
collecting all the |vij⟩’s into a single register that we’ll call |vX⟩. We then have:

|ϕ⟩ =
∑

X∈[k]n
bX |X⟩ |vX⟩ ,

where bX = ax1 · · · axn , and |bX |
2 = Pr [X] is just the probability of X from the perspective of the

classical algorithm. By exactly the same reasoning as in the proof of Lemma 33, it follows that

|ϕy⟩ =
∑

X∈[k]n:Pr[X]>0

bX
|bX |

√
Pr [X|y] |X⟩ |vX⟩ .

Therefore,

⟨ϕ|ϕy⟩ =
∑

X∈[k]n:Pr[X]>0

b∗X
bX
|bX |

√
Pr [X|y] =

∑
X∈[k]n

√
Pr [X] Pr [X|y].

So now we have exactly the same expression for the inner product that we had in the proof of
Lemma 33. So we can use the same argument to lower-bound the inner product by 1− ε2n, and to
upper-bound both the Hellinger distance and the trace distance between |ϕ⟩ and |ϕy⟩ by O (ε

√
n).

Finally, recall that |ϕ⟩ was obtained by applying a unitary transformation U = U1 ⊗ · · · ⊗ Un

to |ψ⟩ together with some |0⟩ ancilla qubits. Since inner products are unitarily invariant, this
means that U † |ϕy⟩ also has trace distance at most O (ε

√
n) from U † |ϕ⟩ = |ψ⟩ |0 · · · 0⟩. Hence

we’ve implemented M in an O (ε
√
n)-gentle manner.

Intuitively, what’s going on is that the garbage register, |vX⟩, is completely inert: it’s there,
but it has no effect on the inner product.

Combining Lemma 30 with Lemma 34 now completes the proof of Theorem 5.

5 Separating Examples

In this section, we prove that the relationships between DP and gentleness notions proved in the
preceding two sections are essentially tight, by giving examples of measurements that exhibit their
optimality.
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5.1 Gentleness to DP

For all β > 0, let Rβ be the “randomized response” algorithm, which for each i ∈ [n] separately,
applies the POVM defined by the matrices

Ereject =

(
1
2 + β 0
0 1

2 − β

)
, Eaccept =

(
1
2 − β 0
0 1

2 + β

)
to the ith qubit and returns the result. In other words, the output of Rβ is an n-bit string, whose
ith bit has a bias of β toward the value of the ith qubit in the {|0⟩ , |1⟩} basis. The following is
immediate:

Proposition 35 Rβ is ε-DP for ε = ln
(
1+2β
1−2β

)
, which is O (β) for β ≤ 1

2.01 , and is not ε′-DP for

any ε′ < ε.

Proof. Flipping the ith input bit can at worst change the probability that the ith output bit
assumes some value from 1

2 − β to 1
2 + β (or vice versa), while leaving the other n− 1 output bits

unchanged.
We also have:

Proposition 36 Suppose n = 1 (i.e., there is just one qubit). Then Rβ is 2β-gentle.

Proof. Given a qubit in state

ρ =

(
a b
b∗ c

)
,

here is one way to implement Rβ: with probability 1 − 2β, return 0 or 1 with equal probabilities.
With probability 2β, measure ρ in the {|0⟩ , |1⟩} basis and return the result. Suppose without loss
of generality that a > 0 and we condition on the output being |0⟩. Then the post-measurement
state is

σ :=
(1− 2β) ρ+ 2βa|0⟩⟨0|

1− 2β + 2βa
.

The trace distance, ∥ρ− σ∥tr, can thus be calculated explicitly as

2βa

1− 2β + 2βa
∥ρ− |0⟩⟨0|∥tr =

2βa
√
|b|2 + c2

1− 2β + 2βa

≤ 2β

√
|b|2 + c2

≤ 2β.

Combining Propositions 35 and 36, we get the following corollary:

Corollary 37 For all α ∈ (0, 1), there exists a measurement that is α-gentle on arbitrary states,

but not ε-DP for any ε < ln
(
1+α
1−α

)
, even on product states.

Proof. Consider Rα/2 applied to the first qubit only.
This shows that Corollary 26 and Lemma 30 are both tight, up to the factor of 4 in front of the

α.
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5.2 DP to Gentleness

We now prove that, when we showed that ε-DP on arbitrary states implies O (εn)-gentleness on
arbitrary states (Proposition 29), and that ε-DP on product states implies O (ε

√
n)-gentleness on

product states for product measurements (Theorem 5), the n and
√
n factors were both asymptot-

ically tight.
Recall the measurement Lσ from Sections 1.1 and 1.3, which takes as input an n-qubit state

and returns the total Hamming weight, plus a Laplace noise term η of average magnitude σ. We
showed, in Proposition 4, that Lσ is 1

σ -DP—and moreover, on all n-qubit states, not merely on
product states. By contrast, we now observe that Lσ is far from gentle on arbitrary states:

Proposition 38 (Optimality of n Factor) Ln/2 is not 1
3 -gentle on n-qubit states.

Proof. We consider Lσ applied to the mixture

ρ :=
|0n⟩⟨0n|+ |1n⟩⟨1n|

2
.

Note that the entire situation is classical, so the question of how Lσ is implemented is irrelevant.
Let the measurement outcome be y; then

Pr [y|0n] = 1

2σ
e−|y|/σ,

Pr [y|1n] = 1

2σ
e−|y−n|/σ.

So by Bayes’ rule, the post-measurement state is

ρy =
e−|y|/σ|0n⟩⟨0n|+ e−|y−n|/σ|1n⟩⟨1n|

e−|y|/σ + e−|y−n|/σ .

Suppose y ≤ 0. Then we can calculate:

∥ρy − ρ∥tr =

∣∣∣∣∣ e−|y|/σ

e−|y|/σ + e−|y−n|/σ −
1

2

∣∣∣∣∣
=

∣∣∣∣ 1

1 + e−n/σ
− 1

2

∣∣∣∣
=

1

2

(
1− e−n/σ

1 + e−n/σ

)
>

1

2
− e−n/σ.

If we now make the choice (say) σ = n
2 , we find that this exceeds 1

3 .
It follows that, in going from DP on arbitrary states to gentleness on arbitrary states, we need

at least a factor of n blowup in ε; indeed this is true even for product-of-projectives measurements.
Hence Proposition 29 is essentially tight.

Likewise, in going from DP on product states to gentleness on product states, we need at least
a factor of

√
n blowup in ε, and this is true even for product-of-projectives measurements. Hence

Lemma 33 is essentially tight. The example that shows this is again Lσ, albeit this time with
σ =
√
n:
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Proposition 39 (Optimality of
√
n Factor) L√

n is not α-gentle on n-qubit product states, for
any α = o (1).

Proof. Let σ =
√
n, and consider Lσ applied to the uniform distribution I/2n. Again, since

the entire situation is classical, the question of how Lσ is implemented is irrelevant. Let the
measurement outcome be y; then by Bayes’ rule, the post-measurement state is

ρy =

∑
X∈{0,1}n e

−|y−|X||/σ|X⟩⟨X|∑
X∈{0,1}n e

−|y−|X||/σ .

So suppose y ≤ 0, and assume without loss of generality that n is odd. Then we can calculate:

∥ρy − ρ∥tr =
1

2

∑
X∈{0,1}n

∣∣∣∣∣ e−|y−|X||/σ∑
Z∈{0,1}n e

−|y−|Z||/σ −
1

2n

∣∣∣∣∣
=

1

2

n∑
k=0

(
n

k

) ∣∣∣∣∣ e−|y−k|/σ∑n
ℓ=0

(
n
ℓ

)
e−|y−ℓ|/σ −

1

2n

∣∣∣∣∣
=

1

2

n∑
k=0

(
n

k

) ∣∣∣∣∣ e−k/σ∑n
ℓ=0

(
n
ℓ

)
e−ℓ/σ

− 1

2n

∣∣∣∣∣
≥ 1

2

∣∣∣∣∣∣
(n−1)/2∑
k=0

(
n

k

)
e−k/σ∑n

ℓ=0

(
n
ℓ

)
e−ℓ/σ

−
n∑

k=(n+1)/2

(
n

k

)
e−k/σ∑n

ℓ=0

(
n
ℓ

)
e−ℓ/σ

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣
(n−1)/2∑
k=0

(
n

k

)
e−k/σ − e−(n−k)/σ∑n

ℓ=0

(
n
ℓ

)
e−ℓ/σ

∣∣∣∣∣∣
≥ 1

2

∣∣∣∣∣∣
n/2−

√
n∑

k=0

(
n

k

)
e−k/σ − e−(n/2+

√
n)/σ∑n

ℓ=0

(
n
ℓ

)
e−ℓ/σ

∣∣∣∣∣∣
≥ 1

4

∣∣∣∣∣∣
n/2−

√
n∑

k=0

(
n

k

)
e−k/σ∑n

ℓ=0

(
n
ℓ

)
e−ℓ/σ

∣∣∣∣∣∣
≥ 1

4

∣∣∣∣∣∣
n/2−

√
n∑

k=0

(
n

k

)
1

2n

∣∣∣∣∣∣
= Ω(1) .

Here the third line used the assumption y ≤ 0, while the fourth uses the interpretation of variation
distance as the maximum distinguishing probability.

6 Shadow Tomography

Having developed the connection between DP and gentleness, we’re now ready to apply the connec-
tion to shadow tomography. First, in Section 6.1, we review a recent algorithm of Aaronson et al.
[7] for online learning of quantum states, which we’ll need as a central ingredient. Then, in Section
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6.2, we present and analyze our new Quantum Private Multiplicative Weights (QPMW) algorithm,
which builds on the Private Multiplicative Weights (PMW) algorithm of Hardt and Rothblum [27].
QPMW proves Theorem 9: that is, it shows that it’s possible to do shadow tomography using only

O
(
(logm)2 (log d)2 /ε8

)
copies of an unknown mixed state ρ, where m is the number of known

accept/reject measurements, d is the dimension of ρ, and ε is the accuracy with which we want
to estimate each measurement’s acceptance probability—in a way that, moreover, is online (i.e.,
processes the measurements one at a time) and ε-gentle (i.e., damages the copies of ρ by at most
ε in trace distance).

6.1 Online Learning of Quantum States

Aaronson et al. [7] recently defined and studied the problem of online learning of quantum states.
Here we have an unknown d-dimensional mixed state ρ, and a learner is presented with a sequence
E1, E2, . . . of two-outcome POVM measurements. For each measurement Et, the learner tries
to anticipate Tr (Etρ), the probability that Et accepts ρ, up to accuracy ±ε. Indeed, the learner
maintains a “hypothesis state” σt, and on each measurement Et, if the hypothesis differs appreciably
from the unknown state ρ with respect to this measurement—that is, if

|Tr (Etρ)− Tr (Etσt−1)| > ε

—then we say that the learner was “wrong,” and we allow it to update its state by giving it an
approximation bt ∈ [0, 1] to the correct answer, where (say) |Tr (Etρ)− bt| ≤ ε

10 . The learner’s goal
is to upper-bound the total number of times that it’s ever wrong, even assuming that the sequence
of Et’s and bt’s is chosen adaptively, by an adversary who sees the learner’s hypotheses.

Perhaps surprisingly, Aaronson et al. [7] showed that the total number of mistakes can be upper-

bounded by O
(
log d
ε2

)
—so for example, only O

(
n
ε2

)
for a state of n qubits (even though the state

space has dimension 2n).
We observe that the same bound holds even under a slight relaxation of the update condition:

namely, updates can also be triggered when the hypothesis has error between ε
3 and ε. If an update

is triggered, then the learner again receives an ε
10 -approximation to the correct answer.

Theorem 40 (Variant: Online Learning of Quantum States [7, Theorem 1]) There is an

explicit procedure for online learning of quantum states that makes at most ℓ (d, ε) = O
(
log d
ε2

)
up-

dates, so long as updates never occur when the hypothesis has error smaller than ε
3 , and updates

always occur when the error is ε or larger.

We emphasize that when the error is in the range [ ε3 , ε), updates may or may not occur.
Aaronson et al. [7] actually gave two explicit procedures that achieve the above bound: one

based on online convex optimization, the other on matrix multiplicative weights. Both procedures
use an amount of computation per measurement that’s polynomial in d.

In this work, however, we’ll be able simply to use Theorem 40 as a black box. We’ll view
an online learning procedure as specified by its initialization procedure, which outputs an initial
hypothesis state σ0 ← OnlineLearn(d), and an update procedure used to update the hypothesis
state σt ← OnlineUpdate(σt−1, bt).
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6.2 Online Shadow Tomography

Our Quantum Private Multiplicative Weights (QPMW) algorithm for gentle online shadow tomog-
raphy is presented in Figure 1.

Parameters: Intended number of queriesm ∈ N, gentleness and accuracy parameters α, ε, δ > 0
and noise magnitude µ > 0 (set in the proof below, see Equation 10).
Input: n and a product state ρ = ρ1 ⊗ · · · ⊗ ρn, where the ρi’s are d-dimensional mixed states.

Algorithm:
Initialize the online learner σ0 ← OnlineLearn(d)
In each round t← 1, 2 . . . ,m, when receiving two-outcome measurement Et, do the following:

1. Apply the two-outcome CheckForUpdate measurement:

(a) Apply the Laplace measurement with noise magnitude nµ to the n registers to com-
pute (but do not measure) a noisy estimate at of Tr(Etρ)

(b) Compute and measure the decision bit ut, which is 1 if and only if |at − Tr(Etσt−1)| >
ε
2

(c) Uncompute the noise and intermediate values computed in the above measurement

2. If ut = 0 (no update), then set σt ← σt−1 and output the answer bt ← Tr(Etσt−1)

3. Otherwise (ut = 1, i.e. an “update round”):

(a) If there have already been ℓ(d, ε) prior update rounds (see Theorem 40), then abort

(b) Apply the Laplace measurement with noise magnitude nµ to the n registers to com-
pute a noisy estimate bt of Tr(Etρ), uncompute the noise and intermediate values
computed within this measurement

(c) Run a round of online learning: σt ← OnlineUpdate(σt−1, bt)

(d) output the answer bt

Figure 1: QPMW Algorithm

Theorem 41 Let α, β, ε, δ > 0 be gentleness and accuracy parameters. There exists a setting for
the noise magnitude µ for which the online shadow tomography algorithm presented in Figure 1 is
(α, δ)-gentle. Moreover, given sufficiently many copies n, where

n = O

((
log2m+ log 1

δ

)
· log2 d · log 1

β

ε6min {α, ε}2

)
,

the algorithm’s error is bounded by ε with probability at least 1− β over its coins and its measure-
ments.

Proof. We first prove gentleness and then turn our attention to bounding the error (the accuracy
proof builds on the algorithm’s gentleness).
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Gentleness. Note that we argue gentleness for any product state provided as input (i.e.,
for gentleness, we don’t assume that the input is n copies of a single state). By Proposition 21,
it suffices to consider the case where the input is a pure product state |ψ⟩ = |ψ1⟩ ⊗ · · · ⊗ |ψn⟩.
It is straightforward to see that the update rounds are gentle: we run two DP measurements in
each update round, and their outcomes are gentle by Theorem 5. This is stated below in Claim
42. The non-update rounds are certainly no less gentle than the update rounds (after all, we only
run the first measurement), but we expect to have a very large number of no-update rounds, and
so we need a much better bound. We obtain such a bound by restricting our attention to the
damage that can be caused by the conditioned superoperator CheckForUpdate, conditioned on
the output being 0 (no update). One important challenge is showing that the damage (conditioned
on this particular outcome) is tightly related to the probability of an update. Thus, it will be
highly unlikely for a sequence of rounds (even a very long sequence!) to cause significant damage
before it triggers an update. The second challenge is bounding the damage that can be caused by
a sequence of conditioned superoperators. This is done via a delicate accounting argument, which
relies on Lemma 17

We begin by fixing some notation. First, given a superoperator and a fixed output y, we
use the term conditioned superoperator to refer to running the superoperator conditioned on the
output being y.18 The QPMW algorithm’s output in any run can be specified by m′ ≤ m, the
number of rounds before an “abort” (if any) occurs, and by a vector ȳ of outcomes, where for each
t ∈ {1, . . . ,m′}, the outcome in round t is yt ∈ [0, 1] ∪ {⊥}. In no-update rounds the outcome
is ⊥, while in update rounds the outcome yt = bt is the noisy answer returned by the algorithm.
Note that m′ and the vector ȳ of outcomes indeed specify all outputs of the algorithm. For an
intermediate round t ∈ [1,m′], we can also consider the vector ȳ≤t of outcomes in the first t rounds.
Taking |ψ⟩ to be the initial state of the algorithm, we take |ψ≤t⟩ to be the state after round t,
conditioned on the outcomes ȳ≤t (and given the measurements E1, . . . , Et). The initial state is
thus |ψ⟩ = |ψ≤0⟩, and the final state is |ψ≤m′⟩.

Consider an execution of the algorithm at the beginning of the tth round. The outcomes in
previous rounds are given by ȳ≤t−1, which determines the learned state σt−1. Let Et be the
tth measurement. We define λt to be the probability that the CheckForUpdate (Et, |ψ⟩ , σt−1)
measurement returns 1, i.e. the probability of an update on the original state |ψ⟩. Similarly, we take
κt to be the probability that CheckForUpdate(Et, |ψ≤t−1⟩ , σt−1) returns 1, i.e. the probability
of an update on the real state in the registers at the beginning of the tth round.

The following claims bound the damage that can occur if we run the tth round with a fresh
copy of the original state in the registers.

Claim 42 Every round of the algorithm is an O
(

1√
nµ

)
-gentle superoperator.

Claim 43 Take n and µ to be set as in Equations 11 and 10. Let |ψno⟩ be the state after we run
CheckForUpdate(Et, |ψ⟩ , σt−1), and condition on the output 0 (“no update,” which occurs with
probability 1− λt). We have:

∥|ψ⟩⟨ψ| − |ψno⟩⟨ψno|∥tr = O

(
λt√
nµ

)
.

18In the terminology of Section 2.3, a conditioned superoperator is a quantum operation but where we normalize
the output state.
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Claim 42 follows immediately from the differential privacy of the Laplace measurement and
from Theorem 5. We defer the proof of Claim 43, which is technically involved and lengthy (see
below). We first show that, given this claim, the algorithm (taken as a whole) is gentle.

Epoch superoperators. For the analysis, we divide an execution of the algorithm into
epochs, where each epoch is comprised of one or more rounds. The kth epoch begins in round tk
(where t1 = 1). The kth epoch ends on the first round t′ ≥ tk where one of the following occurs:

(1) An update happens (or the epoch reaches the last round m).

(2) The probability of an update, if each round was run on the original state, becomes too large:

t′∏
j=tk

(1− λj) ≤
1

2
. (6)

Naturally, the last epoch always ends on the last round m′. The crux of the gentleness analysis
is bounding the damage done to the state within any single epoch. A separate argument shows
that the number of epochs cannot be too large.

Viewing each epoch as a superoperator, it is specified by a list of measurements Etk , Etk+1, . . .
that would be chosen so long as no updates occurred. Note that this list is indeed fixed: while the
strategy that chooses the actual measurements Etk , Etk+1, . . . can be adaptive, it specifies a fixed
sequence of measurements (known in advance) that will be chosen so long as the outputs are “no
update.” Let t′′ ≥ tk be the first round that meets Condition (6). The epoch processes the list
of measurements Etk , Etk+1, . . . , Et′′ until an update occurs (or the last measurement in this list is
processed). Note that t′′ depends on the initial state |ψ⟩, but it is fixed in advance. Given the list
of measurements Etk , Etk+1, . . ., the output of the epoch superoperator is the length a list of “no
update” decisions of length s ∈ [0, t′′ − tk], followed (if an update occurs in the final round) by the
output btk+s of the Laplace measurement used to approximate the value of Etk+s.

We bound the damage that can be caused to the original (product) state |ψ⟩ by running the
epoch superoperator. We also show that running the epoch superoperator on |ψ⟩ triggers an update
with constant probability, but with constant probability no update occurs before round t′′.

Claim 44 There exists a noise magnitude µ = O
(

1√
nε2

)
such that the following holds. Fixing any

round tk ∈ [m], prior measurements E1, . . . , Etk−1, and a history of outputs ȳ≤tk−1 in the previous
rounds, define the epoch superoperator as above. Then:

(1) When we run the epoch superoperator on the state |ψ⟩, the probability that an update occurs
is at least 0.15.

(2) When we run the epoch superoperator on the state |ψ⟩, the probability that no update occurs
before the round t′′ is at least 0.4.

(3) Let |ψ′⟩ be the state in the registers after running this superoperator on the original state |ψ⟩
(including observing the epoch’s outputs). The damage is bounded by:∥∥|ψ⟩⟨ψ| − |ψ′⟩⟨ψ′|

∥∥
tr
= O

(
1√
nµ

)
.
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Proof. For any possible last round t′ ≥ tk, and any possible output y of the epoch superoperator
(comprised of a sequence of no-updates, which may or may not end with an update), we bound the
damage as follows. We take t′′ ≥ t′ to be the round on which the epoch always ends (unless there
is an earlier update). Since Condition (6) did not hold at the beginning of round t′ − 1, we have:

p =
t′−1∏
j=tk

(1− λj) ≥
1

2
.

Using the fact that for any ξ ∈ [0, 1], we have that 0 ≤ 1− ξ ≤ e−ξ:

1

2
≤ p =

t′−1∏
j=tk

(1− λj) ≤
t′−1∏
j=tk

e−λj = e
−

∑t′−1
j=tk

λj .

By taking logarithms on both sides of the above inequality we get:

t′−1∑
j=tk

λj < 1. (7)

Claim 43 gives a bound εj on the damage when running the jth CheckForUpdate conditioned
superoperator (on the original state), conditioned on output 0. Recall that this bound εj is linear in
the update probability λj . Claim 42 gives a bound εtk+s on the damage caused by the conditioned
superoperator run in the last round, conditioned on any possible outcome in that round. Combining
these bounds with inequality (7), we get:

t′∑
j=tk

εj = O

 1√
nµ

1 +

t′−1∑
j=tk

λj

 = O

(
1√
nµ

)
.

Define q to be the probability of no update in rounds tk, . . . , t
′ − 1 in a “real” execution of the

epoch superoperator on the state |ψ⟩ (and note that q > 0, because we are considering an output y
that can actually occur). Applying Lemma 17 to the conditioned superoperator’s run in the first
t′ − tk − 1 rounds, and using also the bound on µ in the claim’s statement, we get:

|p− q| ≤
t′−1∑
j=tk

εj < 0.1, (8)

which in particular implies that q ≥ 0.4, proving item (2) above. By Lemma 17 (see also the
remark following that lemma about composing with a final superoperator—in our case, the (t′)th

round), we conclude that:

∥∥|ψ⟩ ⟨ψ| − ∣∣ψ′⟩ ⟨ψ′∣∣∥∥
tr
≤ 5

t′∑
j=tk

εj = O

(
1√
nµ

)
.

Bounding the update probability. To lower-bound the probability of an update, observe
first that if the probability λt′′ of an update in the last round, when we run it on a fresh copy of the
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state |ψ⟩, satisfies λt′′ ≥ 1
4 , then by gentleness of the epoch superoperator as a whole (see above),

when we run it on |ψ⟩, the probability of an update in the last round (run on the state |ψ≤t′′⟩) is
greater than 0.15.

Thus, we restrict our attention to the case that λt′′ <
1
4 . Since t′′ is the first round where

Condition (6) is violated, we know that
∏t′′

j=tk
(1− λj) ≤ 1

2 . I.e., we have a lower bound on the

probability of an update if each round was run on a fresh copy of |ψ⟩. Since we assume λt′′ <
1
4 ,

we in fact have an upper bound on the probability of no update in the first t′′ − 1 rounds of such
an execution:

p =
t′′−1∏
j=tk

(1− λj) ≤
3

4
.

By equation (8) (restricted to the case t′ = t′′), we deduce a similar bound on the probability q of
no update in the first t′′ − 1 rounds of the actual execution (an execution that does not get fresh
copies of |ψ⟩). In particular, the probability of no update in this “actual” execution is at most
0.85.

Accumulated damage. By Claim 44, running each epoch superoperator on the initial state
only results in bounded damage, and triggers an update with constant probability. By Lemma 15
(additivity of damage), when we run a sequence of k epochs, the total damage is at worst multiplied
by k. Moreover, so long as this accumulated damage is smaller than 0.05, each epoch still triggers
an update with probability at least 0.1 (because the trace distance between the original state and
the state in the registers when we run the epoch is bounded). Under these conditions, by Azuma’s
inequality, with all but δ

2 probability, the number of epochs that occur before ℓ (d, ε) updates are
triggered (and the QPMW algorithm aborts) is at most:

k = O

(
ℓ (d, ε) +

√
ℓ (d, ε) log

1

δ

)
.

By Theorem 40 we have that ℓ (d, ε) = O
(
log d
ε2

)
. Note that the choice of noise parameter µ

guarantees that the accumulated damage over k such rounds is indeed less than 0.05 (in fact it is
less than α; see equation (9)). We conclude that in this random process, the probability that each
epoch triggers an update stays above 0.1 for the first k epochs.

By Claim 44 and Lemma 15 (additivity of damage), we can bound the total damage by the
number of epochs times the damage per epoch, and we get that with all but δ

2 probability over the
coins and measurements made by QPMW:

∥|ψ⟩⟨ψ| − |ψ≤m′⟩⟨ψ≤m′ |∥tr = O

 k∑
j=1

1√
nµ


= O

 log d√
nµε2

+

√
log d log 1

δ√
nµε

 .

Accuracy. For given gentleness and accuracy parameters α, δ, ε > 0, we fix the noise parameter
µ and then analyze the number of copies needed to guarantee accuracy with high probability. We
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assume without loss of generality that α ≤ ε/100 (if a larger α is specified, we simply run the
algorithm with α′ = ε/100). We set the parameters so that in an “ideal” run of the algorithm,
where each round is run on a fresh copy of the state ρ⊗n, the algorithm is ε/10-accurate with all
but a small constant probability. We then use the algorithm’s gentleness to show that this implies
accuracy in “real” runs of the algorithm: namely, we show that in a real run, the algorithm is
ε-accurate with all but a small constant probability. The error probability can be reduced by
independent repetitions.

We begin by setting the parameters so that with high probability, the total damage to the state
is bounded by α, and recall also that we assume α ≤ ε

100 . This imposes a constraint on µ:

min (α, ε) = O

 log d√
nµε2

+

√
log d log 1

δ√
nµε

 ,

or equivalently:

n = Ω

( 1

µεmin (α, ε)

(
log d

ε
+

√
log d log

1

δ

))2
 . (9)

Note that this setting also satisfies the conditions of Claim 44.
We also want to guarantee that with high probability, an ideal run of the algorithm would give

accurate answers. This imposes an upper bound on the noise magnitude µ. We analyze the
accuracy by dividing the execution into epochs, as was done in the gentleness analysis above.

Claim 45 (Ideal run accuracy) Consider an ideal run of the algorithm (where each round is
run on a fresh copy of ρ⊗n) where we set:

µ = O

(
ε

logm

)
. (10)

Consider an epoch that can run for at most s rounds. The following all hold:

(1) With all but s
1000m probability, there will not be an update in any round t of the epoch where

|Tr(Etρ)− Tr(Etσt−1)| ≤ ε
3 .

(2) If in any round t of the epoch it is the case that |Tr(Etρ)− Tr(Etσt−1)| ≥ ε, then an update
occurs in that round with all but 1

1000m probability (note this condition can only hold on the
round that always ends the epoch).

(3) If the epoch ends in an update round, then the noisy answer bt is
(

ε
10

)
-accurate with all but

1
1000m probability.

Proof. The claim follows immediately from the exponential tails of the Laplace distribution: in
each round, for each draw of Laplace noise, with all but 1

1000m probability, the noise magnitude is
at most εn

10 .
Recall that an epoch can end before reaching its last round. However, the probability of each

epoch reaching its final round is at least 1/2 (by the definition of the epoch superoperator). Thus,
if an epoch can run for at most s rounds, then the expected number of rounds is at least s/2.
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We conclude that with probability at least 0.9, the sum, over all epochs, of the number of rounds
for which each epoch can run, is at most 10m (by Markov’s inequality). By Claim 45, taking a
union bound over all epochs, and taking µ as set as in Equation 10, we deduce that with all but a
small constant probability over the noise choices, the conditions of the online learning theorem for
quantum states (Theorem 40) all hold in all rounds simultaneously. By that theorem, we conclude
that with all but small constant probability over its coins, the QPMW algorithm does not abort,
and its answers are all ε-accurate.

How many copies do we need? Before proceeding to prove that a real run of the algorithm
is also accurate, we specify the number of copies needed to simultaneously satisfy the constraints
in equations (9) and (10) by taking n to be large enough. We can do so while still guaranteeing
the upper bound:

n = O

(
log2m

ε4min (α, ε)2
·
(
log2 d

ε2
+ (log d)

(
log

1

δ

)))
. (11)

Note that this setting of n, which we use in the proof of Claim 43, also guarantees that
√
nµ is

a sufficiently large constant. Further, this number of copies guarantees accuracy with all but
small constant probability. The error probability can be reduced to β by running O(log(1/β))
independent copies of the algorithm, and outputting the median answer in each round.

For simplicity, in the statement of Theorem 41 we claim a slightly more relaxed bound of:

n = O

((
log2m+ log 1

δ

)
· log2 d · log 1

β

ε6min (α, ε)2

)
.

A hybrid execution. Consider a hybrid execution, where each epoch superoperator (see
above) is run on the “real” state (with no substitutions), but after each superoperator completes
its operation, we replace the resulting state with a fresh copy of ρ⊗n before proceeding to the next

epoch superoperator. Since each epoch is αe = O
(

1√
nµ

)
-gentle (Claim 44), we can apply the

Damage Lemma (Lemma 17) to conclude accuracy properties for the epoch:

Claim 46 (Hybrid run accuracy) Consider a hybrid run of the algorithm (where each epoch is
run on a fresh copy of ρ⊗n), with the parameters set as in Equations (9), (10), and (11). Let αe be
the bound on the gentleness of each epoch. Consider an epoch that can run for at most s rounds.
The following all hold:

(1) With all but s
1000m + αe probability, there will not be an update in any round t of the epoch

where |Tr(Etρ)− Tr(Etσt−1)| ≤ ε
3 .

(2) If in the final round of the epoch it is the case that |Tr(Etρ)− Tr(Etσt−1)| ≥ ε, then an update
occurs in that round with all but 1

1000m + αe probability.

(3) If the epoch ends in an update round, then the noisy answer bt is ε
10 -accurate with all but

1
1000m + αe probability.
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Proof. Consider the set I of rounds where |Tr(Etρ)− Tr(Etσt−1)| ≤ ε
3 . By Claim 45, the

probability that in an ideal execution an update occurs in one of the rounds in I is at most s
1000m .

Applying Lemma 17 to the epoch superoperator, we conclude that the probability an update
occurring in one of the rounds in I is at most s

1000m+αe. We note that in this application of Lemma
17, we restrict to the subset of quantum operations corresponding to rounds in I (and condition
on the “no update” outcome in those rounds). Claim 45 further bounds the ideal-execution
probability of no update if in the last round |Tr(Etρ)− Tr(Etσt−1)| ≥ ε, and the probability that
the update ends in an update round but the noisy answer is not ε

10 -accurate. By αe-gentleness of
the epoch superoperator, we conclude that the probabilities of these two events occurring in the
hybrid execution are both bounded by 1

1000m + αe.
By Claim 44, the probability that there is no update until the last (sth) round of an epoch is

at least 0.4. Thus, in the hybrid execution, the expected number of rounds for which an s-round
epoch will run is at least 0.4s. Similarly to the analysis of the ideal execution, taking a union
bound over k epoch superoperators and taking τ > 0 to be a small constant, we conclude that
with all but τ + O(αe · k) probability, the conditions of the online learning theorem all hold and
the answers returned are all ε-accurate. Further, by the choice of parameters in Equation (9), we
know that with high probability, when we run QPMW and take k∗ to be the number of epochs
needed to process all m measurements, we have O(αe · k∗) = O(α). We conclude that with all but
a small constant probability, a hybrid execution of QPMW does not terminate prematurely, and is
ε-accurate on every measurement.

The real execution. Lastly, we consider the real execution, where the epoch superoperators
are run in sequence, without any refreshing of the state in the registers. We use the gentleness of
the epoch superoperator to conclude that the algorithm remains accurate in its real execution.

Claim 47 (Real run accuracy) Consider a real run of the algorithm, with the parameters set
as in Equations (9), (10), and (11). With all but small constant probability over the algorithm’s
coins, the following hold in every round t of the algorithm (simultaneously):

(1) If |Tr(Etρ)− Tr(Etσt−1)| ≤ ε
3 , then there is no update.

(2) If |Tr(Etρ)− Tr(Etσt−1)| ≥ ε, then there is an update.

(3) If t is an update round, then the noisy answer bt is
ε
10 -accurate.

Proof. Let B be the (“bad”) event that in some round t of QPMW it is either the case that:

(i) an update occurs even though |Tr(Etρ)− Tr(Etσt−1)| ≤ ε
3 , or

(ii) no update occurs even though |Tr(Etρ)− Tr(Etσt−1)| ≥ ε, or

(iii) t is an update round, and the noisy answer bt is not
ε
10 -accurate.

By the foregoing analysis, the probability of the event B in the hybrid execution is bounded
by a small constant, say τ . We would like to now make a similar argument for a real execution,
where the state is not “refreshed” between epoch superoperators.

Towards this, let k be a bound on the number of epoch superoperators in a run of QPMW, and
let αe be the bound on the gentleness of each epoch superoperator. We consider further hybrids,
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where in the ith hybrid Hi, the first i epochs are each run on fresh copies of ρ⊗n, but there is no
further refreshing after the ith epoch. Thus the first hybrid H1 equals the real execution, and the
kth hybrid Hk equals the hybrid execution. By αe-gentleness of the epoch superoperator, we have
that for every i: ∣∣∣∣PrHi

[B]− Pr
Hi+1

[B]

∣∣∣∣ ≤ αe.

This is simply because the ith and (i + 1)st hybrid differ only in running the (i + 1)st epoch: in
Hi that epoch is run on the state in the registers after the ith epoch, whereas in Hi+1 that epoch
is run on a fresh copy of ρ⊗n. By the αe-gentleness of the ith epoch, the trace distance between
these two states is at most αe. So the two hybrids only differ in the probability that the event B
occurs in the (i+ 1)st epoch, and this difference in probabilities is upper-bounded by αe.

By a hybrid argument, we conclude that the probability of the event B occurring in the real
execution is at most τ +k ·αe. Further, by the choice of parameters in Equation (9), we know that
we can take k∗ to be a bound on the number of epochs such that with high probability, k∗ epochs
suffice to process all m measurements, and O(αe · k∗) = O(α). We conclude that with all but a
small constant probability, the real execution of QPMW does not terminate prematurely, and is
ε-accurate on every measurement.

Finally, we reduce the error probability to β by running O(log(1/β)) independent executions
and outputting the median answer in each round. This completes the accuracy proof for QPMW.

Proof of Claim 43. We begin by assuming that the probability λt of an update is smaller than
some sufficiently small constant. If this is not the case, then the claim follows immediately from
Lemma 34, because CheckForUpdate runs a 1

nµ -DP classical algorithm. Further, we assume

throughout that
√
nµ is larger than a sufficiently large constant (see the remark following equation

(11)).
We follow similar reasoning to the proof of Lemma 34. We begin with a pure product state in

the registers
|ψ⟩ := |ψ1⟩ ⊗ · · · ⊗ |ψn⟩ .

Let |ψno⟩ be the state after applying the conditioned superoperatorCheckForUpdate, conditioned
on ut = 0 (“no update”). The CheckForUpdate superoperator applies the POVM Et to each
|ψi⟩, and then runs a classical DP algorithm on the n bits observed. To implement it, we first
apply a unitary transformation (to the state and ancilla qubits). This gives a new state:

|ϕi⟩ :=
∑

bi∈{0,1}

ai,x |bi⟩ |vi,bi⟩ .

Let X ∈ {0, 1}n be the values observed when measuring the registers |bi⟩. We draw a noise value
η from the Laplace distribution with magnitude nµ, and output ut = 0 (no update) whenever:∣∣∣∣∣ 1n

n∑
i=1

Xi +
η

n
− Tr (Etωt−1)

∣∣∣∣∣ ≤ ε

2
.

Let D be the distribution over X ∈ {0, 1}n defined by PrD [X] = |αX |2, where αX = ai,1 · · · ai,n,
and note that D is indeed a product distribution. Let D0 be the distribution D conditioned on the
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event when we run the above (classical) procedure on X we get ut = 0 (no update). Following the
proofs of Lemmas 34 and 33, we can implement the CheckForUpdate measurement so that:

∥|ψ⟩⟨ψ| − |ψno⟩⟨ψno|∥tr ≤
√

2KL (D,D0). (12)

At this point we diverge from the proof of Lemma 34. There, we considered the distribution
Dy obtained by conditioning the product distribution D on an outcome y of a σ-DP algorithm. We
bounded the KL-divergence between these distributions, and used that to bound the trace distance
by O (σ

√
n). Here, while we know that the CheckForUpdate measurement is σ-DP for σ = 1

nµ ,

when the probability λt of an update is much smaller than 1√
nµ

, we want to argue that observing

a “no update” answer causes much less damage to the state.

Improving the DP guarantee. The intuition is that when λt is small, for a “typical” input
X drawn from D, the probability of no update is quite large: 1 − λt. For an adjacent input X ′,
this probability of no update is at least 1 − eσλt. For small λt, the log-ratio between these two
probabilities is roughly λtσ. A compelling strategy is to try to bound the KL-divergence using this
improved bound, by following a similar argument to the proof of Lemma 34. For observe that that
proof applies even when we focus on any particular output y—in this case, “no update”—using the
log-ratio guaranteed for that particular output.

The catch, which significantly complicates the proof, is that not all inputs drawn from D are
“typical.” Some of these inputs have much higher update probabilities than λt, whereas the proof
of Lemma 34 required a worst-case bound that applies to every input in the support of D. On
the other hand, by concentration bounds on the Hamming weights of inputs drawn from D, the
probability of drawing an X for which the update probability is significantly higher than λt is very
small.

To obtain an improved bound, we extend the proof of Lemma 34 to this case, using concentration
of the (generalized) binomial distribution (a subgaussian distribution), to show that while the
contribution of “far” inputs to the KL-divergence grows, their probability shrinks more quickly
than this growth. To do this, we partition the inputs into disjoint sets ∆j , according to the
difference between their Hamming weight and the expected Hamming weight. We account for the
contributions of each set in this partition to the KL-divergence to show the claimed bound. The
details (which can get long and technical) follow.

The event ∆j. For each integer j ∈ [1,
√
n], we define the event ∆j ⊆ {0, 1}n to consist of all

inputs whose Hamming weights are at least (j−1)
√
n and less than j

√
n away from the expectation:

∆j =

{
X ∈ {0, 1}m :

∣∣∣∣∣
(

n∑
i=1

Xi

)
− EY∼D

[∑
i

Yi

]∣∣∣∣∣ ∈ [(j − 1)
√
n, j
√
n
)}

.

By Azuma’s inequality, a random input drawn from D will with high probability be in ∆j for small
j:

Pr
X∼D

[X ∈ ∆j ] ≤ 2 exp

(
−(j − 1)2

2

)
. (13)

In particular, for a random input X ∼ D, the expected value of the j such that X ∈ ∆j is small:

∞∑
j=1

j · Pr
D

[∆j ] < 2. (14)
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Similarly, we can also bound higher moments of this function. Since the distribution over the
Hamming weight of X is subgaussian with standard deviation O (

√
n), we also have:

∞∑
j=1

j2 · Pr
D

[∆j ] = O(1). (15)

We use (D|∆j) to denote the distribution D conditioned on the event ∆j (and similarly for
D0). We proceed with a sequence of technical propositions, which will be used to bound the
KL-divergence between D and D0.

Proposition 48 Let ∆j be as defined above. For every j ≥ 1, every X ∈ ∆j, and every b ∈ {0, 1},
we have: ∣∣∣∣ln PrY∼D[ut = b | Y ]

Pr[ut = b | X]

∣∣∣∣ ≤ 2j + 5√
nµ

.

Proof. The intuition is that the probability that ut = b (by D) is dominated by the probability
that this event occurs for inputs whose Hamming weights are close to the expectation. By the
differential privacy of the Laplace noise mechanism, the log-ratio of probabilities for inputs close to
the expectation and inputs in ∆j is upper-bounded by j√

nµ
in magnitude. We show one direction

(an upper bound); the lower bound follows similarly:

PrY∼D[ut = b | Y ]

Pr[ut = b | X]
=

√
n∑

k=1

Pr
D
[∆k] ·

PrD[ut = b | ∆k]

Pr[ut = b | X]

≤

√
n∑

k=1

Pr
D
[∆k] · e

k+2j√
nµ

= e
2j√
nµ

√
nµ∑

k=1

Pr
D
[∆k] · e

k√
nµ +

√
n∑

k=
√
nµ+1

Pr
D
[∆k] · e

k√
nµ


≤ e

2j√
nµ

√
nµ∑

k=1

Pr
D
[∆k] ·

(
1 +

2k√
nµ

)
+

√
n∑

k=
√
nµ+1

Pr
D
[∆k] · e

k√
nµ


≤ e

2j√
nµ

1 +
2√
nµ

√
nµ∑

k=1

Pr
D
[∆k]k +

√
n∑

k=
√
nµ+1

Pr
D
[∆k] · e

k√
nµ


≤ e

2j√
nµ

1 +
4√
nµ

+

√
n∑

k=
√
nµ+1

Pr
D
[∆k] · e

k√
nµ


< e

2j√
nµ

(
1 +

5√
nµ

)
.

Here the second line follows from the differential privacy of the Laplace noise mechanism, as well
as the fact that the Hamming distance between inputs Y ∈ ∆k and X ∈ ∆j is at most (k+2j)

√
n.

The second-to-last line uses equation (14), while the final line uses equation (13), and can be seen
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as follows:

√
n∑

k=
√
nµ+1

Pr
D
[∆k] · ek/(

√
nµ) ≤

√
n∑

k=
√
nµ

exp

(
−k2

2
+
k + 1√
nµ

)
< 4e−nµ2/2

<
1√
nµ

,

where the last two inequalities hold so long as
√
nµ is a sufficiently large constant.

Proposition 49 Let ∆j be as defined above. For every j ≥ 1, every X ∈ ∆j, and every input X ′

that differs from X in a single coordinate, we have

∣∣∣∣ln Pr [ut = 0 | X]

Pr [ut = 0 | X ′]

∣∣∣∣ ≤ 4min

{
1, e

2j+5√
nµ · λt

}
nµ

.

Proof. First, since we add Laplace noise of magnitude nµ before checking for an update, for every
pair of adjacent inputs X,X ′ ∈ {0, 1}n, the log-ratio between the probabilities of ut = 0 is at most
1
nµ . When the probability of an update is smaller, we can improve this bound as follows. Define
qt to be the probability of an update (i.e., ut = 1) given the input X. By Proposition 48, we have

qt ≤ e
2j+5√

nµ · λt.
Take the count on X to be k =

∑
iXi. An update is triggered when the difference between the

noisy count and Tr(Etσt−1) is too large—or equivalently, when the noisy count passes a threshold
h > k + 1.19 Thus, qt = Pr [k + η > h]. Similarly, the probability q′t of an update on X ′ is
Pr [k + η + 1 > h]. (The case where the count on X ′ is smaller than on X is handled similarly.)
By the definition of the Laplace distribution, these probabilities are given by:

qt =
1

2
exp

(
−h− k

nµ

)
,

q′t =
1

2
exp

(
−h− k − 1

nµ

)
19This is without loss of generality: the case h < k− 1 can be handled similarly. The case where k ∈ [h− 1, h+ 1]

cannot occur because then λt would be much larger than say 1
100

, whereas we assumed λt was sufficiently small.
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Now by standard manipulations we get:

Pr [ut = 0 | X]

Pr [ut = 0 | X ′]
=

1− qt
1− q′t

=
1− 1

2 exp
(
−h−k

nµ

)
1− 1

2 exp
(
−h−k−1

nµ

)
= 1 +

exp
(
−h−k−1

nµ

)
− exp

(
−h−k

nµ

)
2− exp

(
−h−k−1

nµ

)
≤ 1 + exp

(
−h− k

nµ

)(
exp

(
1

nµ

)
− 1

)
= 1 + 2qt

(
exp

(
1

nµ

)
− 1

)
≤ exp

(
4qt
nµ

)
.

Here the last line uses the fact that nµ is a sufficiently large constant. (Note also that, in the
case we’re analyzing, the ratio of probabilities is larger than 1, so we only need to prove an upper

bound.) Proposition 49 follows, recalling that by its conditions qt ≤ e
2j+5√

nµ · λt.

Proposition 50 Let D, D0 and ∆j be as defined above. Then for every j ≥ 1:

KL ((D|∆j), (D0|∆j)) ≤
min

{
2, 32e

4j+10√
nµ · λ2t

}
nµ2

,

KL ((D0|∆j), (D|∆j)) ≤
min

{
2, 32e

4j+10√
nµ · λ2t

}
nµ2

.

Proof. We employ a variant of the proof of Lemma 32. We spell out the bound in the first
direction, the second direction follows similarly. Recall that (D|∆j) is the product distribution D,
conditioned on the event ∆j (the difference between the Hamming weight of X and its expectation
is in the interval [(j−1)

√
n, j
√
n)). We can sample an inputX = (x1, . . . , xn) from this distribution

by sampling x1 from the marginal distribution over the first entry of D conditioned on ∆j , then
drawing x2 from the marginal distribution over the second entry, conditioned on x1 and ∆j , and
so on up to xn. Call the ith distribution Si; note that Si depends on x1, . . . , xi−1 (and on ∆j).
Similarly, we can also consider a conditional distribution (D0|∆j), where we condition both on
ut = 0 (no update) and on the event ∆j occurring. We can sample from this second distribution
by first drawing x1 from the marginal distribution over the first entry conditioned on ut = 0 and
on ∆j , then drawing x2 from the marginal distribution over the second entry conditioned on no
update, on ∆j , and on x1, and so on up to xn. Call the ith distribution in this second process Ti;
note that Ti depends on x1, . . . , xi−1 (as well as on the set ∆j and the event ut = 0). The marginal
distributions Si and Ti are over {0, 1}.

We note that for any setting of the first i− 1 variables, the supports of the random variables Si
and Ti are identical: a given prefix might make the event ∆j impossible for a certain fixing of the
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ith variable, but in this case the forbidden fixing has weight 0 both in Si and in Ti. By Proposition
49 and by Bayes’ rule, for every i ∈ {1, . . . , n}, for every setting x1, . . . , xi−1 ∈ {0, 1} for the first
i−1 input coordinates, and for every value v ∈ {0, 1} such that v has nonzero probability by Si, the
magnitude of the log-ratio between v’s probabilities under Si and under Ti is bounded as follows:

∣∣∣∣ln PrSi [v]

PrTi [v]

∣∣∣∣ = ∣∣∣∣ln Pr [ut = 0 | x1, . . . , xi−1, G]

Pr [ut = 0 | x1, . . . , xi−1, Xi = v,G]

∣∣∣∣ ≤ min

{
1, 4e

2j+5√
nµ · λt

}
nµ

By Claim 31, this means that the expected log-ratio between PrSi [v] and PrTi [v], with respect
to xi drawn from Si, is upper-bounded by

2

min

{
1, 4e

2j+5√
nµ · λt

}
nµ


2

.

As in the proof of Lemma 32, we conclude:

KL ((D|∆j), (D0|∆j)) =
n∑

i=1

E [KL (Si, Ti)] ≤
2min

{
1, 16e

4j+10√
nµ · λ2t

}
nµ2

Proposition 51 Let D, D0 and ∆j be as defined above. Partition the line [1,
√
n] into the following

three segments:

J1 =

[
1,

√
nµ− 5

2

)
J2 =

[√
nµ− 5

2
,

√
nµ(ln( 1

λt
)− 1)− 5

2

)

J3 =

[√
nµ(ln( 1

λt
)− 1)− 5

2
,
√
n

]
.

Then the following hold:

• For every integer j ∈ J1: ∣∣∣∣ln PrD[∆j ]

PrD0 [∆j ]

∣∣∣∣ ≤ λt(4j + 10)√
nµ

.

• For every integer j ∈ J2: ∣∣∣∣ln PrD[∆j ]

PrD0 [∆j ]

∣∣∣∣ ≤ 2λte
2j+5√

nµ .

• For every integer j ∈ J3: ∣∣∣∣ln PrD[∆j ]

PrD0 [∆j ]

∣∣∣∣ ≤ 2j + 5√
nµ

.
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Proof. First, by Bayes’ rule, for every j we have:

PrD[∆j ]

PrD0 [∆j ]
=

PrD[ut = 0]

PrD[ut = 0 | ∆j ]
.

Further, by Proposition 48 we have that for every integer j ≥ 1:∣∣∣∣ln PrD[ut = b]

PrD[ut = b | ∆j ]

∣∣∣∣ ≤ 2j + 5√
nµ

. (16)

(The Proposition asserts this for every X ∈ ∆j ; the claim when conditioning on ∆j follows by a
standard argument.)

Case analysis. We proceed to analyze each of the cases separately, beginning with the case
j ∈ J1. Recall that PrD[ut = 1] = λt. By equation (16), the probability of ut = 1 under ∆j can

differ from this by at most an e
(2j+5)

√
n

nµ multiplicative factor. We conclude that:

PrD[ut = 0]

PrD[ut = 0 | ∆j ]
≤ 1− λt

1− λte
2j+5√

nµ

=
1− λte

2j+5√
nµ

1− λte
2j+5√

nµ

+

λt

(
e

2j+5√
nµ − 1

)
1− λte

2j+5√
nµ

≤ 1 +

λt

(
e

2j+5√
nµ − 1

)
1/2

≤ e
λt(4j+10)√

nµ .

Here the second-to-last line holds because for this range of j we have 2j + 5 ≤
√
nµ, and thus

λte
2j+5√

nµ < 1
2 . The last line holds because for the same range of j we have

e
2j+5√

nµ − 1 ≤ 4j + 10√
nµ

.

To conclude the analysis of the first case, observe that for similar reasons also in the other direction
we have:

PrD[ut = 0]

PrD[ut = 0 | ∆j ]
≥ e

−λt(4j+10)√
nµ .

For the second case, j ∈ J2, we have λte
2j+5√

nµ ≤ 1
e and thus:

PrD[ut = 0]

PrD[ut = 0 | ∆j ]
≤ 1− λt

1− λte
2j+5√

nµ

≤ 1

1− λte
2j+5√

nµ

≤ e2λte
(2j+5)/(

√
nµ)
.
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Here the last line holds because for all z ∈ (0, e−1] we have 1
1−z ≤ e

−2z. In the other direction:

PrD[ut = 0]

PrD[ut = 0 | ∆j ]
≥ Pr

D
[ut = 0]

= 1− λt
≥ e−2λt .

The third case, j ∈ J3, follows immediately from equation (16) (or Proposition 51), which holds
for every possible value of j.

Bounding the KL-divergence. We now proceed to bound the KL-divergence between D
and D0

KL (D,D0) =
∑

X∈{0,1}n
Pr
D
[X] ln

PrD[X]

PrD0 [X]

=
∑
j

 ∑
X∈∆j

Pr
D
[X] ln

PrD[X]

PrD0 [X]


=
∑
j

 ∑
X∈∆j

Pr
D
[∆j ] Pr

(D|∆j)
[X] ln

PrD[∆j ] Pr(D|∆j)[X]

PrD0 [∆j ] Pr(D0|∆j)[X]


=
∑
j

Pr
D
[∆j ] ln

PrD[∆j ]

PrD0 [∆j ]
+ Pr

D
[∆j ]

∑
X∈∆j

Pr
(D|∆j)

[X] ln
Pr(D|∆j)[X]

Pr(D0|∆j)[X]


=
∑
j

(
Pr
D
[∆j ] ln

PrD[∆j ]

PrD0 [∆j ]
+ Pr

D
[∆j ] KL ((D|∆j), (D0|∆j))

)
And similarly:

KL (D0,D) =
∑
j

(
Pr
D0

[∆j ] ln
PrD0 [∆j ]

PrD[∆j ]
+ Pr

D0

[∆j ] KL ((D0|∆j), (D|∆j))

)
Using the nonnegativity of KL-divergence, together with the bound in Proposition 50, we conclude
that:

KL (D,D0) ≤KL (D,D0) + KL (D0,D)

=
∑
j

(Pr
D0

[∆j ]− Pr
D
[∆j ]) ln

PrD0 [∆j ]

PrD[∆j ]

+
∑
j

(
Pr
D
[∆j ] + Pr

D0

[∆j ]

) 2min

{
1, 16e

4j+10√
nµ · λ2t

}
nµ2

.

Below, we show that each of these two sums is bounded by O
(

λ2
t

nµ2

)
. We conclude that

∥|ψ⟩⟨ψ| − |ψno⟩⟨ψno|∥tr ≤
√

2KL (D,D0) = O

(
λt√
nµ

)
,
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which completes the proof of Claim 43.

Bounding the first sum. We divide the sum over j into the three segments defined in Proposition
51, and use the bound on the log-ratio to bound the sum over each of the segments. Starting with
the first segment J1:∑

j∈J1

(Pr
D0

[∆j ]− Pr
D
[∆j ]) ln

PrD0 [∆j ]

PrD[∆j ]
≤
∑
j∈J1

Pr
D
[∆j ]

(
e

λt(4j+10)√
nµ − 1

)
λt(4j + 10)√

nµ

≤ 8
∑
j∈J1

Pr
D
[∆j ]

λ2t (4j + 10)2

nµ2

= 8
λ2t
nµ2

∑
j∈J1

Pr
D
[∆j ](4j + 10)2

= Θ

(
λ2t
nµ2

)
.

Here the first line uses Proposition 51; the second line uses the fact that 4j + 10 ≤ 2
√
nµ for all

j ∈ J1; and the last line uses a moment bound on the distribution of j, namely inequality (15).
For the segment J2 we have:∑

j∈J2

(Pr
D0

[∆j ]− Pr
D
[∆j ]) ln

PrD0 [∆j ]

PrD[∆j ]
≤
∑
j∈J2

Pr
D
[∆j ]

(
e2λte

(2j+5)/(
√
nµ) − 1

)
2λte

2j+5√
nµ

≤ 8λ2t
∑
j∈J2

Pr
D
[∆j ]e

4j+10√
nµ

≤ 16λ2t
∑
j∈J2

exp

(
4j + 10√

nµ
− (j − 1)2

2

)
= 16λ2t

∑
j∈J2

exp
(
−Θ

(
j2
))

= 16λ2t exp
(
−Θ

(
nµ2

))
= O

(
λ2t
nµ2

)
.

Here the first line uses Proposition 51, the second uses the fact that 2j+5√
nµ
≤ ln( 1

λt
) − 1 for all

j ∈ J2; the third uses inequality (13) (concentration of j); and the fourth and fifth use the facts
that j = Ω(

√
nµ) for all j ∈ J2 and that

√
nµ is a sufficiently large constant.
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For the segment J3 we have:∑
j∈J3

(Pr
D0

[∆j ]− Pr
D
[∆j ]) ln

PrD0 [∆j ]

PrD[∆j ]
≤
∑
j∈J3

Pr
D
[∆j ]

(
e

2j+5√
nµ − 1

)
2j + 5√
nµ

≤ 2
∑
j∈J3

e−(j−1)2/2

(
e

2j+5√
nµ − 1

)
2j + 5√
nµ

=
∑
j∈J3

exp
(
−Θ(j2)

)
= exp

(
−Θ(nµ2 ln2

1

λt

)
= O

(
λ2t
nµ2

)
.

Here the first line uses Proposition 51; the second uses inequality (13) (concentration of j); and the
third and fourth use the facts that j = Ω(

√
nµ ln 1

λt
) for all j ∈ J3 and that

√
nµ is a sufficiently

large constant.

Bounding the second sum. Similarly to the first sum, we divide the sum over j into the three
segments defined in Proposition 51, and use the bound on the log-ratio to bound the sum over each
of the segments. Starting with the first segment J1:

∑
j∈J1

(
Pr
D
[∆j ] + Pr

D0

[∆j ]

) min

{
2, 32e

4j+10√
nµ · λ2t

}
nµ2

≤
∑
j∈J1

Pr
D
[∆j ]

(
1 + e

λt(4j+10)√
nµ

)
32e

4j+10√
nµ · λ2t
nµ2

= Θ

(
λ2t
nµ2

)
.

Here the first inequality uses Proposition 51, while the second uses the fact that 4j + 10 ≤ 2
√
nµ

for all j ∈ J1.
For the segment J2 we have:

∑
j∈J2

(
Pr
D
[∆j ] + Pr

D0

[∆j ]

) min

{
2, 32e

4j+10√
nµ · λ2t

}
nµ2

≤
∑
j∈J2

Pr
D
[∆j ]

(
1 + e2λte

(2j+5)/(
√

nµ)
) 32e

4j+10√
nµ · λ2t
nµ2

≤ 128λ2t
nµ2

∑
j∈J2

Pr
D
[∆j ]e

4j+10√
nµ

≤ 256λ2t
nµ2

∑
j∈J2

exp

(
4j + 10√

nµ
− (j − 1)2

2

)

= O

(
λ2t
nµ2

)
.

Here the first line uses Proposition 51; the second uses the fact that 2j+5√
nµ
≤ 1

eλt
for all j ∈ J2; the

third uses equation (13); and the last uses the facts that j = Ω(
√
nµ) for all j ∈ J2 and that

√
nµ

is a sufficiently large constant.
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Finally, for the segment J3 we have:

∑
j∈J3

(
Pr
D
[∆j ] + Pr

D0

[∆j ]

) min

{
2, 32e

4j+10√
nµ · λ2t

}
nµ2

≤
∑
j∈J3

Pr
D
[∆j ]

(
1 + e

2j+5√
nµ

)
2

nµ2

≤ 4

nµ2

∑
j∈J3

exp

(
2j + 5√
nµ
− (j − 1)2

2

)

=
4

nµ2
exp

(
−Θ

(
nµ2 ln2

1

λt

))
= O

(
λ2t
nµ2

)
.

Here the first line uses Proposition 51; the second uses equation (13); and the third uses the facts

that j = Ω
(√

nµ ln 1
λt

)
for all j ∈ J3 and that

√
nµ is a sufficiently large constant.

6.3 Lower Bounds for Shadow Tomography

To recap, the QPMW algorithm lets us do shadow tomography on a d-dimensional state ρ, with
respect to two-outcome measurements E1, . . . , Em and with accuracy ±ε, in a way that moreover

is online and gentle, by measuring O
(
(logm)2 (log d)2 /ε8

)
copies of ρ. How close to optimal is

this upper bound?
The only known general lower bound for shadow tomography, due to Aaronson [6], says that

Ω

(
min{d2,logm}

ε2

)
copies of ρ are needed, for information-theoretic reasons. Aaronson [6] also shows

that, in the special case where the states and measurements are entirely classical, Θ
(
min{d,logm}

ε2

)
copies are necessary and sufficient.20 In the general, quantum setting, it remains open whether
there could exist a shadow tomography procedure that used only (logm)O(1) copies, independent
of the dimension d.

In this section, we won’t resolve that problem. However, as yet another application of our
connection between DP and gentleness, we’ll observe a lower bound on the sample complexity of
gentle shadow tomography, which applies even to offline algorithms—i.e., ones that see all the
measurements in advance. And conversely, by using the connection to adaptive data analysis,
we’ll use known results in that setting to give a lower bound for online shadow tomography, which
applies even to non-gentle algorithms.

We stress that, while these lower bounds use nontrivial recent results, they have nothing to do
with quantum mechanics: all of them apply even to the “classical special case” of shadow tomogra-
phy, wherein the input consists of i.i.d. samples from a single distribution and the “measurements”
are all in the computational basis.

Gentle shadow tomography. The first result we state is a lower bound for gentle shadow
tomography, even in the offline setting:

20The original conference version of [6] proved only a weaker lower bound: namely, Ω
(
logm
ε2

)
when d can be

arbitrarily large (including for the classical special case). However, the most recent arXiv version includes the stated
bounds, the ones that explicitly incorporate dependence on the dimension d.
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Theorem 52 (Lower Bound for Gentle Shadow Tomography) Any shadow tomography pro-
cedure that is

(
α, 1

n1+τ

)
-gentle for a constant τ > 0 on all product states, and is also ε-accurate on

states of the form ρ⊗n, requires

n = Ω̃

(
(logm)

√
log d

ε2α

)
samples.

In other words, as long as we insist that our shadow tomography procedure be (α, δ)-gentle
for small δ—with gentleness applying for all product states, as usual in this paper—the sample
complexity of the QPMW algorithm is optimal up to a polynomial factor.

We’ll deduce Theorem 52 as a corollary of the following result of Bun, Ullman, and Vadhan
[16]:

Theorem 53 (Bun et al. [16]) For all m,n, d, there exist m Boolean functions f1, . . . , fm : [d]→
{0, 1}, such that no

(
γ, 1

10n

)
-DP algorithm can, for all databases X = (x1, . . . , xn) ∈ [d]n, estimate

Ej∈[n] [fi (xj)] to within additive error ±ε, for every i ∈ [m] and with success probability at least
2/3, unless

n = Ω̃

(
(logm)

√
log d

ε2γ

)
.

The proof of Theorem 53 uses so-called fingerprinting codes to construct the functions f1, . . . , fm.
We omit the details; see for example Vadhan [44, Section 5.3] for further discussion of this technique.

Recall Lemma 30, which said that any measurement that is (α, δ)-gentle on product states is

also
(
ln
(
1+4α
1−4α

)
, δ
)
-DP on product states. In the classical special case, the latter simply means(

ln
(
1+4α
1−4α

)
, δ
)
-DP in the usual sense. By just combining this implication with Theorem 53,

we immediately obtain a lower bound on the sample complexity of some form of gentle shadow
tomography, even in the classical special case. However, there is still a difficulty. Namely, the lower
bound that we get will apply only to shadow tomography algorithms that remain accurate in what
we call the diverse-state setting. This is the setting where the algorithm is given a sample from a
product distribution D = D1 × · · · × Dn—or in the quantum case, a product state ρ1 ⊗ · · · ⊗ ρn—
and its goal is to estimate the acceptance probability of each of the two-outcome measurements
E1, . . . , Em on the average state

ρ̂ :=
ρ1 + · · ·+ ρn

n
.

By contrast, we defined shadow tomography for what we call the identical-state setting : that is,
the setting where we’re additionally promised that ρ1 = · · · = ρn, so that the input state has the
special form ρ⊗n. All of the shadow tomography procedures that we know, including QPMW, are
accurate even in the more general diverse-state setting. But it’s not obvious that lower bounds
in the diverse-state setting carry over to the identical-state setting, so there is still a gap to close.
We close the gap using the simple claim below, which translates accuracy in the identical-state
setting to accuracy in the diverse-state setting, with only a small loss in the differential privacy
parameters.21

21We note that it might be possible to obtain a lower bound similar to that of Theorem 53 that directly applies
to the identical-state setting (see, e.g., Steinke and Ullman [41, Corollary 15]). Still, the transformation we outline
incurs only a small loss in the parameters, and works more generally.
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Claim 54 Fix a data universe [d], functions f1, . . . , fm : [d]→ {0, 1}, and a database size n. Let
A be a classical algorithm that’s (α, δ)-DP in the usual classical sense, and satisfies the following
accuracy guarantee: for any distribution D over [d], with all but β probability over X drawn from
Dn (and the algorithm’s coins), A’s answers are all within ±ε of the correct answers Ej∈[n] [fi (Xj)].

Then there exists another algorithm B, which runs in O(|X|) time using a single oracle call to
A, such that B is ( 3α logn

log logn , δ · n
o(1) + 1

n2 )-DP, and for any fixed database X ∈ [d]n, with all but β
probability over the B’s coins, B’s answers are all within ε of the correct answers Ej∈[n] [fi (Xj)].

Proof. Given an input database X, the algorithm B operates by taking n i.i.d. samples, with
replacement, from the distribution DX that is uniform over the entries of X (a distribution whose
support has size at most n). It then runs A on the resulting database X ′ and outputs the results.

Accuracy follows because we are running A on a sample from Dn
X , so with all but β probability

over the samples and A’s coins, the answers will all be within ±ε of the correct expectations over
DX , which are the correct answers on the database X.

For privacy, fix adjacent databases X and Y that differ only in the ith entry. For fixed coins
used to choose i.i.d. samples, let X ′ and Y ′ be the databases produced by sampling from X or from
Y respectively. All entries in X ′ and Y ′ will be identical, except those that are copies of the ith

entry. By a balls and bins argument, with all but 1/n2 probability, the number of copies of the ith

entry is at most 3 logn
log logn . Whenever this is the case, the group privacy guarantees that follow from

the differential privacy of A imply that the probability of any event differs by at most a 3α logn
log logn

multiplicative factor and a δ · no(1) additive error.
We can now complete the proof of Theorem 52.

Proof of Theorem 52. Let P be a shadow tomography procedure that is
(
α, 1

n1+τ

)
-gentle on

product states ρ1 ⊗ · · · ⊗ ρn, for small α and fixed τ > 0. By Lemma 30, this P is also (γ, δ)-DP

on product states, for γ = ln
(
1+4α
1−4α

)
= O (α).

Henceforth, we restrict attention to P’s behavior on classical inputs X ∈ [d]n. Here, being DP
on product states simply reduces to the usual notion of DP.

Now suppose further that P is ε-accurate in the identical-state setting. Then by Claim 54,

we can obtain a new classical procedure P ′ that is
(
γ′ = 3γ logn

log logn , δ
′o(1) = δ + 1

n2

)
-DP, and that

moreover is ε-accurate for any given database X ∈ [d]n. But this means that n must satisfy the
bound of Theorem 53. We use here the fact that for δ = 1

n1+τ we get δ′ = o( 1n). We note that the

O( logn
log logn) deterioration in the privacy guarantee of P ′ (compared to P) is accounted for by the

tilde in the Ω̃.
As noted above, Theorem 52 applies even to the “classical special case” of shadow tomography.

In that special case, the Chernoff bound immediately implies a procedure with O
(
logm
ε2

)
sample

complexity. Thus, one implication of Theorem 52 is that such a procedure necessarily violates
gentleness—where “gentleness,” here, means a bound on the damage in variation distance caused
by classical Bayesian updating.

Online shadow tomography. The second result we state is a lower bound for online shadow
tomography, even without gentleness:
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Theorem 55 (Lower Bound for Online Shadow Tomography [35]) Any online shadow to-
mography procedure that is ε-accurate requires sample complexity

n = Ω̃

(√
min {m, log d}

ε

)
.

Combining Theorem 55 with the Ω
(
min{d,logm}

ε2

)
lower bound of Aaronson [6], we can conclude

that online shadow tomography requires

n = Ω̃

(
logm+

√
log d

ε

)
copies of ρ unless n = mΩ(1) or n = dΩ(1). Hence QPMW achieves the optimal sample complexity
for online shadow tomography up to polynomial factors.

Theorem 55 again has nothing to do with quantum mechanics, and follows immediately from
known lower bounds for classical adaptive data analysis. There, an algorithm processes a collection
of states that are drawn i.i.d. from an underlying distribution, and the goal is to provide accurate
answers with respect to the underlying distribution—and in particular, to avoid overfitting to the
specific sample. Adaptive data analysis is thus a special case of online shadow tomography in
the identical-state setting. Hardt and Ullman [29] and Steinke and Ullman [40] showed sample
complexity lower bounds and computational hardness results for this setting. Theorem 55 is a
restatement, in our setting, of a recent result of Nissim et al. [35].

7 Computational Efficiency

So far, our results have been purely information-theoretic. When we talked, for example, about
a gentle “implementation” of a measurement M , we were concerned only about whether such an
implementation existed, not about its time complexity. Likewise, the QPMW procedure for shadow
tomography was efficient in sample complexity, but we weren’t concerned to bound its computation
time.

Now, at last, we consider to what extent our constructions are (or can be made) computationally
efficient. In Section 7.1, we’ll explain why gentle measurements can be implemented in polynomial
time, provided we have an efficient way to uncompute garbage, and we’ll give several classes of
examples where this can be done. Then, in Section 7.2, we’ll use our results from Section 7.1 to
examine the computational complexity of the QPMW procedure. Finally, in Section 7.3, we’ll turn
things around, and observe how gentle measurements like the ones in this paper, whether derived
from DP algorithms or not, can be applied to the safe implementation of subroutines in quantum
algorithms.

7.1 Efficiency of DP and Gentle Measurements

Let’s start with Theorem 5, the connection between gentleness and DP. For part (1) of the theorem,
namely that α-gentleness implies O (α)-DP for small α, there’s no issue of computational efficiency.
This is because the very same measurement procedure that achieves α-gentleness also achieves
O (α)-DP—the latter being solely a property of the output probabilities, which has nothing to do
with the post-measurement states.
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On the other hand, for part (2) of the theorem, namely that ε-DP on product states implies
O (ε
√
n)-gentleness on product states for small ε (and product measurements), there is a com-

putational issue. Namely: even if our original ε-DP measurement M could be implemented by
a polynomial-size circuit, the proof of Theorem 5 might return an implementation of M that is
O (ε
√
n)-gentle but that does not correspond to any polynomial-size circuit. Yet, while this is a

problem in principle, fortunately it turns out not to be a problem for any of the measurements that
have concerned us in this paper, including the ones used in our shadow tomography procedure.

The potential computational issue occurs in the proof of Lemma 33. There, given a classical
DP algorithm A, we needed to map the state

|ψ⟩ =
∑

X∈[d]n
αX |X⟩

to ∑
X∈[d]n:Pr[X]>0, y

αX |X⟩
√

Pr [y|X] |y⟩ ,

where the y’s are the possible outcomes of running A on the input database X. Assuming that A
itself is computationally efficient, it’s easy to prepare a state of the form∑

X∈[d]n:Pr[X]>0, y

αX |X⟩
√

Pr [y|X] |y⟩ |gX,y⟩ ,

where |gX,y⟩ is “garbage” entangled with the |X⟩ and |y⟩ registers (for example, the outcomes of
coin flips made by A). The entire difficulty lies in uncomputing the |gX,y⟩ register. If we fail to
uncompute, then the effect on |ψ⟩ might no longer be gentle.

As we mentioned in Section 1.3, an equivalent way to say this is that our reduction from DP
to gentleness preserves efficiency if, and only if, we have an efficient algorithm to “QSample” the
output distribution of the DP algorithm A, meaning to prepare the superposition

|ϕX⟩ :=
∑
y

√
Pr [y|X] |y⟩

for a given input X. In practice, many fast sampling algorithms do give rise to fast QSampling
algorithms, but this need not always be the case. Indeed, as pointed out by Aharonov and Ta-Shma
[9] in 2003, if fast sampling always implied fast QSampling, then we’d immediately get polynomial-
time quantum algorithms for graph isomorphism, breaking lattice-based cryptosystems, and all
other problems in the class SZK (Statistical Zero Knowledge). Closely related to that, the collision
lower bound of Aaronson [1] implies that, in the black-box setting, fast sampling does not imply
fast QSampling.

But what about the specific measurements considered in this paper? Let’s start with the
following observation:

Proposition 56 (Efficient Implementation of Lσ) There is an O (n)-size quantum circuit to
implement Lσ, the Laplace noise measurement on n qubits, to 1

exp(n) accuracy, so long as σ =

exp (O (n)).
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Proof. We simply use the procedure for implementing Lσ described in Section 1.1: the one where,
given a superposition over |X⟩’s, we first prepare a Laplace noise register

|η⟩ := 1

Z

C∑
k=−C

e−|k|/(2σ) |k⟩ ,

for some cutoff C = exp (O (n)) and normalization Z, then perform a unitary transformation that
adds |X| into the |η⟩ register, and finally measure the |η⟩ register.

What makes this work is that the noise in Lσ is entirely additive. Also, as long as σ =
exp (O (n)), a cutoff of the form C = exp (O (n)) suffices for exponential accuracy. Moreover, one
can check that DP, and hence gentleness, still hold even after we impose the cutoff.

Since there are clearly O (n)-size quantum circuits to add O (n)-bit integers, it remains only
to verify that there are O (n)-size quantum circuits to prepare |η⟩. Omitting normalization and
restricting to k ≥ 0 for simplicity, we observe that

2n−1∑
k=0

e−γk |k⟩ =
(
|0⟩+ e−γ2n−1 |1⟩

)
⊗
(
|0⟩+ e−γ2n−2 |1⟩

)
⊗ · · · ⊗

(
|0⟩+ e−γ |1⟩

)
,

from which a linear-size circuit to prepare |η⟩ follows.
Note that the algorithm from Proposition 56 is “maximally gentle,” in the sense that for every

possible state ρ of the n input registers (including non-product states), the only damage that
running the algorithm causes to ρ, is the damage that necessarily results from learning the desired
output.

We now prove a much more general result, though one that’s formally incomparable to Propo-
sition 56. We start with a trivial-seeming proposition.

Proposition 57 Suppose we have two polynomial-time quantum algorithms: an algorithm A that,
given a classical string X, prepares a state |ζX⟩, and an algorithm B that, for some k = nO(1), maps
|ζX⟩⊗k to |ζX⟩⊗k |ϕX⟩, to 1

nO(1) accuracy. Then there’s also a polynomial-time quantum algorithm

Q that maps |X⟩ to |X⟩ |ϕX⟩, to 1
nO(1) accuracy.

Proof. We first run A sequentially k times, to map |X⟩ to |X⟩ |ζX⟩⊗k. We next run B, to map
|X⟩ |ζX⟩⊗k to |X⟩ |ζX⟩⊗k |ϕX⟩ (to 1

nO(1) accuracy). Finally we run A† sequentially k times, to map

|X⟩ |ζX⟩⊗k |ϕX⟩ to |X⟩ |ϕX⟩.
Despite its simplicity, Proposition 57 lets us efficiently implement a large class of gentle mea-

surements: namely, any gentle measurement that admits an efficient “two-part algorithm,” wherein
the first part prepares states |ζX⟩ (which might include unwanted garbage), and the second part
maps the |ζX⟩ states to a desired output state |ϕX⟩ that—crucially—is nearly unentangled with
the |ζX⟩’s, depending only on the original input X. Let’s give an example.

Theorem 58 (Fast QSampling of Sparse Distributions) For each input X, suppose the state
|ϕX⟩ has the form

|ϕX⟩ =
∑
y∈SX

√
Pr [y|X] |y⟩ ,

where the support sets SX ⊂ {0, 1}m all satisfy |SX | ≤ ℓ, for some ℓ = nO(1) (i.e., the SX ’s are
sparse). Suppose also that there’s an efficient quantum algorithm A that, for each X, samples—but
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does not necessarily QSample—the distribution DX over y conditional on X. Then there’s also an
efficient quantum algorithm Q that QSamples DX : that is, maps |X⟩ |0 · · · 0⟩ to |X⟩ |ϕX⟩ for each
X (up to 1

nO(1) error in trace distance).

Proof. As in Proposition 57, the algorithm Q first runs A sequentially k times, for some sufficiently
large k = nO(1). It thereby produces the state |ζX⟩⊗k, where

|ζX⟩ =
∑
y∈SX

√
Pr [y|X] |y⟩ |gX,y⟩

is a superposition over samples from DX , possibly entangled with garbage. Next, Q simulates a
standard-basis measurement on the |y⟩ registers of the |ζX⟩ states, in order to estimate an empirical
frequency for each possible output string y ∈ {0, 1}m. (Of course, all but nO(1) strings will have
an empirical frequency of 0 in the sample; for the sake of efficiency, the 0-frequency strings are not
explicitly recorded.) Then, using these empirical frequencies, Q prepares the state |ϕX⟩ to 1

nO(1)

accuracy. The efficiency of the preparation procedure follows from the fact that |ϕX⟩ has support
of size ℓ = nO(1).22 Meanwhile, accuracy follows by a Chernoff bound and union bound, together
with the assumption that k was a sufficiently large polynomial compared to ℓ. As the final step,
Q uses A† to uncompute the |ζX⟩’s.

As a small special case of Theorem 58, take ℓ = 2 and m = 1. Then each |ϕX⟩ has the
form αX |1⟩+ βX |2⟩, so the algorithm A could be seen as a PromiseBQP decision procedure, which
accepts an input X with probability |βX |2 (not necessarily bounded away from 1

2). We have
shown that a probabilistic oracle for this decision procedure can be safely implemented up to 1

p(n)

accuracy in polynomial time, for any polynomial p. A reasonable interpretation of this23 is that
BQPPromiseBQP = BQP, generalizing the result of Bennett et al. [11] that BQPBQP = BQP.

Note that, for some DP algorithms, given an input X ∈ {0, 1}n we can just explicitly calculate
a classical description of the desired output state |ϕX⟩, to 1

exp(n) precision, deterministically and in

time polynomial in n. If that description also gives rise to a small quantum circuit to prepare |ϕX⟩,
then we can short-circuit the estimation procedure above, and can improve its accuracy from 1

nO(1)

to 1
exp(n) . As an example, suppose again that each desired output state |ϕX⟩ is a superposition

over a sparse set of basis states, SX ⊂ {0, 1}m with |SX | = nO(1). But now suppose that, given X,
we can calculate both SX (as a list of elements), and ⟨ϕX |y⟩ for each y ∈ SX to 1

exp(n) precision,

in polynomial time. Then by using the Solovay-Kitaev Theorem (see [34]), we can clearly prepare
the states |ϕX⟩—i.e., QSample—in polynomial time as well.

It is not clear how to generalize the above techniques to superpositions |ϕX⟩ over exponentially
many basis states (or rather, to do so in any useful generality), even in cases where the individual
amplitudes ⟨ϕX |y⟩ and probabilities |⟨ϕX |y⟩|2 are computable in polynomial time.

7.2 Efficiency of Shadow Tomography

What does all of this mean for the computational complexity of shadow tomography? In the
QPMW algorithm of Section 6, recall that we needed two types of measurements: threshold mea-
surements on all rounds, and Lσ (Hamming weight plus Laplace noise) type measurements on

22Since we only care about 1

nO(1) accuracy, in this case we do not even need the Solovay-Kitaev Theorem (see [34]).
23That is, for some reasonable definition of what it means to query a PromiseBQP oracle on a superposition of

inputs.
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update rounds. Proposition 56 has shown that the Lσ measurements can be implemented in quan-
tum polynomial time, provided the underlying POVMs E1, . . . , Em can be implemented in quantum
polynomial time. Since a threshold measurement just consists of an Lσ measurement, followed
by a binary threshold decision, followed by uncomputing of garbage, it follows that the threshold
measurements can be implemented in quantum polynomial time as well, again assuming efficient
procedures for the Ei’s.

Unfortunately, this doesn’t mean that QPMW runs in polynomial time overall. The first issue
is just the sheer number of measurements m. Since QPMW needs one round per measurement, if
m is exponentially large then QPMW will of course need exponential time.

The second issue is the need to maintain, and to do computations on, a classical description
of the current hypothesis state σt, in the online learning procedure [7] that QPMW uses as a
subroutine. If σt is stored explicitly, as a d× d Hermitian matrix, then this takes d2 space, which
is prohibitive if d is exponentially large. However, even if σt is stored only implicitly, say by a list
of constraints that it satisfies, estimating expectation values Tr (Eiσt) will still take d

Θ(1) time in
general.

In summary, if we ignore various low-order contributions, then the running time of QPMW is
roughly O (mL)+dO(1), where L is an upper bound on the time needed to implement a single mea-
surement Ei. By comparison, Aaronson’s previous shadow tomography procedure [6] used roughly
O (mL) + dO(log log d) time. Thus, QPMW improves the dependence on d from quasipolynomial to
polynomial.

There is also later work by Brandão et al. [14], which connects shadow tomography to semidefi-
nite programming and Gibbs states. Brandão et al. gave a shadow tomography procedure with the
same sample complexity as Aaronson’s, and running time O (

√
mL)+dO(1). Here the improvement

from m to
√
m came from, in essence, repeatedly doing Grover search over E1, . . . , Em to find an

informative Ei. Thus, if we compare to Brandão et al., QPMW matches the improvement from
dO(log log d) to dO(1), but not the improvement from m to

√
m. However, this is to be expected:

unlike Aaronson’s or Brandão et al.’s, our new shadow tomography procedure is online, which
necessitates taking time linear in the number of measurements.

It’s natural to wonder: is there some inherent barrier ruling out a shadow tomography procedure
that runs in (log d)O(1) time, avoiding the polynomial dependence on Hilbert space dimension d?
We now show that there is such a barrier—at least if we insist that the shadow tomography
procedure be online, or alternatively, that it be gentle. Our proof will use recent cryptographic
lower bounds for differential privacy and for answering adaptively chosen queries, as well as our
result that gentleness implies DP.

Hardness for gentle (even offline) shadow tomography. We use a result of Ullman
[43], which shows that under plausible cryptographic assumptions, computing differentially private
answers to more than Θ̃

(
n2
)
queries (where n is the database size) requires time dΩ(1). This

hardness result extends to quantum algorithms, under plausible cryptographic assumptions about
their power. Moreover, the result constructs a single distribution D over [d], such that it’s hard for
DP algorithms to compute accurate answers on databases that are drawn i.i.d. from D. Using our
result that gentleness implies DP, we derive a similar hardness result for gentle shadow tomography.

Theorem 59 (Ullman [43], quantum variant) Suppose there exists a symmetric-key encryp-
tion scheme that, for keys of length κ, is semantically secure against 2Ω(κ)-time quantum adver-
saries. Then there is no quantum algorithm A, running in time do(1) · poly(m), that receives as
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input a database X comprised of n items from [d], and a set of m = Θ̃
(
n2
)
queries E1, . . . , Em,

such that:

(1) A is (1, 1
10n)-DP.

(2) For any distribution D over [d], if X’s entries are drawn i.i.d. from D, then with all but a
small constant probability over A’s coins and the choice of X, for every j ∈ [m], the jth

answer aj computed by A satisfies∣∣∣∣∣aj −
∑

i∈[n]Ej(Xi)

n

∣∣∣∣∣ < 1

2
.

Moreover, the queries E1, . . . , Em are each computable in poly(n, log d) time.

Using the fact that gentleness implies differential privacy (Theorem 5), we conclude that gentle
shadow tomography is hard.

Corollary 60 Suppose there exists a symmetric-key encryption scheme that, for keys of length κ,
is semantically secure against 2Ω(κ)-time quantum adversaries. Then there is no quantum shadow
tomography procedure that is gentle on product states and runs in do(1) · poly (m) time. Moreover,
this holds even for the classical special case of shadow tomography.

Corollary 60 applies even to the offline setting, and to algorithms that are accurate only in the
identical-state setting where the algorithm’s input is a state of the form ρ⊗n. Moreover, it applies
even for classical data and classical queries. We note that Theorem 59 and Corollary 60 extend to
milder cryptographic assumptions, with a milder conclusion on the possible running time for gentle
shadow tomography. Essentially, symmetric key encryption that is hard for time-T (κ) quantum
algorithms translates into hardness of differentially private data analysis for quantum algorithms
that run in time O (T (κ)τ ), for a fixed constant τ > 0. Similarly to Corollary 60, the existence of
such encryption schemes rules out gentle shadow tomography in time T (log d)o(1) · poly (m,n).

Finally, we remark that Theorem 59 (and Corollary 60) do not rule out efficient gentle algo-
rithms that are tailored to fixed classes of queries—even for exponentially large fixed classes.24

Until recently, known DP hardness results for fixed query families, such as [23, 13, 33], relied on
assumptions for which we have no quantum-secure candidate instantiation, such as bilinear maps
or indistinguishability obfuscation. A recent result of Kowalczyk et al. [32] presents a candidate
query family based on the existence of one-way functions. These results may also extend to gentle
shadow tomography.

Hardness for online (even non-gentle) shadow tomography. We use a result of Steinke
and Ullman [40] (building on earlier work by Hardt and Ullman [28]), showing that under plausible
cryptographic assumptions, given n i.i.d. samples from a distribution D over [d], it is computa-
tionally hard to answer more than O(n2) adaptively-chosen queries accurately. Under appropriate
assumptions, this result extends to quantum algorithms, and shows hardness for time dΩ(1):

24Theorem 59 does not apply because, for the specific queries used to instantiate the lower bound, the time needed
to compute the queries grows with the database size. In particular, Theorem 59 does not rule out an efficient DP
algorithm for answering all queries that can be computed by poly(d)-size circuits. More generally, for any fixed query
family, it does not rule out the possibility of obtaining an efficient algorithm that is accurate so long as the database
is large enough, and in particular larger than the representation of queries in the family.
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Theorem 61 (Steinke and Ullman [40], quantum variant) Suppose there exists a symmetric-
key encryption scheme that, for keys of length κ, is semantically secure against 2Ω(κ)-time quantum
adversaries. Then there is no quantum algorithm, running in do(1) ·mO(1) time, that takes as input
n independent samples from a distribution D over [d], as well as m = O

(
n2
)
efficiently computable

counting queries E1, . . . , Em that are chosen adversarially and adaptively, and correctly estimates
Ex∼D [Ei (x)] to within a fixed constant error for each i ∈ [m] in an online manner.

Theorem 61 has the following as an immediate corollary.

Corollary 62 Suppose there exists a symmetric-key encryption scheme that, for keys of length κ, is
semantically secure against 2Ω(κ)-time quantum adversaries. Then there is no shadow tomography
procedure that is online and runs in do(1) · poly(m) time.

Note that Corollary 62 applies even to online algorithms that are not gentle, and that work
only in the “identical-state setting” (i.e., when the algorithm’s input has the form ρ⊗n). Moreover,
it applies even for the classical special case of shadow tomography. Finally, we note that just
like Corollary 60, Corollary 62 extends to milder cryptographic assumptions, albeit with milder
conclusions for the complexity of gentle shadow tomography.

7.3 Quantum Complexity Implication

We now observe that gentle measurements, whether or not derived from DP algorithms, have
potentially useful applications in quantum algorithms and complexity. In particular, whenever we
have an efficient implementation of a gentle measurement, we can turn it into a safe and efficient way
to run an associated class of estimation subroutines on superpositions of inputs, without generating
unwanted garbage.

As an example, let’s now prove Theorem 7 from Section 1.4. In other words, let’s show that
without loss of generality, a BQP machine can coherently query an oracle that takes as input a
description of a quantum circuit C, and that outputs an estimate of Pr [C accepts] to within ±ε,
or a superposition over such estimates, for any desired additive error ε = 1

nO(1) . (In the sense that,
for every BQP machine that queries such an oracle, there is another BQP machine that simulates
the oracle on its own.) While this might seem obvious, we would not know how to prove it without
a gentle measurement procedure of some kind.
Proof of Theorem 7. Let ∑

g,C

αg,C |g, C⟩

be a state of the BQP machine, where g is garbage that we don’t care about and C is a description
of a quantum circuit whose acceptance probability (say, on the |0 · · · 0⟩ state) we’d like to estimate.
Then as a first step, we map the above state to∑

g,C

αg,C |g, C⟩ (C |0 · · · 0⟩)⊗ℓ ,

for some suitable ℓ = nO(1). Next we use the efficient implementation of the Laplace noise
measurement Lσ (with σ ≫

√
ℓ), from Proposition 56, to map the above to some state

|ψ⟩ ≈
∑
g,C

αg,C |g, C⟩ (C |0 · · · 0⟩)⊗ℓ |pC⟩ . (17)
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Here pC is an estimate of Pr [C |0 · · · 0⟩ accepts] to within ±η additive error—or more precisely, a
Laplace superposition over estimates, one with the property that

Pr [|pC − Pr [C |0 · · · 0⟩ accepts]| > Kη] ≤ 1

exp (Ω (K))

for all K. The equality (17) is only approximate because in reality, the |pC⟩ register is slightly
entangled with the (C |0 · · · 0⟩)⊗ℓ registers. However, recall from Corollary 6 that Lσ is α-gentle
on product states for some α = O(

√
ℓ/σ). Thus, the damage to the (C |0 · · · 0⟩)⊗ℓ registers in trace

distance can be upper-bounded by α, and the equality (17) also holds up to error α. So as a final
step, we can simply uncompute the C |0 · · · 0⟩ registers, to produce a state that is α-close in trace
distance to ∑

g,C

αg,C |g, C⟩ |pC⟩ .

If we want to ensure that the above, in turn, is α-close to a superposition such that

|pC − Pr [C |0 · · · 0⟩ accepts]| ≤ ε

with certainty, where ε is our original accuracy bound, then it suffices to choose η such that Kη ≤ ε
for some K = O

(
log 1

α

)
. Working backwards, a calculation shows that it suffices to set

ℓ = Θ

(
1

α2η2

)
= Θ

(
log2 1

α

α2ε2

)
.

In turn, if our BQP machine makes T = nO(1) such queries in sequence, then it suffices to set
α = Θ

(
1
T

)
for each of them, to ensure that the final output has trace distance at most (say) 1

10
from what we’d obtain using an ideal oracle for approximating Pr [C |0 · · · 0⟩ accepts]. This means
that it suffices to set ℓ = Θ

(
1
ε2
T 2 log2 T

)
.

Though Theorem 7 is not particularly shocking, it serves as a model for a large number of results
that could now be proven, using gentle measurement procedures derived from DP algorithms. I.e.,
for every DP algorithm that can be implemented coherently and in polynomial time, along the
lines of Proposition 56, we get another way that quantum algorithms can be safely invoked as
subroutines by other quantum algorithms.

One might wonder about the difference between Theorem 7 and our results from Section 7.1.
In particular, why was the Laplace noise measurement Lσ needed for Theorem 7, but not needed
for Theorem 58? The key point is that, in Theorem 7, we wanted outputs that were explicit
estimates of Pr [C accepts]. And even if two estimates p ̸= p′ are extremely close, the states
|p⟩ and |p′⟩ will still be orthogonal. This is what necessitated using a gentle measurement, to
break the entanglement between the output and computation registers, and thereby allow safe
uncomputing. In Section 7.1, by contrast, we were content with outputs that were superpositions
|ϕX⟩, with our estimates of probabilities implicitly encoded in |ϕX⟩’s amplitude vector. As a
result, a slight error in estimating those probabilities would yield a state |ϕ′⟩ such that ⟨ϕ′|ϕX⟩ ≈ 1,
and gentle measurement techniques were not needed (even if the results were useful for efficient
implementation of gentle measurements).

Here is an interesting question that we leave open. Suppose a quantum algorithm has a
polynomial-time quantum subroutine C, which on each input X, generates a sample from a prob-
ability distribution DX supported on a sparse set SX ⊂ {0, 1}m with |SX | = nO(1). Suppose also
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that the output we want, on each input X, is a polynomial-size approximate description of DX :
that is, a string zX that lists approximations to those PrDX

[y] values that are far from zero, or
some other representation from which DX could be efficiently sampled. Is there then, necessarily,
an efficient way to implement a mapping of the form∑

X

αX |X⟩ →
∑
X

αX |X⟩ |zX⟩ ,

with no garbage?
In the special case where C is a classical randomized algorithm, we can do this by first picking

a single polynomial-size random string r, and then using r as C’s randomness for every input X
in the superposition, relying on amplification and the union bound to ensure that C succeeds on
every X with overwhelming probability over the choice of r. This is an instance of the well-
known “Adleman’s trick” [8] from complexity theory, as used for example to prove the containment
BPP ⊂ P/poly. The use of a single r avoids any unwanted entanglement between r and the |X⟩
and |zX⟩ registers.

But what about the general case, where C is a quantum algorithm? Here Adleman’s trick
clearly won’t work, so a different idea is needed: perhaps the use of a more sophisticated DP
algorithm than the Laplace algorithm used to prove Theorem 7.

8 Open Problems

This paper established a new bridge between the fields of differential privacy and quantum mea-
surement. But we’ve barely begun to explore what this bridge can carry. Here are a few of our
favorite open problems.

Basic Questions

(1) Can we generalize our main result, to show that ε-DP on product states implies O (ε
√
n)-

gentleness on product states for any quantum measurement, rather than only for product
measurements? One natural first step would be to prove this for LOCC measurements.
Another would be to show that ε-triviality on product states implies O (ε)-gentleness (or
even just O (ε

√
n)-gentleness) on product states. Note that there are two questions here:

first, given a measurement M that’s ε-DP on product states, can we implement M (meaning,
produce the correct output probabilities on all states, not just product states), in a way
that happens to be O (ε

√
n)-gentle when restricted to product states? And second, can we

implement some other measurement M ′ that has essentially the same output probabilities as
M on product states,25 and that’s also O (ε

√
n)-gentle on product states, but that could be

arbitrarily different from M on entangled states?

(2) In this paper, we used our DP/gentleness connection, together with known results from DP, to
design and analyze a new quantum measurement procedure of independent interest (namely,
QPMW). Can we also go in the opposite direction, and use known results from quantum
measurement theory to say anything new about classical differential privacy?

25If M is ε-trivial, then to get a nontrivial question here, we demand relative error on product states that’s less
than ε.
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(3) Does α-gentleness imply O (α)-DP not merely for all α≪ 1
4 , but for all α≪

1
2?

(4) In quantum differential privacy, how much can we do in the “local model,” wherein n users
are each individually responsible for ensuring the privacy of their respective states ρi, by
submitting an obscured state ρ̃i to the database? Also, how does the local model relate to
the model wherein we can only perform measurements on the n states separately, for example
because of experimental limitations?

Shadow Tomography

(5) What is the true sample complexity of shadow tomography? Recall that this paper’s upper
bound had the form (logm)2 (log d)2 /εO(1), where m is the number of measurements and d is

the Hilbert space dimension. By contrast, the best known lower bound is Ω

(
min{d2,logm}

ε2

)
[6]. Is any dependence on d needed? Theorem 52 showed that, if a shadow tomography pro-

cedure is also gentle on product states, then it needs Ω̃
(√

logm (log d)1/4
)
samples. Mean-

while, Theorem 55 showed that if the procedure is online, then it needs Ω̃
(√

min {m, log d}
)

samples. But what if we drop these additional requirements, or relax to gentleness on states
of the form ρ⊗n? We stress that any lower bound will need to be “inherently quantum,” since

classically, in the offline and non-gentle setting, an O
(
logm
ε2

)
upper bound holds independent

of d [6].

(6) Is it possible to do shadow tomography using incoherent measurements (i.e., measuring each
copy of ρ separately)? If so, this would bring shadow tomography much closer to experimental
feasibility.

Composition

(7) What can we say about the composition of quantum DP algorithms (see Appendix 13 for
further discussion)? In the regime where DP implies gentleness, but where the probabilities
of outcomes are too small for Lemma 17 to apply, can we compose DP algorithms in a way
that preserves not only accuracy, but also a multiplicative privacy guarantee? Also, outside
the regime where DP implies gentleness, is there any way to get around the counterexample of
Appendix 13, and compose quantum DP algorithms in a way that preserves accuracy (to say
nothing about privacy)? For example, what about “non-black-box” composition methods?

(8) Does an “advanced composition theorem” (see [22]) hold for gentleness, or at least for the
particular gentle measurements that arise from our connection between gentleness and DP?
In other words, if we perform α-gentle measurements k times in sequence, then can we say
that with high probability over the measurement outcomes, our states have been damaged by
only O(α

√
k) in trace distance, rather than O (αk)? If so, we could likely improve the sample

complexity of our QPMW shadow tomography procedure, say from (logm)2 (log d)2 /εO(1) to
(logm)2 (log d) /εO(1).
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Computational Complexity

(9) Is there any example of a polynomial-time classical randomized algorithm that is ε-DP for
some ε ≪ 1√

n
, but does not give rise to a gentle measurement on product states that can

be implemented in polynomial time, because of the issue with the computational complexity
of QSampling discussed in Section 7? If so, are there any “natural” examples of such DP
algorithms? It would be of interest to give such examples either conditionally (say, based on
a cryptographic assumption), or unconditionally in the black-box model.

(10) Can we show, under some plausible cryptographic assumption, that dΩ(1) computation time
is needed for shadow tomography, without the additional constraints that the procedure be
online or gentle?

(11) Can we generalize Theorem 7, to give more examples of how quantum algorithms can be safely
invoked as subroutines by other quantum algorithms using gentle measurement procedures?
What about the problem mentioned at the end of Section 7.3?
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10 Appendix: DP, Gentleness, and Triviality on Separable versus
Entangled States

What is the relationship between a measurement’s being differentially private (or trivial, or gentle)
on product states, and its having those same properties on arbitrary states?

In this appendix, we’ll give examples of measurements M on n qubits that are

(1) 1
2(n−1)/2 -trivial,

1
2(n−1)/2 -DP, and 1

2(n−1)/2 -gentle on all product states (and indeed, on all sep-
arable mixed states), and yet

(2) extremely far from being trivial, private, or gentle on certain entangled states.

In some sense, this will answer our question “for complexity-theoretic purposes”: doing nothing
whatsoever on separable states, to some fixed exponential precision, is compatible with enormous
departures from DP, gentleness, and triviality on entangled states.

Nevertheless, we’ll then show that there’s some level of triviality, DP, and gentleness on product
states that implies the same properties on arbitrary states—but strikingly, that this would be false
in quantum mechanics over R rather than over C.
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10.1 Separations

Our first example separates DP on product states from DP on arbitrary states.

Proposition 63 There exists an n-qubit measurement M that’s O
(
2−n/2

)
-trivial (and hence,

O
(
2−n/2

)
-DP) on product states, but not ε-DP for any ε on arbitrary states.

Proof. For simplicity, let n be odd, and group the first n − 1 qubits into n−1
2 pairs. Then

the measurement M will first project each of these pairs onto the Bell pair |00⟩+|11⟩√
2

. If all n−1
2

projections succeed, then M measures the nth qubit in the {|0⟩ , |1⟩} basis and returns the result.
Otherwise M returns a uniformly random bit.

Clearly, on states of the form

|00⟩+ |11⟩√
2

⊗ · · · ⊗ |00⟩+ |11⟩√
2

⊗ |v⟩ ,

this measurement is not ε-DP for any ε, since (for example) it completely leaks whether |v⟩ = |0⟩
or |v⟩ = |1⟩.

On the other hand, we claim that M is O
(
2−n/2

)
-DP on product states. To see this, observe

that every 2-qubit product state has at most 1√
2
projection onto the Bell pair |00⟩+|11⟩√

2
. So when

we apply M to an n-qubit product state, the n−1
2 projections all succeed with probability at most

2−(n−1)/2—and if at least one projection fails, then M ’s output is random. Thus, if ρ and σ are
any two product states, then for all y ∈ {0, 1},

Pr [M (ρ) outputs y]

Pr [M (σ) outputs y]
≤

1
2 + 2−(n−1)/2

1
2 − 2−(n−1)/2

= 1 +O
(
2−n/2

)
.

As a bonus, we can adapt Proposition 63 to separate DP on product states from DP on arbitrary
states, even in the special case where the measurement M is mixture-of-products.

Proposition 64 There exists an n-qubit mixture-of-products measurement M that’s 1
exp(n) -trivial

(or equivalently, 1
exp(n) -DP) on product states, but is not ε-DP for any ε < exp (n) on arbitrary

states.

Proof. We simply modify the measurement M from the proof of Proposition 63, so that now
M tries to use each of the n−1

2 qubit pairs to violate a Bell inequality—say, by playing the so-
called CHSH game [17], which can be won with probability cos2 π

8 ≈ 0.85 using the entangled state
|00⟩+|11⟩√

2
, but with at most 3

4 probability using any unentangled state.

If M wins at the CHSH game, on (say) at least an 0.8 fraction of the n−1
2 qubit pairs, then

M returns the result of measuring the nth qubit in the {|0⟩ , |1⟩} basis. Otherwise, M returns a
uniformly random bit.

Again, on states of the form

|00⟩+ |11⟩√
2

⊗ · · · ⊗ |00⟩+ |11⟩√
2

⊗ |v⟩ ,
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this measurement is not ε-DP for any ε < exp (n), since it leaks whether |v⟩ = |0⟩ or |v⟩ = |1⟩ with
all but exponentially small probability.

But again, on product states, we claim that M is 1
exp(n) -trivial. For by a Chernoff bound,

wheneverM is applied to a product state, the nth qubit is measured with at most 1
exp(n) probability.

The measurements M from Propositions 63 and 64 don’t have product form, so we can’t apply
Theorem 5 to them to conclude automatically that they’re 1

exp(n) -gentle on product states. Nev-

ertheless, it’s not hard to verify directly that they are 1
exp(n) -gentle on product states, and even on

separable mixed states.

By contrast, Corollary 26 says that, if M is α-gentle on all states, then M is ln
(
1+4α
1−4α

)
-DP on

all states. But M is not ε-DP on all states, for any ε > 0 (in the case of Proposition 63) or for any
ε < exp (n) (in the case of Proposition 64). So summarizing, we obtain the following corollary of
Propositions 63 and 64, which dramatically separates gentleness on product states from gentleness
on all states:

Corollary 65 There exists an n-qubit measurement M that’s 1
exp(n) -gentle (and indeed, 1

exp(n) -

trivial) on product states and indeed on separable mixed states, but not α-gentle for any α < 1
4.01

on arbitrary states. We can even take this measurement to be mixture-of-products.

From Proposition 38, together with Lemma 33, we already get that the measurement Ln/2

is O (1/
√
n)-gentle on product states despite not being 1

3 -gentle on arbitrary states. However,
Corollary 65 gives an exponentially more dramatic separation between gentleness on product states
and gentleness on arbitrary states.

It will follow from Corollary 70, proved in Section 10.2, that these exponential separations,
between triviality, DP, and gentleness on product states and the same parameters on arbitrary
states, are the largest separations possible, up to the exact value of the exponential scaling factor.

Note also that the following is an immediate consequence of convexity and of Proposition 13:

Proposition 66 If M is ε-trivial or ε-DP on all product states, then M is also ε-trivial or ε-DP
respectively on all separable mixed states.

Beware that α-gentleness on product states does not automatically imply α-gentleness on sep-
arable mixed states (even though in the examples above the two happened to go together); the
measurement Lσ is a counterexample.

As a final remark, one might wonder whether the counterexamples of Propositions 63 and 64
and Corollary 65 have classical probabilistic analogues. In other words, is there a separation
between DP on product distributions, and DP on arbitrary distributions? Or the analogous
question for triviality? We now observe that the answer is no. Indeed, this is just a special case
of Proposition 66 above. Every probability distribution can be written as a convex combination
of product distributions (indeed, point distributions), and DP and triviality are both closed under
convex combinations.26

26Again, gentleness is the outlier, failing to be closed under convex combinations. It’s not hard to show, by a
classical analogue of Lemma 25, that the only classical algorithms that are gentle on arbitrary distributions D are
close to trivial. But every algorithm is, or can be made, gentle on classical computational basis states.
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Why is the quantum case different? Because, while DP is closed under convex combinations,
it’s not closed under superpositions. The CHSH game provides one example of this: a certain
measurement has a behavior on the Bell pair |00⟩+|11⟩√

2
that’s not a convex combination of its

behaviors on the components |00⟩ and |11⟩—so that the measurement can fail to be DP on the
superposition, despite being DP on the components. Thus, the separation between DP on product
states and DP on arbitrary states is a quantum phenomenon.

10.2 Relationships

We’ll now show that, despite the separating examples in the last section, a measurement’s being
ε-trivial on product states for extremely small values of ε (say, ε ≪ 1

(2
√
2)

n ), really does imply its

being nearly trivial on arbitrary states (and hence DP and gentle as well). Intriguingly, we’ll also
show that this depends on the fact that amplitudes in quantum mechanics can be complex rather
than only real.

Our first claim is that any measurement M that accepts every product state with the same
probability p, in fact accepts every state with probability p. We do not know whether this was
known before; in any case, we cannot resist including a strikingly simple proof for completeness.
Our proof uses the following result of Braunstein et al. [15]:

Theorem 67 (Braunstein et al. [15]) In any finite-dimensional tensor product complex Hilbert
space (on any number of registers), the separable mixed states have positive density within the set
of all mixed states.

We observe the following consequence.

Theorem 68 Suppose a measurement M is 0-trivial (or equivalently, 0-DP or 0-gentle) on all
product states. Then M is 0-trivial on all states.

Proof. IfM is 0-trivial on product states, then for each possible outcome y, there is some constant
p such that, for all product states ρ = ρ1 ⊗ · · · ⊗ ρn,

Pr [M (ρ) outputs y] = p.

So by convexity, the above holds as well for all convex combinations of product states: i.e., separable
mixed states. Now

Pr [M (ρ) outputs y] = Tr (Eρ)

for some Hermitian operator E. By Theorem 67, this means that the linear function f (ρ) :=
Tr (Eρ) equals p on a subset of positive density. But any linear function that’s constant on a
subset of positive density is constant everywhere, so Tr (Eρ) = p for all ρ.

Why did this depend on amplitudes being complex numbers? In quantum mechanics over R,
the result of Braunstein et al. [15] is known to be false. Let us now show that Theorem 68 is
false as well. Consider the 2-outcome measurement on 2 “rebits” (i.e., real-amplitude qubits) that
accepts ρ with probability Tr (Eρ), where

E =
1

2


1 0 0 −1
0 1 1 0
0 1 1 0
−1 0 0 1

 .
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One can check that, for every 2-rebit pure product state |ψ⟩ = |ψA⟩ ⊗ |ψB⟩, we have

Tr (E|ψ⟩⟨ψ|) = ⟨ψ|E|ψ⟩ = 1

2
,

and hence the same is true for every 2-rebit separable mixed state. Nevertheless, this measurement
accepts the entangled rebit state |01⟩+|10⟩√

2
with certainty, and rejects |00⟩+|11⟩√

2
with certainty. This

is a rare example of a quantum information phenomenon that’s fundamentally different for qubits
and rebits.27

In ordinary (complex) quantum mechanics, we can even obtain a weak quantitative connection
between DP, gentleness, and triviality on product states and the same notions on arbitrary states,
by using the following result due to Gurvits and Barnum [25].

Theorem 69 ([25]) Let ρ be any mixed state on n registers, each d-dimensional. Then the state

(1− δ) I
dn + δρ is separable, for all δ ≤ 2−n/2

dn .

Theorem 69 has the following corollary.

Corollary 70 Suppose the measurement M , on n registers of d dimensions each, is ε-trivial on
product states, for some ε ≤ 1

2(
√
2d)n

. Then M is O
(
(
√
2d)nε

)
-trivial on all states.

Proof. Fix some measurement outcome y corresponding to the POVM element E. Then let
p = Tr

(
E I

dn

)
be the probability thatM outputs y on the maximally mixed state. Set δ := 1

(
√
2d)

n ,

so that ε ≤ δ
2 . Let ρ be an arbitrary state, and let

σ := (1− δ) I
dn

+ δρ.

Then σ is separable by Theorem 69. So since M is ε-trivial on product states,

pe−ε ≤ Tr (Eσ) ≤ peε.

Now,

Tr (Eσ) = Tr

(
E

(
(1− δ) I

dn
+ δρ

))
= (1− δ) p+ δTr (Eρ) .

Solving for Tr (Eρ), we find that(
1− 1− e−ε

δ

)
p ≤ Tr (Eρ) ≤

(
1 +

eε − 1

δ

)
p

27In the same spirit: in complex quantum mechanics, one can recover the POVM E if one knows Tr (Eρ) for all
product states ρ; but in real quantum mechanics, one can’t—by the same counterexample E, which the product
states ρ of 2 rebits fail to distinguish from the I/2 POVM that accepts every state with probability 1/2. This fact is
a “dual” to the well-known fact that a mixed state ρ is uniquely determined by the values of Tr (Eρ) on all product
measurements E (i.e., Hardy’s “local tomography axiom” [30] holds), in complex quantum mechanics but not in real
quantum mechanics. The “duality” between the two facts can be seen by interchanging the roles of the Hermitian
matrices E and ρ in the expression Tr (Eρ).
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This implies that M is β-trivial on all states, for

β = ln

(
1 + eε−1

δ

1− 1−e−ε

δ

)
= O

(ε
δ

)
= O

(
(
√
2d)nε

)
.

Here we’ve used the fact that ε ≤ δ
2 .

11 Appendix: General Neighbor Relations

Given two states ρ, σ on n registers each, we called ρ and σ neighbors if it’s possible to reach σ
from ρ, or σ from ρ, by applying some superoperator to a single register only. In the special case
where ρ = ρ1 ⊗ · · · ⊗ ρn and σ = σ1 ⊗ · · · ⊗ σn are both product states, this is simply equivalent to
saying that we can reach σ from ρ by changing a single ρi. For correlated or entangled states, by
contrast, it’s not obvious that we should favor this definition over various alternatives.

Thus, call ρ and σ superoperator neighbors if they’re neighbors in the sense above. Call them
unitary neighbors if it’s possible to reach σ from ρ, or equivalently ρ from σ, by applying some
unitary transformation U to a single register only. And call them conditioned neighbors if it’s
possible to reach one from the other by applying a conditioned superoperator (i.e., a normalized
quantum operation) to a single register. Clearly, all unitary neighbors are also superoperator
neighbors, and all superoperator neighbors are also conditioned neighbors. But for general states,
the three notions are easily seen to form a strict hierarchy. For example, 1√

2
(|0n⟩+ |1n⟩) and

1
2 (|0

n⟩⟨0n|+ |1n⟩⟨1n|) are superoperator neighbors but not unitary neighbors, while 1√
2
(|0n⟩+ |1n⟩)

and |0n⟩ are conditioned neighbors but not superoperator neighbors.
Nevertheless, we now prove that, for the task of defining ε-DP, switching from superoperator

neighbors to unitary neighbors would change nothing of substance, while switching to conditioned
neighbors would collapse our framework to triviality.

Proposition 71 If M is ε-DP with respect to unitary neighbors, then M is also 2ε-DP with respect
to superoperator neighbors (regardless of whether we mean DP on product states or on all states).

Proof. Let ρ and σ be superoperator neighbors, which differ only on the ith register. Let ξ
be the state obtained by starting from either ρ or σ, and then applying a Haar-random unitary
transformation U to the ith register (which has the effect of putting that register into the maximally
mixed state, I/d). Then averaging over the possible U ’s and applying convexity, we have

Pr [M (ρ) = y] ≤ eε Pr [M (ξ) = y]

and likewise
Pr [M (σ) = y] ≥ e−ε Pr [M (ξ) = y] .

Hence
Pr [M (ρ) = y] ≤ e2ε Pr [M (σ) = y] .

Proposition 72 If M is ε-DP on all states with respect to postselected neighbors, then M is 4ε-
trivial.
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Proof. Let ρ, σ be any two mixed states on n registers each. Let |1⟩⟨1| ⊗ ρ′ be the result of
measuring the first register of ρ in the |1⟩ , . . . , |d⟩ basis and getting the outcome |1⟩, and let
|2⟩⟨2| ⊗ σ′ be the result of measuring the first register of σ in the |1⟩ , . . . , |d⟩ basis and getting the
outcome |2⟩. Then by assumption, for all possible outcomes y of M ,

Pr [M (ρ) = y] ≤ eε Pr
[
M
(
|1⟩⟨1| ⊗ ρ′

)
= y
]
,

Pr [M (σ) = y] ≥ e−ε Pr
[
M
(
|2⟩⟨2| ⊗ σ′

)
= y

]
.

But the state

ξ :=
|1⟩⟨1| ⊗ ρ′ + |2⟩⟨2| ⊗ σ′

2

is a postselected neighbor of both |1⟩⟨1| ⊗ ρ′ and |2⟩⟨2| ⊗ σ′, since measuring the first register of ξ
in the |1⟩ , . . . , |d⟩ basis can yield either. Hence

Pr
[
M
(
|1⟩⟨1| ⊗ ρ′

)
= y
]
≤ eε Pr [M (ξ) = y] ,

Pr
[
M
(
|2⟩⟨2| ⊗ σ′

)
= y
]
≥ e−ε Pr [M (ξ) = y] .

Chaining together the inequalities now yields

Pr [M (ρ) = y] ≤ e4ε Pr [M (σ) = y] .

12 Appendix: Differential Privacy Beyond Product and LOCC
Measurements

In this appendix, we’ll give an example of a measurement M on n qubits, which is differentially
private on all states, but which is provably not a product measurement, or even a mixture-of-
products measurement. In other words, there’s no way to implement M (even approximately)
by measuring each qubit in a separately chosen basis, with none of the bases depending on the
outcomes of measuring previous qubits. This rules out the possibility of a “structure theorem”
showing that all DP measurements can be put into the restricted form that we mainly studied in
the body of this paper.

Going further, we’ll also give a second measurement M ′ that’s differentially private on all n-
qubit states, but which we conjecture is not even LOCC. That is, we conjecture that there’s no way
to implement M ′ using local operations and classical communication (even allowing adaptivity),
and that entangling measurements on the qubits are needed.

To construct M , we’ll use the following lemma.

Lemma 73 There is no 2-qubit mixture-of-products measurement that accepts the states |0⟩ |0⟩ and
|1⟩ |+⟩ with certainty, and that rejects |0⟩ |1⟩ and |1⟩ |−⟩ with certainty.

Proof. It suffices to show that there’s no product measurement; the lemma then follows by
convexity.

A product measurement can be written {Ei ⊗ Fj}i∈[k],j∈[ℓ], for some one-qubit POVMs E1 +
· · ·+ Ek = I and F1 + · · ·+ Fℓ = I.
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Suppose we knew that measuring the first qubit in the {|0⟩ , |1⟩} basis yielded the outcome |0⟩.
Then we’d need to accept with certainty if the second qubit was |0⟩, and reject with certainty if
the second qubit was |1⟩. But since the Fi’s must be Hermitian and positive semidefinite, the only
POVMs {F1, . . . , Fℓ} on the second qubit that achieve that objective are equivalent under trivial
changes (i.e., relabelings and adding “dummy” POVM elements) to

F1 =

(
1 0
0 0

)
, F2 =

(
0 0
0 1

)
—in other words, simply measuring the second qubit in the {|0⟩ , |1⟩} basis. Likewise, if we knew
that measuring the first qubit in the {|0⟩ , |1⟩} basis yielded the outcome |1⟩, then we’d need to
accept with certainty if the second qubit was |+⟩, and reject with certainty if the second qubit was
|−⟩. The only POVMs that achieve that objective are equivalent under trivial changes to

F ′
1 =

1

2

(
1 1
1 1

)
, F ′

2 =
1

2

(
1 −1
−1 1

)
—in other words, measuring the second qubit in the {|+⟩ , |−⟩} basis. But since we don’t get
to choose {F1, . . . , Fℓ} based on the outcome of measuring the first qubit, we can’t achieve both
objectives simultaneously.

Finally, if the first qubit was not measured in the {|0⟩ , |1⟩} basis, but in some other basis, then
the situation is “even worse,” since some outcome Ei of measuring the first qubit will be compatible
with the first qubit having been |0⟩ or with its having been |1⟩. So even fixing Ei, we’ll again need
POVM elements equivalent to F1, F2 and POVM elements equivalent to F ′

1, F
′
2, which contradicts

F1 + · · ·+ Fℓ = I.
By compactness considerations, a corollary of Lemma 73 is that there must be some constant

η > 0 (we have not worked out its value) such that no mixture-of-products measurement can
distinguish |0⟩ |0⟩ and |1⟩ |+⟩ from |0⟩ |1⟩ and |1⟩ |−⟩ even with success probability 1− η.

Using Lemma 73, we now prove the main result.

Theorem 74 (Existence of Non-Product Quantum DP Measurements) There exists a mea-

surement M on n qubits that’s O
(
logn
n

)
-DP on all states, but that cannot be approximated (say,

to 1
3 variation distance in the distribution over measurement outcomes) by any mixture-of-products

measurement.

Proof. Set k := C log n for some constant C. Then the measurementM =Mσ does the following:

(1) Group the n qubits into n/k blocks B1, . . . , Bn/k, each of size k

(2) Within each block Bi:

• Group the qubits into pairs

• Measure each pair in the basis {|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |+⟩ , |1⟩ |−⟩}
• Count the number of these measurements that return either |0⟩ |0⟩ or |1⟩ |+⟩, and calcu-

late the parity of this number, bi ∈ {0, 1}

(3) Return the sum Γ = b1 + · · · + bn/k, across all n/k blocks, plus Laplace noise with average
magnitude σ
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Our first claim is that M is 1/σ-DP on all states. This is a simple consequence of Proposition
4.

Our second claim is that there exists a probability distribution D over n-qubit states (in fact,
product states), such that given a state ρ drawn from D, no mixture-of-products measurement can
return a nontrivial estimate of Γ. This D is defined as follows: first set Γ := 0 or Γ := n/k,
both with equal probability 1/2. Then let ρ be a tensor product of pairs of qubits of the form
|0⟩ |0⟩ , |0⟩ |1⟩ , |1⟩ |+⟩ , |1⟩ |−⟩, which is chosen uniformly at random among all such tensor products
that are consistent with the chosen value of Γ.

To prove the claim, it suffices to show that no mixture-of-products measurement can guess even
a single parity bi, by measuring the ith block, with bias more than (say) 1/n3 over chance. For this
we appeal to Lemma 73, which says that for each pair of qubits, the measurement cannot perfectly
distinguish whether the pair is in the state |00⟩⟨00|+|1+⟩⟨1+|

2 (which flips the parity bi), or the state
|01⟩⟨01|+|1−⟩⟨1−|

2 (which has no effect on bi). Rather, it can only distinguish these two mixed states
only with some constant rate of noise η > 0. So the situation is equivalent to the following: we
are trying to guess the parity |x|mod 2 of an arbitrary k/2-bit string x, but each bit of x can be
read only noisily, and has either an η probability of appearing as 1 despite being 0 or vice versa
(with the errors independent across the bits). In such a situation, regardless of the value of η > 0,
it is well-known that our bias in guessing the parity of x falls off like 1/ exp (k). By simply setting
k := C log n for some sufficiently large constant k, we can make this bias less than 1/n3.

Finally, we just need to choose (say) σ := n
10k . In that case, the measurement M = Mσ is

ε-DP for ε = 1
σ = O

(
logn
n

)
, and it returns a nontrivial estimate of Γ. By contrast, no mixture-

of-products measurement returns a nontrivial estimate of Γ, or even distinguishes the case Γ = 0
from the case Γ = n/k with bias (say) Ω

(
1/n2

)
.

The proof of Theorem 74 exploited the fact that, even though differential privacy is clearly
associated with a lack of “sensitivity” on the measurement’s part (i.e., changing a single register
can’t change the output by much), this is still compatible with local subproblems solved by the
measurement being exquisitely sensitive to local changes. That’s what happens with the noisy
sum of parities example: each parity is maximally sensitive to local changes, even though a noisy
sum of them is not.

Now suppose we want to show something stronger: namely, that there’s an n-qubit measurement
M that’s differentially private, but that isn’t even LOCC (that is, cannot be implemented using
separate measurements on each qubit, even with adaptivity). We now propose a modification
M ′ of the measurement M from the proof of Theorem 74, which we conjecture has the required
property.

Set k := C log n for some constant C. Then the measurement M ′ =M ′
σ does the following.

(1) Group the n qubits into n/k3 blocks B1, . . . , Bn/k3 , each of size k3

(2) Within each block Bi:

• Group the qubits into k sub-blocks S1, . . . , Sk, each of size k2

• Within each sub-block Sj :

– Group the qubits into pairs

– Perform the swap test on each pair (note: the swap test accepts the product state

|v⟩ |w⟩ with probability equal to 1+|⟨v|w⟩|2
2 )
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– Call Sj “accepting” if every swap test accepts, or “rejecting” if at least one of them
rejects

• Count the number of accepting sub-blocks, and let bi be the parity of this number

(3) Return the sum Γ = b1 + · · ·+ bn/k3 , across all n/k
3 blocks, plus Laplace noise with average

magnitude σ

Just like in the proof of Theorem 74, it’s easy to see that M ′ is 1/σ-DP on all states. Our
conjecture is that M ′ cannot be implemented, even approximately, using LOCC measurements on
the qubits. The intuition is that, if we’re restricted to LOCC, then at best we can simulate each
swap test imperfectly: for example, using a measurement that accepts the product state |v⟩ |w⟩
with probability equal to 1+|⟨v|w⟩|2

3 , rather than 1+|⟨v|w⟩|2
2 . This would imply that we can’t reliably

distinguish the following two cases:

(1) within a given sub-block, every swap test accepts with probability 1, versus

(2) within that sub-block, 10 log n swap tests accept with probability 1/2 (i.e., the two qubits are
in orthogonal states), while the remaining swap tests accept with probability 1.

For the difference between these two cases will get “lost in the Gaussian noise,” which is of order√
k ≫ 10 log n if the constant C was sufficiently large. By contrast, if we take an AND of “true”

swap tests, then we accept with probability 1 in case (1), versus with probability
(
1
2

)10 logn
= 1

n10

in case (2).
But if we can’t reliably distinguish these cases using LOCC, then certainly we can’t guess the

parity, across all k sub-blocks within a given block, with bias more than 1/ exp (k) over random.
(Whereas by contrast, using “true” swap tests, we can compute the parity across the sub-blocks
with success probability 1− 1

nO(1) , given the promise that every sub-block satisfies either (1) or (2)
above.)

If so, then the end result is that, using LOCC measurements, we can’t compute the sum of the
parities across the n/k3 blocks even noisily, whereas using true swap tests, we can.

13 Appendix: On Composition of Quantum DP Algorithms

One of the central properties of classical differential privacy is that it nicely composes: that is, if we
run an ε1-DP algorithm followed by an ε2-DP algorithm on the same database, then the resulting
algorithm is (ε1 + ε2)-DP. Furthermore, advanced composition [22] shows that, with overwhelming
probability, the loss in privacy when we compose k algorithms is even slower than linear, growing
only like

√
k.

This immediately raises a question: does quantum differential privacy similarly compose? Here
we face a new difficulty, not present in classical case: namely, when we compose quantum DP
algorithms, each algorithm will in general damage our state. And this might cause not only a
catastrophic loss in privacy, but even a catastrophic loss in accuracy.

Fortunately, we can use our connection between DP and gentleness address the concern about
accuracy, at least in the regime where that connection applies. For certainly gentleness composes.
That is, if we apply an α1-gentle measurement M1 followed by an α2-gentle measurement M2, then
the result will be (α1 + α2)-gentle, by the triangle inequality for trace distance. And by Corollary
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16, this is true even ifM2 is guaranteed to be gentle only on the original state (for example, because
it’s a product state), and not necessarily on the post-measurement states that result from applying
M1. We even conjecture that an “advanced composition” property holds for gentleness (see Section
8).

Thus, suppose we want to compose product measurements M1, . . . ,Mk, that are each ε-DP on
product states, for some ε ≪ 1

k
√
n
. Then by Theorem 5, these measurements are each O (ε

√
n)-

gentle. So we can compose them while preserving good accuracy.
Even here, though, there’s a potential issue with privacy. The issue arises because the later

Mi’s are applied not to our original state ρ, but to damaged versions of the state. And particularly
if this damage is additive rather than multiplicative, we have no guarantee that the later Mi’s will
preserve DP (with respect to the original state ρ) when applied to the damaged versions. Indeed,
ensuring privacy would require saying at least something about the post-measurement states. If,
for example, we implemented some Mi in a way that gratuitously “amplified” the information in
(say) the first register, copying it into the other n− 1 registers as a byproduct of the measurement
procedure, then privacy need not be preserved when we apply Mi+1. On the other hand, it seems
plausible to us that ε-DP measurements, for ε ≪ 1√

n
, can always be implemented in such a way

that privacy is preserved under composition.
By using Lemma 17, the following proposition confirms that quantum DP composition works

at least in the special case where we’re composing a small number of quantum DP algorithms that
are gentle, and all of whose outputs have appreciably large probabilities on all states.

Proposition 75 (Limited Composition for Quantum DP) LetM be the sequential composi-
tion of k measurements M1, . . . ,Mk, where Mi is εi-DP on product states and αi-gentle on product
states. Suppose that for all product states ρ and all possible sequences Y = (y1, . . . , yk) of mea-
surement outcomes, we have

Pr [M1 (ρ) outputs y1] · · ·Pr [Mk (ρ) outputs yk] ≥ p,

where p≫ α1 + · · ·+ αk. ThenM achieves a relative accuracy of α1+···+αk
p , in the sense that∣∣∣∣ Pr [M (ρ) outputs Y ]

Pr [M1 (ρ) outputs y1] · · ·Pr [Mk (ρ) outputs yk]
− 1

∣∣∣∣ ≤ α1 + · · ·+ αk

p

for all product states ρ and all Y , and in addition is ε-DP on product states for

ε = ε1 + · · ·+ εk + ln

(
p+ (α1 + · · ·+ αk)

p− (α1 + · · ·+ αk)

)
= ε1 + · · ·+ εk +O

(
α1 + · · ·+ αk

p

)
.

Proof. The relative accuracy part follows immediately from the first part of Lemma 17, which
tells us that

|Pr [M1 (ρ) outputs y1] · · ·Pr [Mk (ρ) outputs yk]− Pr [M (ρ) outputs Y ]| ≤ α1 + · · ·+ αk.
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For the ε-DP part, for all neighboring product states ρ, σ and all y1, . . . , yk we have

Pr [M (ρ) outputs Y ] ≤
(
1− α1 + · · ·+ αk

p

)
Pr [M1 (ρ) outputs y1] · · ·Pr [Mk (ρ) outputs yk]

≤ eε1+···+εk

1− α1+···+αk
p

Pr [M1 (σ) outputs y1] · · ·Pr [Mk (σ) outputs yk]

≤ eε1+···+εk
1 + α1+···+αk

p

1− α1+···+αk
p

Pr [M (σ) outputs Y ] .

In Proposition 75, product states could have been replaced by any other set of states that’s
closed under the neighbor relation. For the special case of product states, though, we can combine
Proposition 75 with part (2) of Theorem 5 to get the following corollary, which does not need the
gentleness of the underlying measurements as a separate assumption.

Corollary 76 Let M be the sequential composition of k product measurements M1, . . . ,Mk, each
on n registers. Suppose that each Mi is εi-DP on product states, where ε := ε1 + · · · + εk is at
most 1

10
√
n
. Suppose also that for all product states ρ, all i ∈ [k], and all measurement outcomes

y, we have
Pr [Mi (ρ) outputs y] ≥ pi,

where p := p1 · · · pk is at least 10ε
√
n. Then M achieves a relative accuracy of O

(
ε
√
n

p

)
, in the

sense that ∣∣∣∣ Pr [M (ρ) outputs y1, . . . , yk]

Pr [M1 (ρ) outputs y1] · · ·Pr [Mk (ρ) outputs yk]
− 1

∣∣∣∣ = O

(
ε
√
n

p

)
for all product states ρ and outcomes y1, . . . , yk, and in addition is O

(
ε
√
n

p

)
-DP on product states.

In the remainder of this appendix, we will show that, when ε is large compared to 1√
n
, so that

we’re outside the range where DP implies gentleness, the composition of ε-DP measurements need
not even preserve accuracy.

Recall the “randomized response” algorithm Rβ from Section 5.1, which for each i ∈ [n] in-
dependently, simply measures the ith qubit in the {|0⟩ , |1⟩} basis, and returns the measurement
outcome with probability 1

2 + β, or its complement with probability 1
2 − β. (Thus, the output of

Rβ is an n-bit string.) We now give our example:

Theorem 77 (Failure of Composition for Quantum DP) There exist n-qubit measurements

M1 and M2 that are individually ε-DP on product states for ε = O
(

1
n1/4

)
, but such that no

implementation of M1 leaves us with a post-measurement state allowing an accurate result to be
returned if we later run M2 (even supposing that we don’t condition on the outcome of M1).

Proof. Let M1 be the randomized response algorithm Rε, which is O (ε)-DP by Proposition 35.
Also, let M2 be the variant of the Lσ mechanism from before, but in the {|+⟩ , |−⟩} basis. In other
words, M2 returns the number of |+⟩’s plus Laplace noise of mean σ. We’ve seen that Lσ, and
hence M2, is

1
σ -DP.
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Now suppose that in reality, each qubit is either |+⟩ or |−⟩. Then by a straightforward
calculation, M1 damages each qubit by Θ

(
ε2
)
in trace distance, even if we average over both

possible measurement outcomes, by decreasing the magnitudes of the off-diagonal density matrix
entries by Θ

(
ε2
)
. In more detail, the effect is simply: every |+⟩ qubit flips to |−⟩, and every |−⟩

qubit flips to |+⟩, with independent probability Θ
(
ε2
)
.

So now consider what happens when we run M2. If we have an n-bit string x, and every bit of
x gets flipped with independent probability δ, then from the corrupted string x′, we can estimate

the Hamming weight of the original string x to within an additive error of Θ
(√

nδ (1− δ)
)
. In

our case, δ = Θ
(
ε2
)
, so this additive error is Θ (ε

√
n).

But recall that M2 needs to estimate the number |+⟩ qubits to within an additive error of
Θ (1/ε). If 1

ε ≪ ε
√
n, or equivalently ε≫ 1

n1/4 , then this is impossible.
Of course, the above leaves many further questions that one could explore: for example, what

happens for ε in the range between 1√
n
and 1

n1/4 ? Also, what if we restrict our attention to quantum

DP algorithms with only a few possible outcomes (thus ruling out randomized response applied to
each qubit separately)? Finally, what if we allow our “composed” algorithm to do anything it likes
to obtain the desired information, including violating the specified order (e.g., applying L+

σ before
Rε) and even more radical changes?
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