Archive for November, 2019

Annual recruitment post

Tuesday, November 12th, 2019

Just like I did last year, and the year before, I’m putting up a post to let y’all know about opportunities in our growing Quantum Information Center at UT Austin.

I’m proud to report that we’re building something pretty good here. This fall Shyam Shankar joined our Electrical and Computer Engineering (ECE) faculty to do experimental superconducting qubits, while (as I blogged in the summer) the quantum complexity theorist John Wright will join me on the CS faculty in Fall 2020. Meanwhile, Drew Potter, an expert on topological qubits, rejoined our physics faculty after a brief leave. Our weekly quantum information group meeting now regularly attracts around 30 participants—from the turnout, you wouldn’t know it’s not MIT or Caltech or Waterloo. My own group now has five postdocs and six PhD students—as well as some amazing undergrads striving to meet the bar set by Ewin Tang. Course offerings in quantum information currently include Brian La Cour’s Freshman Research Initiative, my own undergrad Intro to Quantum Information Science honors class, and graduate classes on quantum complexity theory, experimental realizations of QC, and topological matter (with more to come). We’ll also be starting an undergraduate Quantum Information Science concentration next fall.

So without further ado:

(1) If you’re interested in pursuing a PhD focused on quantum computing and information (and/or classical theoretical computer science) at UT Austin: please apply! If you want to work with me or John Wright on quantum algorithms and complexity, apply to CS (I can also supervise physics students in rare cases). Also apply to CS, of course, if you want to work with our other CS theory faculty: David Zuckerman, Dana Moshkovitz, Adam Klivans, Anna Gal, Eric Price, Brent Waters, Vijaya Ramachandran, or Greg Plaxton. If you want to work with Drew Potter on nonabelian anyons or suchlike, or with Allan MacDonald, Linda Reichl, Elaine Li, or others on many-body quantum theory, apply to physics. If you want to work with Shyam Shankar on superconducting qubits, apply to ECE. Note that the deadline for CS and physics is December 1, while the deadline for ECE is December 15.

You don’t need to ask me whether I’m on the lookout for great students: I always am! If you say on your application that you want to work with me, I’ll be sure to see it. Emailing individual faculty members is not how it works and won’t help. Admissions are extremely competitive, so I strongly encourage you to apply broadly to maximize your options.

(2) If you’re interested in a postdoc in my group, I’ll have approximately two openings starting in Fall 2020. To apply, just send me an email by January 1, 2020 with the following info:
– Your CV
– 2 or 3 of your best papers (links or PDF attachments)
– The names of two recommenders (who should email me their letters separately)

(3) If you’re on the faculty job market in quantum computing and information—well, please give me a heads-up if you’re potentially interested in Austin! Our CS, physics, and ECE departments are all open to considering additional candidates in quantum information, both junior and senior. I can’t take credit for this—it surely has to do with developments beyond my control, both at UT and beyond—but I’m happy to relay that, in the three years since I arrived in Texas, the appetite for strengthening UT’s presence in quantum information has undergone jaw-dropping growth at every level of the university.

Also, Austin-Bergstrom International Airport now has direct flights to London, Frankfurt, and (soon) Amsterdam and Paris.

Hook ’em Hadamards!

The morality of quantum computing

Thursday, November 7th, 2019

This morning a humanities teacher named Richard Horan, having read my NYT op-ed on quantum supremacy, emailed me the following question about it:

Is this pursuit [of scalable quantum computation] just an arms race? A race to see who can achieve it first? To what end? Will this achievement yield advances in medical science and human quality of life, or will it threaten us even more than we are threatened presently by our technologies? You seem rather sanguine about its possible development and uses. But how close does the hand on that doomsday clock move to midnight once we “can harness an exponential number of amplitudes for computation”?

I thought this question might possibly be of some broader interest, so here’s my response (with some light edits).

Dear Richard,

A radio interviewer asked me a similar question a couple weeks ago—whether there’s an ethical dimension to quantum computing research.  I replied that there’s an ethical dimension to everything that humans do.

A quantum computer is not like a nuclear weapon: it’s not going to directly kill anybody (unless the dilution refrigerator falls on them or something?).  It’s true that a full, scalable QC, if and when it’s achieved, will give a temporary advantage to people who want to break certain cryptographic codes.  The morality of that, of course, could strongly depend on whether the codebreakers are working for the “good guys” (like the Allies during WWII) or the “bad guys” (like, perhaps, Trump or Vladimir Putin or Xi Jinping).

But in any case, there’s already a push to switch to new cryptographic codes that already exist and that we think are quantum-resistant.  An actual scalable QC on the horizon would of course massively accelerate that push.  And once people make the switch, we expect that security on the Internet will be more-or-less back where it started.

Meanwhile, the big upside potential from QCs is that they’ll provide an unprecedented ability to simulate physics and chemistry at the molecular level.  That could at least potentially help with designing new medicines, as well as new batteries and solar cells and carbon capture technologies—all things that the world desperately needs right now.

Also, the theory developed around QC has already led to many new and profound insights about physics and computation.  Some of us regard that as an inherent good, in the same way that art and music and literature are.

Now, one could argue that the climate crisis, or various other crises that our civilization faces, are so desperate that instead of working to build QCs, we should all just abandon our normal work and directly confront the crises, as (for example) Greta Thunberg is doing.  On some days I share that position.  But of course, were the position upheld, it would have implications not just for quantum computing researchers but for almost everyone on earth—including humanities teachers like yourself.

Best,
Scott