Archive for July, 2018

Summer recapitulates life

Tuesday, July 24th, 2018

Last week, I was back at the IAS in Princeton, to speak at a wonderful PITP summer school entitled “From Qubits to Spacetime,” co-organized by Juan Maldacena and Edward Witten. This week, I’ll be back in Waterloo, to visit old and new friends at the Perimeter Institute and Institute for Quantum Computing and give a couple talks.  Then, over the weekend, I’ll be back in Boston to see old friends, colleagues, and students.  After some other miscellaneous travel, I’ll then return to Austin in late August when the semester begins.  The particular sequence IAS → Waterloo → Boston → Austin is of course one that I’ve followed before, over a longer timescale.

Two quick announcements:

First, at the suggestion of reader Sanketh Menda, I’m thinking of holding a Shtetl-Optimized meetup in Waterloo this week.  Please send me an email if you’re interested, and we’ll figure out a time and place that work for everyone.

Second, many of the videos from the IAS summer school are now available, including mine: Part I and Part II.  I cover some basics of complexity theory, the complexity of quantum states and unitary transformations, the Harlow-Hayden argument about the complexity of turning a black hole event horizon into a firewall (with my refinement), and my and Lenny Susskind’s work on circuit complexity, wormholes, and AdS/CFT.  As a special bonus, check out the super-embarrassing goof at the beginning of my first lecture—claiming a mistaken symmetry of conditional entropy and even attributing it to Edward Witten’s lecture!  (But Witten, who I met for the first time on this visit, was kind enough to call my talk “lots of fun” anyway, and give me other positive comments, which I should put on my CV or something.)

Addendum: Many of the PITP videos are well worth watching!  As one example, I found Witten’s talks to be shockingly accessible.  I’d been to a previous talk of his involving Khovanov homology, but beyond the first few minutes, it went so far over my head that I couldn’t tell you how it was for its intended audience.  I’d also been to a popular talk of Witten’s on string theory, but that’s something he could do with only 3 awake brain cells.  In these talks, by contrast, Witten proves some basic inequalities of classical and quantum information theory, then proves the Reeh-Schlieder Theorem of quantum field theory and the Hawking and Penrose singularity theorems of GR, and finally uses quantum information theory to prove positive energy conditions from quantum field theory that are often needed to make statements about GR.

Customers who liked this quantum recommendation engine might also like its dequantization

Thursday, July 12th, 2018

I’m in Boulder, CO right now for the wonderful Boulder summer school on quantum information, where I’ll be lecturing today and tomorrow on introductory quantum algorithms.  But I now face the happy obligation of taking a break from all the lecture-preparing and schmoozing, to blog about a striking new result by a student of mine—a result that will probably make an appearance in my lectures as well.

Yesterday, Ewin Tang—an 18-year-old who just finished a bachelor’s at UT Austin, and who will be starting a PhD in CS at the University of Washington in the fall—posted a preprint entitled A quantum-inspired classical algorithm for recommendation systems. Ewin’s new algorithm solves the following problem, very loosely stated: given m users and n products, and incomplete data about which users like which products, organized into a convenient binary tree data structure; and given also the assumption that the full m×n preference matrix is low-rank (i.e., that there are not too many ways the users vary in their preferences), sample some products that a given user is likely to want to buy.  This is an abstraction of the problem that’s famously faced by Amazon and Netflix, every time they tell you which books or movies you “might enjoy.”  What’s striking about Ewin’s algorithm is that it uses only polylogarithmic time: that is, time polynomial in log(m), log(n), the matrix rank, and the inverses of the relevant error parameters.  Admittedly, the polynomial involves exponents of 33 and 24: so, not exactly “practical”!  But it seems likely to me that the algorithm will run much, much faster in practice than it can be guaranteed to run in theory.  Indeed, if any readers would like to implement the thing and test it out, please let us know in the comments section!

As the title suggests, Ewin’s algorithm was directly inspired by a quantum algorithm for the same problem, which Kerenidis and Prakash (henceforth KP) gave in 2016, and whose claim to fame was that it, too, ran in polylog(m,n) time.  Prior to Ewin’s result, the KP algorithm was arguably the strongest candidate there was for an exponential quantum speedup for a real-world machine learning problem.  The new result thus, I think, significantly changes the landscape of quantum machine learning, by killing off one of its flagship applications.  (Note that whether KP gives a real exponential speedup was one of the main open problems mentioned in John Preskill’s survey on the applications of near-term quantum computers.)  At the same time, Ewin’s result yields a new algorithm that can be run on today’s computers, that could conceivably be useful to those who need to recommend products to customers, and that was only discovered by exploiting intuition that came from quantum computing. So I’d consider this both a defeat and a victory for quantum algorithms research.

This result was the outcome of Ewin’s undergraduate thesis project (!), which I supervised. A year and a half ago, Ewin took my intro quantum information class, whereupon it quickly became clear that I should offer this person an independent project.  So I gave Ewin the problem of proving a poly(m,n) lower bound on the number of queries that any classical randomized algorithm would need to make to the user preference data, in order to generate product recommendations for a given user, in exactly the same setting that KP had studied.  This seemed obvious to me: in their algorithm, KP made essential use of quantum phase estimation, the same primitive used in Shor’s factoring algorithm.  Without phase estimation, you seemed to be stuck doing linear algebra on the full m×n matrix, which of course would take poly(m,n) time.  But KP had left the problem open, I didn’t know how to solve it either, and nailing it down seemed like an obvious challenge, if we wanted to establish the reality of quantum speedups for at least one practical machine learning problem.  (For the difficulties in finding such speedups, see my essay for Nature Physics, much of which is still relevant even though it was written prior to KP.)

Anyway, for a year, Ewin tried and failed to rule out a superfast classical algorithm for the KP problem—eventually, of course, discovering the unexpected reason for the failure!  Throughout this journey, I served as Ewin’s occasional sounding board, but can take no further credit for the result.  Indeed, I admit that I was initially skeptical when Ewin told me that phase estimation did not look essential after all for generating superfast recommendations—that a classical algorithm could get a similar effect by randomly sampling a tiny submatrix of the user preference matrix, and then carefully exploiting a variant of a 2004 result by Frieze, Kannan, and Vempala.  So when I was in Berkeley a few weeks ago for the Simons quantum computing program, I had the idea of flying Ewin over to explain the new result to the experts, including Kerenidis and Prakash themselves.  After four hours of lectures and Q&A, a consensus emerged that the thing looked solid.  Only after that gauntlet did I advise Ewin to put the preprint online.

So what’s next?  Well, one obvious challenge is to bring down the running time of Ewin’s algorithm, and (as I mentioned before) to investigate whether or not it could give a practical benefit today.  A different challenge is to find some other example of a quantum algorithm that solves a real-world machine learning problem with only a polylogarithmic number of queries … one for which the exponential quantum speedup will hopefully be Ewin-proof, ideally even provably so!  The field is now wide open.  It’s possible that my Forrelation problem, which Raz and Tal recently used for their breakthrough oracle separation between BQP and PH, could be an ingredient in such a separation.

Anyway, there’s much more to say about Ewin’s achievement, but I now need to run to lecture about quantum algorithms like Simon’s and Shor’s, which do achieve provable exponential speedups in query complexity!  Please join me in offering hearty congratulations, see Ewin’s nicely-written paper for details, and if you have any questions for me or (better yet) Ewin, feel free to ask in the comments.

Update: On the Hacker News thread, some commenters are lamenting that such a brilliant mind as Ewin’s would spend its time figuring out how to entice consumers to buy even more products that they don’t need. I confess that that’s an angle that hadn’t even occurred to me: I simply thought that it was a beautiful question whether you actually need a quantum computer to sample the rows of a partially-specified low-rank matrix in polylogarithmic time, and if the application to recommendation systems helped to motivate that question, then so much the better. Now, though, I feel compelled to point out that, in addition to the potentially lucrative application to Amazon and Netflix, research on low-rank matrix sampling algorithms might someday find many other, more economically worthless applications as well.

Another Update: For those who are interested, streaming video of my quantum algorithms lectures in Boulder are now available:

You can also see all the other lectures here.