https://arstechnica.com/gadgets/2017/09/microsoft-quantum-toolkit/

The article *doesn’t* say that quantum computing can break NP complete problems by trying all possibilities at once — which is a good sign, I guess.

]]>Before doing all that, I *might* not be averse to mining and then selling a few billion dollars’ worth of Bitcoin, or as much as I could before arousing everyone’s suspicions. Mostly for donating to worthy causes, of course. ðŸ™‚

But I’m not sure if it’s correct.

Consider ZF for a start. Now add new axiom to it – statement about its consistency. You’ll get some new theory ZF + Con(ZF). You can repeat to obtain ZF + Con(ZF) + Con(ZF + Con(ZF)). You can continue (just like with +1) up to some ordinal and get some new very strong theory. This theory, probably, can prove the existance of much larger ordinal. So, this is some kind of function F from ordinals to much larger ordinals. Now we can define ordinal which is the union of ordinals F(w), F(F((w)), … , F^n(w), … . And name a very big number using it.

]]>(Pls don’t ignore… believe me this question is not out of place…) ]]>

I am not sure it has been standard for a few years now, at least within academic or non-Trumpish circles. Having said that, the change to BCE did cause a stir a few years ago in Australia (see e.g. http://www.news.com.au/national/for-christs-sake-ad-and-bc-ruled-out-of-date-for-national-curriculum/news-story/ffb9030f1a53ed9226e7bcac9bed3969 ) and in the US more than a decade ago (see e.g http://articles.latimes.com/2005/apr/24/news/adna-notpc24 ).

]]>Right now, I’m spending my quiet time thinking about what a formal logic would look like where all truth values are contingent ie, where all propositions are dependent. This has some relation to paraconsistent or multi-valued logics, but I’m wondering what a computable calculus would look like with this kind of framework. Cheers!

]]>(is never halting the same as halting at infinity? :P)

A bit like separating infinite sums into the ones that have a finite number of non-zero terms and the ones that have an infinite number of non-zero terms, then splitting the latter category into the ones that converge and the ones that diverge?

]]>