Update (12/5): The Google team, along with Gil Kalai, have raised questions about whether the results of the new BosonSampling experiment might be easier to spoof classically than the USTC team thought they were, because of a crucial difference between BosonSampling and qubit-based random circuit sampling. Namely, with random circuit sampling, the marginal distribution over any k output qubits (for small k) is exponentially close to the uniform distribution. With BosonSampling, by contrast, the marginal distribution over k output modes is distinguishable from uniform, as Arkhipov and I noted in a 2013 followup paper. On the one hand, these easily-detected nonuniformities provide a quick, useful sanity check for whether BosonSampling is being done correctly. On the other hand, they might also give classical spoofing algorithms more of a toehold. The question is whether, by spoofing the k-mode marginals, a classical algorithm could also achieve scores on the relevant “HOG” (Heavy Output Generation) benchmark that are comparable to what the USTC team reported.
One way or the other, this question should be resolvable by looking at the data that’s already been collected, and we’re trying now to get to the bottom of it. And having failed to flag this potential issue when I reviewed the paper, I felt a moral obligation at least to let my readers know about it as soon as I did. If nothing else, this is an answer to those who claim this stuff is all obvious. Please pardon the science underway!
A group led by Jianwei Pan and Chao-Yang Lu, based mainly at USTC in Hefei, China, announced today that it achieved BosonSampling with 40-70 detected photons—up to and beyond the limit where a classical supercomputer could feasibly verify the results. (Technically, they achieved a variant called Gaussian BosonSampling: a generalization of what I called Scattershot BosonSampling in a 2013 post on this blog.)
For more, see also Emily Conover’s piece in Science News, or Daniel Garisto’s in Scientific American, both of which I consulted on. (Full disclosure: I was one of the reviewers for the Pan group’s Science paper, and will be writing the Perspective article to accompany it.)
The new result follows the announcement of 14-photon BosonSampling by the same group a year ago. It represents the second time quantum supremacy has been reported, following Google’s celebrated announcement from last year, and the first time it’s been done using photonics rather than superconducting qubits.
As the co-inventor of BosonSampling (with Alex Arkhipov), obviously I’m gratified about this.
For anyone who regards it as boring or obvious, here and here is Gil Kalai, on this blog, telling me why BosonSampling would never scale beyond 8-10 photons. (He wrote that, if aliens forced us to try, then much like with the Ramsey number R(6,6), our only hope would be to attack the aliens.) Here’s Kalai making a similar prediction, on the impossibility of quantum supremacy by BosonSampling or any other means, in his plenary address to the International Congress of Mathematicians two years ago.
Even if we set aside the quantum computing skeptics, many colleagues told me they thought experimental BosonSampling was a dead end, because of photon losses and the staggering difficulty of synchronizing 50-100 single-photon sources. They said that a convincing demonstration of quantum supremacy would have to await the arrival of quantum fault-tolerance—or at any rate, some hardware platform more robust than photonics. I always agreed that they might be right. Furthermore, even if 50-photon BosonSampling was possible, after Google reached the supremacy milestone first with superconducting qubits, it wasn’t clear if anyone would still bother. Even when I learned a year ago about the USTC group’s intention to go for it, I was skeptical, figuring I’d believe it when I saw it.
Obviously the new result isn’t dispositive. Nevertheless, as someone whose intellectual origins are close to pure math, it’s strange and exciting to find myself in a field where, once in a while, the world itself gets to weigh in on a theoretical disagreement.
Since excitement is best when paired with accurate understanding, please help yourself to the following FAQ, which I might add more to over the next couple days.
What is BosonSampling? You must be new here! Briefly, it’s a proposal for achieving quantum supremacy by simply passing identical, non-interacting photons through an array of beamsplitters, and then measuring where they end up. For more: in increasing order of difficulty, here’s an MIT News article from back in 2011, here’s the Wikipedia page, here are my PowerPoint slides, here are my lecture notes from Rio de Janeiro, and here’s my original paper with Arkhipov.
What is quantum supremacy? Roughly, the use of a programmable or configurable quantum computer to solve some well-defined computational problem much faster than we know how to solve it with any existing classical computer. “Quantum supremacy,” a term coined by John Preskill in 2012, does not mean useful QC, or scalable QC, or fault-tolerant QC, all of which remain outstanding challenges. For more, see my Supreme Quantum Supremacy FAQ, or (e.g.) my recent Lytle Lecture for the University of Washington.
If Google already announced quantum supremacy a year ago, what’s the point of this new experiment? To me, at least, quantum supremacy seems important enough to do at least twice! Also, as I said, this represents the first demonstration that quantum supremacy is possible via photonics. Finally, as the authors point out, the new experiment has one big technical advantage compared to Google’s: namely, many more possible output states (~1030 of them, rather than a mere ~9 quadrillion). This makes it infeasible to calculate the whole probability distribution over outputs and store it on a gigantic hard disk (after which one could easily generate as many samples as one wanted), which is what IBM proposed doing in its response to Google’s announcement.
Is BosonSampling a form of universal quantum computing? No, we don’t even think it can simulate universal classical computing! It’s designed for exactly one task: namely, demonstrating quantum supremacy and refuting Gil Kalai. It might have some other applications besides that, but if so, they’ll be icing on the cake. This is in contrast to Google’s Sycamore processor, which in principle is a universal quantum computer, just with a severe limit on the number of qubits (53) and how many layers of gates one can apply to them (about 20).
Is BosonSampling at least a step toward universal quantum computing? I think so! In 2000, Knill, Laflamme, and Milburn (KLM) famously showed that pure, non-interacting photons, passing through a network of beamsplitters, are capable of universal QC, provided we assume one extra thing: namely, the ability to measure the photons at intermediate times, and change which beamsplitters to apply to the remaining photons depending on the outcome. In other words, “BosonSampling plus adaptive measurements equals universality.” Basically, KLM is the holy grail that experimental optics groups around the world have been working toward for 20 years, with BosonSampling just a more achievable pit stop along the way.
Are there any applications of BosonSampling? We don’t know yet. There are proposals in the literature to apply BosonSampling to vibronic spectra in quantum chemistry, finding dense subgraphs, and other problems, but I’m not yet sure whether these proposals will yield real speedups over the best we can do with classical computers, for a task of practical interest that involves estimating specific numbers (as opposed to sampling tasks, where BosonSampling almost certainly does yield exponential speedups, but which are rarely the thing practitioners directly care about). [See this comment for further discussion of the issues regarding dense subgraphs.] In a completely different direction, one could try to use BosonSampling to generate cryptographically certified random bits, along the lines of my proposal from 2018, much like one could with qubit-based quantum circuits.
How hard is it to simulate BosonSampling on a classical computer? As far as we know today, the difficulty of simulating a “generic” BosonSampling experiment increases roughly like 2n, where n is the number of detected photons. It might be easier than that, particularly when noise and imperfections are taken into account; and at any rate it might be easier to spoof the statistical tests that one applies to verify the outputs. I and others managed to give some theoretical evidence against those possibilities, but just like with Google’s experiment, it’s conceivable that some future breakthrough will change the outlook and remove the case for quantum supremacy.
Do you have any amusing stories? When I refereed the Science paper, I asked why the authors directly verified the results of their experiment only for up to 26-30 photons, relying on plausible extrapolations beyond that. While directly verifying the results of n-photon BosonSampling takes ~2n time for any known classical algorithm, I said, surely it should be possible with existing computers to go up to n=40 or n=50? A couple weeks later, the authors responded, saying that they’d now verified their results up to n=40, but it burned $400,000 worth of supercomputer time so they decided to stop there. This was by far the most expensive referee report I ever wrote!
Also: when Covid first started, and facemasks were plentiful in China but almost impossible to get in the US, Chao-Yang Lu, one of the leaders of the new work and my sometime correspondent on the theory of BosonSampling, decided to mail me a box of 200 masks (I didn’t ask for it). I don’t think that influenced my later review, but it was appreciated nonetheless.
Huge congratulations to the whole team for their accomplishment!