Archive for the ‘Announcements’ Category

Slowly emerging from blog-hibervacation

Wednesday, July 21st, 2021

Alright everyone:

  1. Victor Galitski has an impassioned rant against out-of-control quantum computing hype, which I enjoyed and enthusiastically recommend, although I wished Galitski had engaged a bit more with the strongest arguments for optimism (e.g., the recent sampling-based supremacy experiments, the extrapolations that show gate fidelities crossing the fault-tolerance threshold within the next decade). Even if I’ve been saying similar things on this blog for 15 years, I clearly haven’t been doing so in a style that works for everyone. Quantum information needs as many people as possible who will tell the truth as best they see it, unencumbered by any competing interests, and has nothing legitimate to fear from that. The modern intersection of quantum theory and computer science has raised profound scientific questions that will be with us for decades to come. It’s a lily that need not be gilded with hype.
  2. Last month Limaye, Srinivasan, and Tavenas posted an exciting preprint to ECCC, which apparently proves the first (slightly) superpolynomial lower bound on the size of constant-depth arithmetic circuits, over fields of characteristic 0. Assuming it’s correct, this is another small victory in the generations-long war against the P vs. NP problem.
  3. I’m grateful to the Texas Democratic legislators who fled the state to prevent the legislature, a couple miles from my house, having a quorum to enact new voting restrictions, and who thereby drew national attention to the enormity of what’s at stake. It should go without saying that, if a minority gets to rule indefinitely by forcing through laws to suppress the votes of a majority that would otherwise unseat it, thereby giving itself the power to force through more such laws, etc., then we no longer live in a democracy but in a banana republic. And there’s no symmetry to the situation: no matter how terrified you (or I) might feel about wokeists and their denunciation campaigns, the Democrats have no comparable effort to suppress Republican votes. Alas, I don’t know of any solutions beyond the obvious one, of trying to deal the conspiracy-addled grievance party crushing defeats in 2022 and 2024.
  4. Added: Here’s the video of my recent Astral Codex Ten ask-me-anything session.

Open thread on new quantum supremacy claims

Sunday, July 4th, 2021

Happy 4th to those in the US!

The group of Chaoyang Lu and Jianwei Pan, based at USTC in China, has been on a serious quantum supremacy tear lately. Recall that last December, USTC announced the achievement of quantum supremacy via Gaussian BosonSampling, with 50-70 detected photons—the second claim of sampling-based quantum supremacy, after Google’s in Fall 2019. However, skeptics then poked holes in the USTC claim, showing how they could spoof the results with a classical computer, basically by reproducing the k-photon correlations for relatively small values of k. Debate over the details continues, but the Chinese group seeks to render the debate largely moot with a new and better Gaussian BosonSampling experiment, with 144 modes and up to 113 detected photons. They say they were able to measure k-photon correlations for k up to about 19, which if true would constitute a serious obstacle to the classical simulation strategies that people discussed for the previous experiment.

In the meantime, though, an overlapping group of authors had put out another paper the day before (!) reporting a sampling-based quantum supremacy experiment using superconducting qubits—extremely similar to what Google did (the same circuit depth and everything), except now with 56 qubits rather than 53.

I confess that I haven’t yet studied either paper in detail—among other reasons, because I’m on vacation with my family at the beach, and because I’m trying to spend what work-time I have on my own projects. But anyone who has read them, please use the comments of this post to discuss! Hopefully I’ll learn something.

To confine myself to some general comments: since Google’s announcement in Fall 2019, I’ve consistently said that sampling-based quantum supremacy is not yet a done deal. I’ve said that quantum supremacy seems important enough to want independent replications, and demonstrations in other hardware platforms like ion traps and photonics, and better gate fidelity, and better classical hardness, and better verification protocols. Most of all, I’ve said that we needed a genuine dialogue between the “quantum supremacists” and the classical skeptics: the former doing experiments and releasing all their data, the latter trying to design efficient classical simulations for those experiments, and so on in an iterative process. Just like in applied cryptography, we’d only have real confidence in a quantum supremacy claim once it had survived at least a few years of attacks by skeptics. So I’m delighted that this is precisely what’s now happening. USTC’s papers are two new volleys in this back-and-forth; we all eagerly await the next volley, whichever side it comes from.

While I’ve been trying for years to move away from the expectation that I blog about each and every QC announcement that someone messages me about, maybe I’ll also say a word about the recent announcement by IBM of a quantum advantage in space complexity (see here for popular article and here for arXiv preprint). There appears to be a nice theoretical result here, about the ability to evaluate any symmetric Boolean function with a single qubit in a branching-program-like model. I’d love to understand that result better. But to answer the question I received, this is another case where, once you know the protocol, you know both that the experiment can be done and exactly what its result will be (namely, the thing predicted by QM). So I think the interest is almost entirely in the protocol itself.

STOC’2021 and BosonSampling

Wednesday, June 23rd, 2021

Happy birthday to Alan Turing!

This week I’m participating virtually in STOC’2021, which today had a celebration of the 50th anniversary of NP-completeness (featuring Steve Cook, Richard Karp, Leonid Levin, Christos Papadimitriou, and Avi Wigderson), and which tomorrow will have a day’s worth of quantum computing content, including a tutorial on MIP*=RE, two quantum sessions, and an invited talk on quantum supremacy by John Martinis. I confess that I’m not a fan of GatherTown, the platform being used for STOC. Basically, you get a little avatar who wanders around a virtual hotel lobby and enters sessions—but it seems to reproduce all of the frustrating and annoying parts of experience without any of the good parts.

Ah! But I got the surprising news that Alex Arkhipov and I are among the winners of STOC’s first-ever “Test of Time Award,” for our paper on BosonSampling. It feels strange to win a “Test of Time” award for work that we did in 2011, which still seems like yesterday to me. All the more since the experimental status and prospects of quantum supremacy via BosonSampling are still very much live, unresolved questions.

Speaking of which: on Monday, Alexey Rubtsov, of the Skolkovo Institute in Moscow, gave a talk for our quantum information group meeting at UT, about his recent work with Popova on classically simulating Gaussian BosonSampling. From the talk, I learned something extremely important. I had imagined that their simulation must take advantage of the high rate of photon loss in actual experiments (like the USTC experiment from late 2020), because how else are you going to simulate BosonSampling efficiently? But Rubtsov explained that that’s not how it works at all. While their algorithm is heuristic and remains to be rigorously analyzed, numerical studies suggest that it works even with no photon losses or other errors. Having said that, their algorithm works:

  • only for Gaussian BosonSampling, not Fock-state BosonSampling (as Arkhipov and I had originally proposed),
  • only for threshold detectors, not photon-counting detectors, and
  • only for a small number of modes (say, linear in the number of photons), not for a large number of modes (say, quadratic in the number of photons) as in the original proposal.

So, bottom line, it now looks like the USTC experiment, amazing engineering achievement though it was, is not hard to spoof with a classical computer. If so, this is because of multiple ways in which the experiment differed from my and Arkhipov’s original theoretical proposal. We know exactly what those ways are—indeed, you can find them in my earlier blog posts on the subject—and hopefully they can be addressed in future experiments. All in all, then, we’re left with a powerful demonstration of the continuing relevance of formal hardness reductions, and the danger of replacing them with intuitions and “well, it still seems hard to me.” So I hope the committee won’t rescind my and Arkhipov’s Test of Time Award based on these developments in the past couple weeks!

More quantum computing popularization!

Tuesday, June 8th, 2021

I now have a feature article up at Quanta magazine, entitled “What Makes Quantum Computing So Hard To Explain?” I.e., why do journalists, investors, etc. so consistently get central points wrong, even after the subject has been in public consciousness for more than 25 years? Perhaps unsurprisingly, I found it hard to discuss that meta-level question, as Quanta‘s editors asked me to do, without also engaging in the object-level task of actually explaining QC. For regular Shtetl-Optimized readers, there will be nothing new here, but I’m happy with how the piece turned out.

Accompanying the Quanta piece is a 10-minute YouTube explainer on quantum computing, which (besides snazzy graphics) features interviews with me, John Preskill, and Dorit Aharonov.

On a different note, my colleague Mark Wilde has recorded a punk-rock song about BosonSampling. I can honestly report that it’s some of the finest boson-themed music I’ve heard in years. It includes the following lyrics:

Quantum computer, Ain’t no loser
Quantum computer, Quantum computer

People out on the streets
They don’t know what it is
They think it finds the cliques
Or finds graph colorings
But it don’t solve anything
Said it don’t solve anything
Bosonic slot machine
My lil’ photonic dream

Speaking of BosonSampling, A. S. Popova and A. N. Rubtsov, of the Skolkovo Institute in Moscow, have a new preprint entitled Cracking the Quantum Advantage threshold for Gaussian Boson Sampling. In it, they claim to give an efficient classical algorithm to simulate noisy GBS experiments, like the one six months ago from USTC in China. I’m still unsure how well this scales from 30-40 photons up to 50-70 photons; which imperfections of the USTC experiment are primarily being taken advantage of (photon losses?); and how this relates to the earlier proposed classical algorithms for simulating noisy BosonSampling, like the one by Kalai and Kindler. Anyone with any insight is welcome to share!

OK, one last announcement: the Simons Institute for the Theory of Computing, in Berkeley, has a new online lecture series called “Breakthroughs,” which many readers of this blog might want to check out.

Three updates

Tuesday, June 1st, 2021
  1. Hooray, I’m today’s “Featured ACM Member”! Which basically means, yet another interview with me about quantum computing, with questions including what’s most surprised me about the development of QC, and what students should do to get into the field.
  2. I’m proud to announce that An Automated Approach to the Collatz Conjecture, a paper by Emre Yolcu, myself, and Marijn Heule that we started working on over four years ago, is finally available on the arXiv, and will be presented at the 2021 Conference on Automated Deduction. Long story short: no, we didn’t prove Collatz, but we have an approach that can for the first time prove certain Collatz-like statements in a fully automated way, so hopefully that’s interesting! There was also a Quanta article even before our paper had come out (I wasn’t thrilled about the timing).
  3. The legendary Baba Brinkman has a new rap about quantum computing (hat tip to blog commenter YD). Having just watched the music video, I see it as one of the better popularization efforts our field has seen in the past 25 years—more coherent than the average journalistic account and with a much better backbeat. (I do, however, take a more guarded view than Brinkman of the potential applications, especially to e.g. autonomous driving and supply-chain optimization.)

Three updates

Monday, May 10th, 2021
  1. For those who read my reply to Richard Borcherds on “teapot supremacy”: seeking better data, I ordered a dozen terra cotta flowerpots, and smashed eight of them on my driveway with my 4-year-old son, dropping each one from approximately 2 meters. For each flowerpot, we counted how many pieces it broke into, seeking insight about the distribution over that number. Unfortunately, it still proved nearly impossible to get good data, for a reason commenters had already warned me about: namely, there were typically 5-10 largeish shards, followed by “long tail” of smaller and smaller shards (eventually, just terra cotta specks), with no obvious place to draw the line and stop counting. Nevertheless, when I attempted to count only the shards that were “fingernail-length or larger,” here’s what I got: 1 pot with 9 shards, 1 with 11 shards, 2 with 13 shards, 2 with 15 shards, 1 with 17 shards, 1 with 19 shards. This is a beautiful (too beautiful?) symmetric distribution centered around a mean of 14 shards, although it’s anyone’s guess whether it approximates a Gaussian or something else. I have no idea why every pot broke into an odd number of shards, unless of course it was a 1-in-256-level fluke, or some cognitive bias that made me preferentially stop counting the shards at odd numbers.
  2. Thanks so much to everyone who congratulated me for the ACM Prize, and especially those who (per my request) suggested charities to which to give bits of the proceeds! Tonight, after going through the complete list of suggestions, I made my first, but far from last, round of donations: $1000 each to the Deworm the World Initiative, GiveDirectly, the World Wildlife Fund, the Nature Conservancy, and Canada/USA Mathcamp (which had a huge impact on me when I attended it as a 15-year-old). One constraint, which might never arise in a decade of moral philosophy seminars, ended up being especially important in practice: if the donation form was confusing or buggy, or if it wouldn’t accept my donation without some onerous confirmation step involving a no-longer-in-use cellphone, then I simply moved on to the next charity.
  3. Bobby Kleinberg asked me to advertise the call for nominations for the brand-new STOC Test of Time Award. The nomination deadline is coming up soon: May 24.

The ACM Prize thing

Wednesday, April 14th, 2021

Last week I got an email from Dina Katabi, my former MIT colleague, asking me to call her urgently. Am I in trouble? For what, though?? I haven’t even worked at MIT for five years!

Luckily, Dina only wanted to tell me that I’d been selected to receive the 2020 ACM Prize in Computing, a mid-career award founded in 2007 that comes with $250,000 from Infosys. Not the Turing Award but I’d happily take it! And I could even look back on 2020 fondly for something.

I was utterly humbled to see the list of past ACM Prize recipients, which includes amazing computer scientists I’ve been privileged to know and learn from (like Jon Kleinberg, Sanjeev Arora, and Dan Boneh) and others who I’ve admired from afar (like Daphne Koller, Jeff Dean and Sanjay Ghemawat of Google MapReduce, and David Silver of AlphaGo and AlphaZero).

I was even more humbled, later, to read my prize citation, which focuses on four things:

  1. The theoretical foundations of the sampling-based quantum supremacy experiments now being carried out (and in particular, my and Alex Arkhipov’s 2011 paper on BosonSampling);
  2. My and Avi Wigderson’s 2008 paper on the algebrization barrier in complexity theory;
  3. Work on the limitations of quantum computers (in particular, the 2002 quantum lower bound for the collision problem); and
  4. Public outreach about quantum computing, including through QCSD, popular talks and articles, and this blog.

I don’t know if I’m worthy of such a prize—but I know that if I am, then it’s mainly for work I did between roughly 2001 and 2012. This honor inspires me to want to be more like I was back then, when I was driven, non-jaded, and obsessed with figuring out the contours of BQP and efficient computation in the physical universe. It makes me want to justify the ACM’s faith in me.

I’m grateful to the committee and nominators, and more broadly, to the whole quantum computing and theoretical computer science communities—which I “joined” in some sense around age 16, and which were the first communities where I ever felt like I belonged. I’m grateful to the mentors who made me what I am, especially Chris Lynch, Bart Selman, Lov Grover, Umesh Vazirani, Avi Wigderson, and (if he’ll allow me to include him) John Preskill. I’m grateful to the slightly older quantum computer scientists who I looked up to and tried to emulate, like Dorit Aharonov, Andris Ambainis, Ronald de Wolf, and John Watrous. I’m grateful to my wonderful colleagues at UT Austin, in the CS department and beyond. I’m grateful to my students and postdocs, the pride of my professional life. I’m grateful, of course, to my wife, parents, and kids.

By coincidence, my last post was also about prizes to theoretical computer scientists—in that case, two prizes that attracted controversy because of the recipient’s (or would-be recipient’s) political actions or views. It would understate matters to point out that not everyone has always agreed with everything I’ve said on this blog. I’m ridiculously lucky, and I know it, that even living through this polarized and tumultuous era, I never felt forced to choose between academic success and the freedom to speak my conscience in public under my real name. If there’s been one constant in my public stands, I’d like to think that—inspired by memories of my own years as an unknown, awkward, self-conscious teenager—it’s been my determination to nurture and protect talented young scientists, whatever they look like and wherever they come from. And I’ve tried to live up to that ideal in real life, and I welcome anyone’s scrutiny as to how well I’ve done.

What should I do with the prize money? I confess that my first instinct was to donate it, in its entirety, to some suitable charity—specifically, something that would make all the strangers who’ve attacked me on Twitter, Reddit, and so forth over the years realize that I’m fundamentally a good person. But I was talked out of this plan by my family, who pointed out that
(1) in all likelihood, nothing will make online strangers stop hating me,
(2) in any case this seems like a poor basis for making decisions, and
(3) if I really want to give others a say in what to do with the winnings, then why not everyone who’s stood by me and supported me?

So, beloved commenters! Please mention your favorite charitable causes below, especially weird ones that I wouldn’t have heard of otherwise. If I support their values, I’ll make a small donation from my prize winnings. Or a larger donation, especially if you donate yourself and challenge me to match. Whatever’s left after I get tired of donating will probably go to my kids’ college fund.

Update: And by an amusing coincidence, today is apparently “World Quantum Day”! I hope your Quantum Day is as pleasant as mine (and stable and coherent).

Just some prizes

Friday, April 9th, 2021

Oded Goldreich is a theoretical computer scientist at the Weizmann Institute in Rehovot, Israel. He’s best known for helping to lay the rigorous foundations of cryptography in the 1980s, through seminal results like the Goldreich-Levin Theorem (every one-way function can be modified to have a hard-core predicate), the Goldreich-Goldwasser-Micali Theorem (every pseudorandom generator can be made into a pseudorandom function), and the Goldreich-Micali-Wigderson protocol for secure multi-party computation. I first met Oded more than 20 years ago, when he lectured at a summer school at the Institute for Advanced Study in Princeton, barefoot and wearing a tank top and what looked like pajama pants. It was a bracing introduction to complexity-theoretic cryptography. Since then, I’ve interacted with Oded from time to time, partly around his firm belief that quantum computing is impossible.

Last month a committee in Israel voted to award Goldreich the Israel Prize (roughly analogous to the US National Medal of Science), for which I’d say Goldreich had been a plausible candidate for decades. But alas, Yoav Gallant, Netanyahu’s Education Minister, then rather non-gallantly blocked the award, solely because he objected to Goldreich’s far-left political views (and apparently because of various statements Goldreich signed, including in support of a boycott of Ariel University, which is in the West Bank). The case went all the way to the Israeli Supreme Court (!), which ruled two days ago in Gallant’s favor: he gets to “delay” the award to investigate the matter further, and in the meantime has apparently sent out invitations for an award ceremony next week that doesn’t include Goldreich. Some are now calling for the other winners to boycott the prize in solidarity until this is righted.

I doubt readers of this blog need convincing that this is a travesty and an embarrassment, a shanda, for the Netanyahu government itself. That I disagree with Goldreich’s far-left views (or might disagree, if I knew in any detail what they were) is totally immaterial to that judgment. In my opinion, not even Goldreich’s belief in the impossibility of quantum computers should affect his eligibility for the prize. 🙂

Maybe it would be better to say that, as far as his academic colleagues in Israel and beyond are concerned, Goldreich has won the Israel Prize; it’s only some irrelevant external agent who’s blocking his receipt of it. Ironically, though, among Goldreich’s many heterodox beliefs is a total rejection of the value of scientific prizes (although Goldreich has also said he wouldn’t refuse the Israel Prize if offered it!).


In unrelated news, the 2020 Turing Award has been given to Al Aho and Jeff Ullman. Aho and Ullman have both been celebrated leaders in CS for half a century, having laid many of the foundations of formal languages and compilers, and having coauthored one of CS’s defining textbooks with John Hopcroft (who already received a different Turing Award).

But again there’s a controversy. Apparently, in 2011, Ullman wrote to an Iranian student who wanted to work with him, saying that as “a matter of principle,” he would not accept Iranian students until the Iranian government recognized Israel. Maybe I should say that I, like Ullman, am both a Jew and a Zionist, but I find it hard to imagine the state of mind that would cause me to hold some hapless student responsible for the misdeeds of their birth-country’s government. Ironically, this is a mirror-image of the tactics that the BDS movement has wielded against Israeli academics. Unlike Goldreich, though, Ullman seems to have gone beyond merely expressing his beliefs, actually turning them into a one-man foreign policy.

I’m proud of the Iranian students I’ve mentored and hope to mentor more. While I don’t think this issue should affect Ullman’s Turing Award (and I haven’t seen anyone claim that it should), I do think it’s appropriate to use the occasion to express our opposition to all forms of discrimination. I fully endorse Shafi Goldwasser’s response in her capacity as Director of the Simons Institute for Theory of Computing in Berkeley:

As a senior member of the computer science community and an American-Israeli, I stand with our Iranian students and scholars and outright reject any notion by which admission, support, or promotion of individuals in academic settings should be impeded by national origin or politics. Individuals should not be conflated with the countries or institutions they come from. Statements and actions to the contrary have no place in our computer science community. Anyone experiencing such behavior will find a committed ally in me.

As for Al Aho? I knew him fifteen years ago, when he became interested in quantum computing, in part due to his then-student Krysta Svore (who’s now the head of Microsoft’s quantum computing efforts). Al struck me as not only a famous scientist but a gentleman who radiated kindness everywhere. I’m not aware of any controversies he’s been involved in and never heard anyone say a bad word about him.

Anyway, this seems like a good occasion to recognize some foundational achievements in computer science, as well as the complex human beings who produce them!

Abel to win

Wednesday, March 17th, 2021

Many of you will have seen the happy news today that Avi Wigderson and László Lovász share this year’s Abel Prize (which now contends with the Fields Medal for the highest award in pure math). This is only the second time that the Abel Prize has been given wholly or partly for work in theoretical computer science, after Szemerédi in 2012. See also the articles in Quanta or the NYT, which actually say most of what I would’ve said for a lay audience about Wigderson’s and Lovász’s most famous research results and their importance (except, no, Avi hasn’t yet proved P=BPP, just taken some major steps toward it…).

On a personal note, Avi was both my and my wife Dana’s postdoctoral advisor at the Institute for Advanced Study in Princeton. He’s been an unbelievably important mentor to both of us, as he’s been for dozens of others in the CS theory community. Back in 2007, I also had the privilege of working closely with Avi for months on our Algebrization paper. Now would be a fine time to revisit Avi’s Permanent Impact on Me (or watch the YouTube video), which is the talk I gave at IAS in 2016 on the occasion of Avi’s 60th birthday.

Huge congratulations to both Avi and László!

Stop emailing my utexas address

Tuesday, February 23rd, 2021

A month ago, UT Austin changed its email policies—banning auto-forwarding from university accounts to Gmail accounts, apparently as a way to force the faculty and other employees to separate their work email from their personal email, and thereby comply with various government regulations. Ever since that change, the email part of my life has been a total, unmitigated disaster. I’ve missed (or been late to see) dozens of important work emails, with the only silver lining being that that’s arguably UT’s problem more than it is mine!

And yes, I’ve already gone to technical support; the only answer I’ve gotten is that (in so many words) there is no answer. Other UT faculty are somehow able to deal with this because they are them; I am unable to deal with it because I am me. As a mere PhD in computer science, I’m utterly unqualified to set up a technical fix for this sort of problem.

So the bottom line is: from now on, if you want me to see an email, send it to scott@scottaaronson.com. Really. If you try sending it to aaronson@cs.utexas.edu, it will land in a separate inbox that I can access only with great inconvenience. And if, God forbid, you try sending it to aaronson@utexas.edu, the email will bounce and I’ll never see it at all. Indeed, a central purpose of this post is just to have a place to point the people who contact me every day, shocked that their emails to me bounced.

This whole episode has given me immense sympathy for Hillary Clinton, and for the factors that led her to set up clintonemail.com from her house. It’s not merely that her private email server was a laughably trivial reason to end the United States’ 240-year run of democratic government. Rather it’s that, even on the narrow question of emails, I now feel certain that Hillary was 100% right. Bureaucracy that impedes communication is a cancer on human civilization.

Update: Thanks so much to commenter Avraham and to my colleague Etienne Vouga, who quickly gave me the crucial information that tech support would not, and thereby let me solve this problem. I can once again easily read emails sent to aaronson@cs.utexas.edu … well, at least for now! I’m now checking about aaronson@utexas.edu. Again, though, scott@scottaaronson.com to be safe.