Archive for the ‘Nerd Interest’ Category

My Utility+ podcast with Matthew Putman

Thursday, September 3rd, 2020

Another Update (Sep. 15): Sorry for the long delay; new post coming soon! To tide you over—or just to distract you from the darkness figuratively and literally engulfing our civilization—here’s a Fortune article about today’s announcement by IBM of its plans for the next few years in superconducting quantum computing, with some remarks from yours truly.

Another Update (Sep. 8): A reader wrote to let me know about a fundraiser for Denys Smirnov, a 2015 IMO gold medalist from Ukraine who needs an expensive bone marrow transplant to survive Hodgkin’s lymphoma. I just donated and I hope you’ll consider it too!

Update (Sep. 5): Here’s another quantum computing podcast I did, “Dunc Tank” with Duncan Gammie. Enjoy!

Thanks so much to Shtetl-Optimized readers, so far we’ve raised $1,371 for the Biden-Harris campaign and $225 for the Lincoln Project, which I intend to match for $3,192 total. If you’d like to donate by tonight (Thursday night), there’s still $404 to go!

Meanwhile, a mere three days after declaring my “new motto,” I’ve come up with a new new motto for this blog, hopefully a more cheerful one:

When civilization seems on the brink of collapse, sometimes there’s nothing left to talk about but maximal separations between randomized and quantum query complexity.

On that note, please enjoy my new one-hour podcast on Spotify (if that link doesn’t work, try this one) with Matthew Putman of Utility+. Alas, my umming and ahhing were more frequent than I now aim for, but that’s partly compensated for by Matthew’s excellent decision to speed up the audio. This was an unusually wide-ranging interview, covering everything from SlateStarCodex to quantum gravity to interdisciplinary conferences to the challenges of teaching quantum computing to 7-year-olds. I hope you like it!

The Busy Beaver Frontier

Thursday, July 23rd, 2020

Update (July 27): I now have a substantially revised and expanded version (now revised and expanded even a second time), which incorporates (among other things) the extensive feedback that I got from this blog post. There are new philosophical remarks, some lovely new open problems, and an even-faster-growing (!) integer sequence. Check it out!

Another Update (August 13): Nick Drozd now has a really nice blog post about his investigations of my Beeping Busy Beaver (BBB) function.

A life that was all covid, cancellations, and Trump, all desperate rearguard defense of the beleaguered ideals of the Enlightenment, would hardly be worth living. So it was an exquisite delight, these past two weeks, to forget current events and write an 18-page survey article about the Busy Beaver function: the staggeringly quickly-growing function that probably encodes a huge portion of all interesting mathematical truth in its first hundred values, if only we could know those values or exploit them if we did.

Without further ado, here’s the title, abstract, and link:

The Busy Beaver Frontier
by Scott Aaronson

The Busy Beaver function, with its incomprehensibly rapid growth, has captivated generations of computer scientists, mathematicians, and hobbyists. In this survey, I offer a personal view of the BB function 58 years after its introduction, emphasizing lesser-known insights, recent progress, and especially favorite open problems. Examples of such problems include: when does the BB function first exceed the Ackermann function? Is the value of BB(20) independent of set theory? Can we prove that BB(n+1)>2BB(n) for large enough n? Given BB(n), how many advice bits are needed to compute BB(n+1)? Do all Busy Beavers halt on all inputs, not just the 0 input? Is it decidable whether BB(n) is even or odd?

The article is slated to appear soon in SIGACT News. I’m grateful to Bill Gasarch for suggesting it—even with everything else going on, this was a commission I felt I couldn’t turn down!

Besides Bill, I’m grateful to the various Busy Beaver experts who answered my inquiries, to Marijn Heule and Andy Drucker for suggesting some of the open problems, to Marijn for creating a figure, and to Lily, my 7-year-old daughter, for raising the question about the first value of n at which the Busy Beaver function exceeds the Ackermann function. (Yes, Lily’s covid homeschooling has included multiple lessons on very large positive integers.)

There are still a few days until I have to deliver the final version. So if you spot anything wrong or in need of improvement, don’t hesitate to leave a comment or send an email. Thanks in advance!

Of course Busy Beaver has been an obsession that I’ve returned to many times in my life: for example, in that Who Can Name the Bigger Number? essay that I wrote way back when I was 18, in Quantum Computing Since Democritus, in my public lecture at Festivaletteratura, and in my 2016 paper with Adam Yedidia that showed that the values of all Busy Beaver numbers beyond the 7910th are independent of the axioms of set theory (Stefan O’Rear has since shown that independence starts at the 748th value or sooner). This survey, however, represents the first time I’ve tried to take stock of BusyBeaverology as a research topic—collecting in one place all the lesser-known theorems and empirical observations and open problems that I found the most striking, in the hope of inspiring not just contemplation or wonderment but actual progress.

Within the last few months, the world of deep mathematics that you can actually explain to a child lost two of its greatest giants: John Conway (who died of covid, and who I eulogized here) and Ron Graham. One thing I found poignant, and that I didn’t know before I started writing, is that Conway and Graham both play significant roles in the story of the Busy Beaver function. Conway, because most of the best known candidates for Busy Beaver Turing machines turn out, when you analyze them, to be testing variants of the notorious Collatz Conjecture—and Conway is the one who proved, in 1972, that the set of “Collatz-like questions” is Turing-undecidable. And Graham because of Graham’s number from Ramsey theory—a candidate for the biggest number that’s ever played a role in mathematical research—and because of the discovery, four years ago, that the 18th Busy Beaver number exceeds Graham’s number.

(“Just how big is Graham’s number? So big that the 17th Busy Beaver number is not yet known to exceed it!”)

Anyway, I tried to make the survey pretty accessible, while still providing enough technical content to sink one’s two overgrown front teeth into (don’t worry, there are no such puns in the piece itself). I hope you like reading it at least 1/BB(10) as much as I liked writing it.

Update (July 24): Longtime commenter Joshua Zelinsky gently reminded me that one of the main questions discussed in the survey—namely, whether we can prove BB(n+1)>2BB(n) for all large enough n—was first brought to my attention by him, Joshua, in a 2013 Ask-Me-Anything session on this blog! I apologize to Joshua for the major oversight, which has now been corrected. On the positive side, we just got a powerful demonstration both of the intellectual benefits of blogging, and of the benefits of sharing paper drafts on one’s blog before sending them to the editor!

Pseudonymity as a trivial concession to genius

Tuesday, June 23rd, 2020

Update (6/24): For further thoughts and context about this unfolding saga, see this excellent piece by Tom Chivers (author of The AI Does Not Hate You, so far the only book about the rationalist community, one that I reviewed here).

This morning, like many others, I woke up to the terrible news that Scott Alexander—the man I call “the greatest Scott A. of the Internet”—has deleted SlateStarCodex in its entirety. The reason, Scott explains, is that the New York Times was planning to run an article about SSC. Even though the article was going to be positive, NYT decided that by policy, it would need to include Scott’s real surname (Alexander is his middle name). Scott felt that revealing his name to the world would endanger himself and his psychiatry patients. Taking down his entire blog was the only recourse that he saw.

The NYT writer, Cade Metz, was someone who I’d previously known and trusted from his reporting on Google’s quantum supremacy experiment. So in recent weeks, I’d spent a couple hours on the phone with Cade, answering his questions about the rationality community, the history of my interactions with it, and why I thought SlateStarCodex spoke to so many readers. Alas, when word got around the rationality community that Cade was writing a story, a huge panic arose that he was planning on some sort of Gawker-style hit piece or takedown. Trying to tamp down the fire, I told Scott Alexander and others that I knew Cade, his intentions were good, he was only trying to understand the community, and everyone should help him by talking to him openly.

In a year of historic ironies, here’s another one: that it was the decent, reasonable, and well-meaning Cade Metz, rather than any of the SneerClubbers or Twitter-gangsters who despised Scott Alexander for sharing his honest thoughts on hot-button issues, who finally achieved the latter’s dark dream of exiling Scott from the public sphere.

The recent news had already been bad enough: Trump’s “temporary suspension” of J1 and H1B visas (which will deal a body blow to American universities this year, and to all the foreign scientists who planned to work at them), on top of the civil unrest, on top of the economic collapse, on top of the now-resurgent coronavirus. But with no more SlateStarCodex, now I really feel like my world is coming to an end.

I’ve considered SSC to be the best blog on the Internet since not long after discovering it five years ago.  Of course my judgment is colored by one of the most notorious posts in SSC’s history (“Untitled”) being a ferocious defense of me, when thousands were attacking me and it felt like my life was finished.  But that’s merely what brought me there in the first place. I stayed because of Scott’s insights about everything else, and because of the humor and humanity and craftsmanship of his prose.  Since then I had the privilege to become friends with Scott, not only virtually but in real life, and to meet dozens of others in the SSC community, in its Bay Area epicenter and elsewhere.

In my view, for SSC to be permanently deleted would be an intellectual loss on the scale of, let’s say, John Stuart Mill or Mark Twain burning their collected works.  That might sound like hyperbole, but not (I don’t think) to the tens of thousands who read Scott’s essays and fiction, particularly during their 2013-2016 heyday, and who went from casual enjoyment to growing admiration to the gradual recognition that they were experiencing, “live,” the works that future generations of teachers will assign their students when they cover the early twenty-first century.  The one thing that mitigates this tragedy is the hope that it will yet be reversed (and, of course, the fact that backups still exist in the bowels of the Internet).

When I discovered Scott Alexander in early 2015, the one issue that gave me pause was his strange insistence on maintaining pseudonymity, even as he was already then becoming more and more of a public figure. In effect, Scott was trying to erect a firewall between his Internet persona and his personal and professional identities, and was relying on the entire world’s goodwill not to breach that firewall.  I thought to myself, “this can’t possibly last!  Scott simply writes too well to evade mainstream notice forever—and once he’s on the world’s radar, he’ll need to make a choice, about who he is and whether he’s ready to own his gifts to posterity under his real name.”  In retrospect, what astonishes me is that Scott has been able to maintain the “double life” for as long as he has!

In his takedown notice, Scott writes that it’s considered vitally important in psychiatry for patients to know almost nothing about their doctors, beyond their names and their areas of expertise. That caused me to wonder: OK, but doesn’t the world already have enough psychiatrists who are ciphers to their patients?  Would it be so terrible to have one psychiatrist with a clear public persona—possibly even one who patients sought out because of his public persona, because his writings gave evidence that he’d have sympathy or insight about their conditions?  To become a psychiatrist, does one really need to take a lifelong vow of boringness—a vow never to do or say anything notable enough that one would be “outed” to one’s patients?  What would Freud, or Jung, or any of the other famous therapist-intellectuals of times past have thought about such a vow?

Scott also mentions that he’s gotten death threats, and harassing calls to his workplace, from people who hate him because of his blog (and who found his real name by sleuthing). I wish I knew a solution to that. For what it’s worth, my blogging has also earned me a death threat, and threats to sue me, and accusatory letters to the president of my university—although in my case, the worst threats came neither from Jew-hating neo-Nazis nor from nerd-bashing SJWs, but from crackpots enraged that I wouldn’t use my blog to credit their proof of P≠NP or their refutation of quantum mechanics.

When I started Shtetl-Optimized back in 2005, I remember thinking: this is it.  From now on, the only secrets I’ll have in life will be ephemeral and inconsequential ones.  From this day on, every student in my class, every prospective employer, every woman who I ask on a date (I wasn’t married yet), can know whatever they want to know about my political sympathies, my deepest fears and insecurities, any of it, with a five-second Google search.  Am I ready for that?  I decided that I was—partly just because I‘ve never had the mental space to maintain multiple partitioned identities anyway, to remember what each one is or isn’t allowed to know and say!  I won’t pretend that this is the right decision for everyone, but it was my decision, and I stuck with it, and it wasn’t always easy but I’m still here and so evidently are you.

I’d be overjoyed if Scott Alexander were someday to reach a place in his life where he felt comfortable deciding similarly.  That way, not only could he enjoy the full acclaim that he’s earned for what he’s given to the world, but (much more importantly) his tens of thousands of fans would be able to continue benefitting from his insights.

For now, though, the brute fact is that Scott is obviously not comfortable making that choice.  That being so, it seems to me that, if the NYT was able to respect the pseudonymity of Banksy and many others who it’s reported on in the past, when revealing their real names would serve no public interest, then it should also be able to respect Scott Alexander’s pseudonymity.  Especially now that Scott has sent the most credible signal imaginable of how much he values that pseudonymity, a signal that astonished even me.  The world does not exist only to serve its rare geniuses, but surely it can make such trivial concessions to them.

AirToAll: Another guest post by Steve Ebin

Monday, April 20th, 2020

Scott’s foreword: Today I’m honored to host another guest post by friend-of-the-blog Steve Ebin, who not only published a beautiful essay here a month ago (the one that I titled “First it came from Wuhan”), but also posted an extremely informative timeline of what he understood when about the severity of the covid crisis, from early January until March 31st. By the latter date, Steve had quit his job, having made a hefty sum shorting airline stocks, and was devoting his full time to a new nonprofit to manufacture low-cost ventilators, called AirToAll. A couple weeks ago, Steve was kind enough to include me in one of AirToAll’s regular Zoom meetings; I learned more about pistons than I had in my entire previous life (admittedly, still not much). Which brings me to what Steve wants to talk about today: what he and others are doing and how you can help.

Without further ado, Steve’s guest post:

In my last essay on Coronavirus, I argued that Coronavirus will radically change society. In this blog post, I’d like to propose a structure for how we can organize to fight the virus. I will also make a call to action for readers of this blog to help a non-profit I co-founded, AirToAll, build safe, low-cost ventilators and other medical devices and distribute them across the world at scale.

There are four ways we can help fight coronavirus:

  1. Reduce exposure to the virus. Examples: learn where the virus is through better testing; attempt to be where the virus isn’t through social distancing, quarantining, and other means.
  2. Reduce the chance of exposure leading to infection. Examples: Wash your hands; avoid touching your face; wear personal protective equipment.
  3. Reduce the chance of infection leading to serious illness. Examples: improve your aerobic and pulmonary health; make it more difficult for coronavirus’s spike protein to bind to ACE-2 receptors; scale antibody therapies; consume adequate vitamin D; get more sleep; develop a vaccine.
  4. Reduce the chance of serious illness leading to death. Examples: ramp up the production and distribution of certain drugs; develop better drugs; build more ventilators; help healthcare workers.

Obviously, not every example I listed is practical, advisable, or will work, and some options, like producing a vaccine, may be better solutions than others. But we must pursue all approaches.

I’ve been devoting my own time to pursuing the fourth approach, reducing the chance that the illness will lead to death. Specifically, along with Neil Thanedar, I co-founded AirToAll, a nonprofit that helps bring low-cost, reliable, and clinically tested ventilators to market. I know lots of groups are working on this problem, so I thought I’d talk about it briefly.

First, like many groups, we’re designing our own ventilators. Although designing ventilators and bringing them to market at scale poses unique challenges, particularly in an environment where supply chains are strained, this is much easier than it must have been to build iron lungs in the early part of the 20th century, when Zoom conferencing wasn’t yet invented. When it comes to the ventilators we’re producing, we’re focused on safety and clinical validation rather than speed to market. We are not the farthest along here, but we’ve made good progress.

Second, our nonprofit is helping other groups produce safe and reliable ventilators by doing direct consultations with them and also by producing whitepapers to help them think through the issues at hand (h/t to Harvey Hawes, Abdullah Saleh, and our friends at ICChange).

Third, we’re working to increase the manufacturing capacity for currently approved ventilators.

The current shortage of ventilators is a symptom of a greater underlying problem: namely, the world is not good at recognizing healthcare crises early and responding to them quickly. While our nonprofit helps bring more ventilators to market, we are also trying to solve this greater underlying problem. I look at our work in ventilator-land as a first step towards our ultimate goal of making medical devices cheaper and more available through an open-source nonprofit model.

I am writing this post as a call to action to you, dear Shtetl-Optimized reader, to get involved.

You don’t have to be an engineer, pulmonologist, virologist, or epidemiologist to help us, although those skillsets are of course helpful and if you are we’d love to have you. If you have experience in data science and modeling, supply chain and manufacturing, public health, finance, operations, community management, or anything else a rapidly scaling organization needs, you can help us too. 

We are a group of 700+ volunteers and growing rapidly. If you’d like to help, we’d love to have you. If you might be interested in volunteering, click here. Donors click here. Everyone else, please email me at and include a clear subject line so I can direct you to the right person.

The quantum computer that knows all

Tuesday, April 14th, 2020

This is my first post in more than a month that’s totally unrelated to the covid crisis. Or rather, it’s related only insofar as it’s about a Hulu miniseries, the sort of thing that many of us have more occasion to watch while holed up at home.

Three weeks ago, a journalist named Ben Lindbergh—who’d previously asked me to comment on the scientific accuracy of Avengers: Endgame—asked me the same question about the miniseries Devs, which I hadn’t previously heard of.

[Warning: Spoilers follow]

‘Devs,’ I learned, is a spooky sci-fi action thriller about a secretive Silicon Valley company that builds a quantum computer that can perfectly reconstruct the past, down to what Jesus looked like on the cross, and can also (at least up to a point) predict the future.

And I was supposed, not only to endure such a show, but to comment on the accuracy of its invocations of quantum computing? This didn’t sound promising.

But, y’know, I was at home quarantined. So I agreed to watch the first episode. Which quickly turned into the second, third, fourth, fifth, sixth, and seventh episodes (the eighth and final one isn’t out yet).

It turns out that ‘Devs’ isn’t too bad, except that it’s not particularly about quantum computers. The latter is simply a buzzword chosen by the writers for a plot concept that would’ve been entirely familiar to the ancient Greeks, who called it the Delphic Oracle. You know, the mysterious entity that prophesies your fate, so then you try to escape the prophecy, but your very evasive maneuvers make the prophecy come true? Picture that, except with qubits—and for some reason, in a gleaming golden laboratory that has components that float in midair.

Devs Trailer Reveals New Look at FX-Hulu's Upcoming Limited Series
If you’re never visited a real quantum computing lab: they’re messier and a lot less golden.

At this point, I’ll just link you to Ben Lindbergh’s article about the show: Making Sense of the Science and Philosophy of ‘Devs.’ His long and excellent piece quotes me extensively enough that I see no need also to analyze the show in this blog post. (It also quotes several academic philosophers.)

Instead, I’ll just share a few tidbits that Ben left out, but that might be amusing to quantum computing fans.

  • The first episode opens with a conversation between two characters about how even “elliptical curve” cryptography is insecure against attack by quantum computers. So I immediately knew both that the writers had one or more consultants who actually knew something about QC, and also that those consultants were not as heavily involved as they could’ve been.
  • Similarly: in a later scene, some employees at the secretive company hold what appears to be a reading group about Shor’s algorithm. They talk about waves that interfere and cancel each other out, which is great, but beyond that their discussion sounded to me like nonsense. In particular, their idea seemed to be that the waves would reinforce at the prime factors p and q themselves, rather than at inverse multiples of the period of a periodic function that only indirectly encodes the factoring problem. (What do you say: should we let this one slide?)
  • “How many qubits does this thing have?” “A number that there would be no point in describing as a number.” ROFL
  • In the show, a crucial break comes when the employees abandon a prediction algorithm based on the deBroglie-Bohm pilot wave interpretation, and substitute one based on Everett’s many-worlds interpretation. Which I could actually almost believe, except that the many-worlds interpretation seems to contradict the entire premise of the rest of the show?
  • A new employee, after he sees the code of the superpowerful quantum computer for the first time, is so disoriented and overwhelmed that he runs and vomits into a toilet. I, too, have had that reaction to the claims of certain quantum computing companies, although in some sense for the opposite reason.

Anyway, none of the above addresses the show’s central conceit: namely, that the Laplace demon can be made real, the past and future rendered fully knowable (with at most occasional breaks and exceptions) by a machine that’s feasible to build. This conceit is fascinating to explore, but also false.

In the past, if you’d asked me to justify its falsity, I would’ve talked about chaos, and quantum mechanics, and the unknowability of the fine details of the universe’s state; I might’ve even pointed you to my Ghost in the Quantum Turing Machine essay. I also would’ve mentioned the severe conceptual difficulties in forcing Nature to find a fixed-point of a universe where you get to see your own future and act on that information (these difficulties are just a variant of the famous Grandfather Paradox).

But it occurs to me that, just as the coronavirus has now made plain the nature of exponential growth, even to the world’s least abstract-minded person, so too it’s made plain the universe’s unpredictability. Let’s put it this way: do you find it plausible that the quantum computer from ‘Devs,’ had you booted it up six months ago, would’ve known the exact state of every nucleotide in every virus in every bat in Wuhan? No? Then it wouldn’t have known our future.

And I see now that I’ve violated my promise that this post would have nothing to do with covid.

John Horton Conway (1937-2020)

Sunday, April 12th, 2020

Update (4/13): Check out the comments on this post for some wonderful firsthand Conway stories. Or for the finest tribute I’ve seen so far, see a MathOverflow thread entitled Conway’s lesser known results. Virtually everything there is a gem to be enjoyed by amateurs and experts alike. And if you actually click through to any of Conway’s papers … oh my god, what a rebuke to the way most of us write papers!

John Horton Conway, one of the great mathematicians and math communicators of the past half-century, has died at age 82.

Update: John’s widow, Diana Conway, left a nice note in the comments section of this post. I wish to express my condolences to her and to all of the Conway children and grandchildren.

Just a week ago, as part of her quarantine homeschooling, I introduced my seven-year-old daughter Lily to the famous Conway’s Game of Life. Compared to the other stuff we’ve been doing, like fractions and right triangles and the distributive property of multiplication, the Game of Life was a huge hit: Lily spent a full hour glued to the screen, watching the patterns evolve, trying to guess when they’d finally die out. So this first-grader knew who John Conway was, when I told her the sad news of his passing.

“Did he die from the coronavirus?” Lily immediately asked.

“I doubt it, but I’ll check,” I said.

Apparently it was the coronavirus. Yes, the self-replicating snippet of math that’s now terrorizing the whole human race, in part because those in power couldn’t or wouldn’t understand exponential growth. Conway is perhaps the nasty bugger’s most distinguished casualty so far.

I regrettably never knew Conway, although I did attend a few of his wildly popular and entertaining lectures. His The Book of Numbers (coauthored with Richard Guy, who himself recently passed away at age 103) made a huge impression on me as a teenager. I worked through every page, gasping at gems like eπ√163 (“no, you can’t be serious…”), embarrassed to be learning so much from a “fun, popular” book but grateful that my ignorance of such basic matters was finally being remedied.

A little like Pascal with his triangle or Möbius with his strip, Conway was fated to become best-known to the public not for his deepest ideas but for his most accessible—although for Conway, a principal puzzle-supplier to Martin Gardner for decades, the boundary between the serious and the recreational may have been more blurred than for any other contemporary mathematician. Conway invented the surreal number system, discovered three of the 26 sporadic simple groups, was instrumental in the discovery of monstrous moonshine, and did many other things that bloggers more qualified than I will explain in the coming days.

Closest to my wheelhouse, Conway together with Simon Kochen waded into the foundations of quantum mechanics in 2006, with their “Free Will Theorem”—a result Conway liked to summarize provocatively as “if human experimenters have free will, then so do the elementary particles they measure.” I confess that I wasn’t a fan at the time—partly because Conway and Kochen’s theorem was really about “freshly-generated randomness,” rather than free will in any sense related to agency, but also partly because I’d already known the conceptual point at issue, but had considered it folklore (see, e.g., my 2002 review of Stephen Wolfram’s A New Kind of Science). Over time, though, the “Free Will Theorem” packaging grew on me. Much like with the No-Cloning Theorem and other simple enormities, sometimes it’s worth making a bit of folklore so memorable and compelling that it will never be folklore again.

At a lecture of Conway’s that I attended, someone challenged him that his proposed classification of knots worked only in special cases. “Oh, of course, this only classifies 0% of knots—but 0% is a start!” he immediately replied, to roars from the audience. That’s just one line that I remember, but nearly everything out of his mouth was of a similar flavor. I noted that part of it was in the delivery.

As a mathematical jokester and puzzler who could delight and educate anyone from a Fields Medalist to a first-grader, Conway had no equal. For no one else who I can think of, even going back centuries and millennia, were entertainment and mathematical depth so closely marbled together. Here’s to a well-lived Life.

Feel free to share your own Conway memories in the comments.

Freeman Dyson and Boris Tsirelson

Saturday, February 29th, 2020

Today, as the world braces for the possibility of losing millions of lives to the new coronavirus—to the hunger for pangolin meat, of all things (combined with the evisceration of competent public health agencies like the CDC)—we also mourn the loss of two incredibly special lives, those of Freeman Dyson (age 96) and Boris Tsirelson (age 69).

Freeman Dyson was sufficiently legendary, both within and beyond the worlds of math and physics, that there’s very little I can add to what’s been said. It seemed like he was immortal, although I’d heard from mutual friends that his health was failing over the past year. When I spent a year as a postdoc at the Institute for Advanced Study, in 2004-5, I often sat across from Dyson in the common room, while he drank tea and read the news. That I never once struck up a conversation with him is a regret that I’ll now carry with me forever.

My only exchange with Dyson came when he gave a lecture at UC Berkeley, about how life might persist infinitely far into the future, even after the last stars had burnt out, by feeding off steadily dimishing negentropy flows in the nearly-thermal radiation. During the Q&A, I challenged Dyson that his proposal seemed to assume an analog model of computation. But, I asked, once we took on board the quantum-gravity insights of Jacob Bekenstein and others, suggesting that nature behaves like a (quantum) digital computer at the Planck scale, with at most ~1043 operations per second and ~1069 qubits per square meter and so forth, wasn’t this sort of proposal ruled out? “I’m not going to argue with you,” was Dyson’s response. Yes, he’d assumed an analog computational model; if computation was digital then that surely changed the picture.

Sometimes—and not just with his climate skepticism, but also (e.g.) with his idea that general relativity and quantum mechanics didn’t need to be reconciled, that it was totally fine for the deepest layer of reality to be a patchwork of inconsistent theories—Dyson’s views struck me as not merely contrarian but as a high-level form of trolling. Even so, Dyson’s book Disturbing the Universe had had a major impact on me as a teenager, for the sparkling prose as much as for the ideas.

With Dyson’s passing, the scientific world has lost one of its last direct links to a heroic era, of Einstein and Oppenheimer and von Neumann and a young Richard Feynman, when theoretical physics stood at the helm of civilization like never before or since. Dyson, who apparently remained not only lucid but mathematically powerful (!) well into his last year, clearly remembered when the Golden Age of science fiction looked like simply sober forecasting; when the smartest young people, rather than denouncing each other on Twitter, dreamed of scouting the solar system in thermonuclear-explosion-powered spacecraft and seriously worked to make that happen.

Boris Tsirelson (homepage, Wikipedia), who emigrated from the Soviet Union and then worked at Tel Aviv University (where my wife Dana attended his math lectures), wasn’t nearly as well known as Dyson to the wider world, but was equally beloved within the quantum computing and information community. Tsirelson’s bound, which he proved in the 1980s, showed that even quantum mechanics could only violate the Bell inequality by so much and by no more, could only let Alice and Bob win the CHSH game with probability cos2(π/8). This seminal result anticipated many of the questions that would only be asked decades later with the rise of quantum information. Tsirelson’s investigations of quantum nonlocality also led him to pose the famous Tsirelson’s problem: loosely speaking, can all sets of quantum correlations that can arise from an infinite amount of entanglement, be arbitrarily well approximated using finite amounts of entanglement? The spectacular answer—no—was only announced one month ago, as a corollary of the MIP*=RE breakthrough, something that Tsirelson happily lived to see although I don’t know what his reaction was (update: I’m told that he indeed learned of it in his final weeks, and was happy about it). Sadly, for some reason, I never met Tsirelson in person, although I did have lively email exchanges with him 10-15 years ago about his problem and other topics. This amusing interview with Tsirelson gives some sense for his personality (hat tip to Gil Kalai, who knew Tsirelson well).

Please share any memories of Dyson or Tsirelson in the comments section.

From shtetl to Forum

Saturday, January 18th, 2020

Update (Feb. 4): Immediately after departing Davos, I visited the University of Waterloo and the Perimeter Institute to give three talks, then the Simons Institute at UC Berkeley to give another talk; then I returned to Austin for a weekend with my family, all while fighting off my definitely-not-coronavirus cold. Right now I’m at Harvard to speak at the Black Hole Initiative as well as the Center of Mathematical Sciences and Applications, then my old haunt MIT to speak at CSAIL Hot Topics, then Princeton to give a CS theory seminar—all part of my Quantum Supremacy 2020 World Tour.

Here’s a YouTube video for my Berkeley talk, which was entitled “Random Circuit Sampling: Thoughts and Open Problems.”

All of this is simply to say: I sincerely apologize if I left anyone hanging for the past week, by failing to wrap up my Davos travelogue!

So, alright: having now attended Davos, do I have any insight about its role in shaping the future of the world, and whether that role is good or bad?

Umm. The case against Davos is almost too obvious to state: namely, it’s a vehicle for the world’s super-mega-elite to preen about their own virtue and thereby absolve themselves of their sins.  (Oddly enough, both liberals and conservatives have their own versions of this argument.)

But having attended, I now understand exactly the response that Klaus Schwab, the Forum’s founder and still maestro, would make.  He’d say: well, we didn’t make these people “elite.”  They were already the elite.  And given that an elite exists, would you rather have them at cocaine-filled stripper parties on yachts or whatever, or flocking to an annual meeting where the peer pressure is relentlessly about going green and being socially responsible and giving back to the community and so forth?

See, it’s like this: if you want to be accepted by the Davos crowd, you can’t do stuff like dismember journalists who criticize you.  (While many Saudi princes were at Davos, Mohammad bin Salman himself was conspicuously absent.) While that might sound like a grotesquely low bar, it’s one that many, many elites through human history failed to clear.  And we can go further: if you want an enthusiastic (rather than chilly) welcome at Davos, you can’t separate migrant kids from their families and put them in cages. Again, a low bar but sadly a nontrivial one.

I’m reminded of something Steven Pinker once wrote, about how the United Nations and other international organizations can seem laughably toothless, what with their strongly worded resolutions threatening further resolutions to come. Yet improbably, over the span of decades, the resolutions were actually effective at pushing female genital mutilation and the execution of gays and lesbians and chemical weapons and much more from the world’s panoply of horrors, not entirely out of existence, but into a much darker corner than they’d been.

The positive view of Davos would see it as part of precisely that same process. The negative view would see it as a whitewash: worse than nothing, for letting its participants pretend to stand against the world’s horrors while doing little. Which view is correct? Here, I fear that each of our judgments is going to be hopelessly colored by our more general views about the state of the world. To lay my cards on the table, my views are that

(1) often “fake it till you make it” is a perfectly reasonable strategy, and a good enough simulacrum of a stance or worldview eventually blends into the stance or worldview itself, and

(2) despite the headlines, the data show that the world really has been getting better along countless dimensions … except that it’s now being destroyed by climate change, general environmental degradation, and recrudescent know-nothing authoritarianism.

But the clearest lesson I learned is that, in the unlikely event that I’m ever invited back to Davos and able to attend, before stepping onto the plane I need to get business cards printed.

Daily Updates:
Saturday January 18 (introduction)
Sunday January 19 (Elton John and Greta Thunberg)
Monday January 20 (the $71,000-a-head ski resort conference for Equality)
Tuesday January 21 (Trump! Greta! QC panel!)
Wednesday January 22 (wherein I fail to introduce myself to Al Gore)
Thursday January 23 (wherein I attend the IBM QC panel and “drunkenly unload” at the Canada Reception)
Friday January 24 (second Al Gore session, and getting lost)

It would be great to know whether anyone’s actually reading the later updates, so I know whether to continue putting effort into them!

Saturday January 18

Today I’m headed to the 50th World Economic Forum in Davos, where on Tuesday I’ll participate in a panel discussion on “The Quantum Potential” with Jeremy O’Brien of the quantum computing startup PsiQuantum, and will also host an ask-me-anything session about quantum computational supremacy and Google’s claim to have achieved it.

I’m well aware that this will be unlike any other conference I’ve ever attended: STOC or FOCS it ain’t. As one example, also speaking on Tuesday—although not conflicting with my QC sessions—will be a real-estate swindler and reality-TV star who’s somehow (alas) the current President of the United States. Yes, even while his impeachment trial in the Senate gets underway. Also speaking on Tuesday, a mere hour and a half after him, will be TIME’s Person of the Year, 17-year-old climate activist Greta Thunberg.

In short, this Davos is shaping up to be an epic showdown between two diametrically opposed visions for the future of life on Earth. And your humble blogger will be right there in the middle of it, to … uhh … explain how quantum computers can sample probability distributions that are classically intractable unless the polynomial hierarchy collapses to the third level. I feel appropriately sheepish.

Since the experience will be so unusual for me, I’m planning to “live-blog Davos”: I’ll be updating this post, all week, with any strange new things that I see or learn. As a sign of my devotion to you, my loyal readers, I’ll even clothespin my nose and attend Trump’s speech so I can write about it.

And Greta: on the off chance that you happen to read Shtetl-Optimized, let me treat you to a vegan lunch or dinner! I’d like to try to persuade you of just how essential nuclear power will be to a carbon-free future. Oh, and if it’s not too much trouble, I’d also like a selfie with you for this blog. (Alas, a friend pointed out to me that it would probably be easier to meet Trump: unlike Greta, he won’t be swarmed with thousands of fans!)

Anyway, check back here throughout the week for updates. And if you’re in Davos and would like to meet, please shoot me an email. And please use the comment section to give me your advice, suggestions, well-wishes, requests, or important messages for me to fail to deliver to the “Davoisie” who run the world.

Sunday January 19

So I’ve arrived in Klosters, a village in the Swiss Alps close to Davos where I’ll be staying. (All the hotels in Davos itself were booked by the time I checked.)

I’d braced myself for the challenge of navigating three different trains through the Alps not knowing German. In reality, it was like a hundred times easier than public transportation at home. Every train arrived at the exact right second at the exact platform that was listed, bearing the exact right number, and there were clear visible signs strategically placed at exactly the places where anyone could get confused. I’d entered Bizarro Opposite World. I’m surely one of the more absentminded people on earth, as well as one of the more neurotic about being judged by bystanders if I ever admit to being lost, and it was nothing.

Snow! Once a regular part of my life, now the first I’d seen in several years. Partly because I now live in Texas, but also because even when we take the kids back to Pennsylvania for ChanuChrismaNewYears, it no longer snows like it did when I was a kid. If you show my 2-year-old, Daniel, a picture of snow-covered wilderness, he calls it a “beach.” Daniel’s soon-to-be 7-year-old sister still remembers snow from Boston, but the memory is rapidly fading. I wonder for how many of the children of the 21st century will snow just be a thing from old books and movies, like typewriters or rotary phones.

The World Economic Forum starts tomorrow afternoon. In the meantime, though, I thought I’d give an update not on the WEF itself, but on the inflight movie that I watched on my way here.

I watched Rocketman, the recent biopic/hagiography about Elton John, though as I watched I found that I kept making comparisons between Elton John and Greta Thunberg.

On the surface, these two might not seem to have a great deal of similarity.

But I gathered that they had this in common: while still teenagers, they saw a chance and they seized it. And doing so involved taking inner turmoil and then succesfully externalizing it to the whole planet. Making hundreds of millions of people feel the same emotions that they had felt. If I’m being painfully honest (how often am I not?), that’s something I’ve always wanted to achieve and haven’t.

Of course, when some of the most intense and distinctive emotions you’ve ever felt revolved around the discovery of quantum query complexity lower bounds … yeah, it might be tough to find more people than could fill a room to relive those emotional journeys with you. But a child’s joy at discovering numbers like Ackerman(100) (to say nothing of BB(100)), which are so incomprehensibly bigger than \( 9^{9^{9^{9^9}}} \) that I didn’t need to think twice about how many 9’s I put there? Or the exasperation at those who, yeah, totally get that quantum computers aren’t known to give exponential speedups for NP-complete problems, that’s a really important clarification coming from the theory side, but still, let’s continue to base our entire business or talk or article around the presupposition that quantum computers do give exponential speedups for NP-complete problems? Or even just the type of crush that comes with a ceaseless monologue about what an objectifying, misogynist pig you must be to experience it? Maybe I could someday make people vicariously experience and understand those emotions–if I could only find the right words.

My point is, this is precisely what Greta did for the burgeoning emotion of existential terror about the Anthropocene—another emotion that’s characterized my life since childhood. Not that I ever figured out anything to do about it, with the exception of Gore/Nader vote-swapping. By the standards of existential terrors, I consider this terror to be extraordinarily well-grounded. If Steven Weinberg is scared, who among us has the right to be calm?

The obvious objection to Greta—why should anyone care what a histrionic teenager thinks about a complicated scientific field that thousands of people get PhDs in?—calls for a substantive answer. So here’s mine. Like many concerned citizens, I try to absorb some of the research on ocean warming or the collapse of ice sheets and the melting permafrost leading to even more warming or the collapse of ecosystems due to changes in rainfall or bushfires or climate migrations or whatever. And whenever I do, I’m reminded of Richard Feynman’s remark, during the investigation of the Challenger disaster, that maybe it wasn’t all that interesting for the commission to spend its time reconstructing the exact details of which system caused which other system to malfunction at which millisecond, after the Space Shuttle had already started exploding. The thing was hosed at that point.

Still, even after the 80s and 90s, there remained deep open questions about the eventual shape of the climate crisis, and foremost among them was: how do you get people to stop talking about this crisis in the language of intellectual hypotheticals and meaningless virtue-signalling gestures and “those crazy scientists, who knows what they’ll say tomorrow”? How does one get people to revert to a more ancient language, the one that was used to win WWII for example, which speaks of courage and duty and heroism and defiance in the jaws of death?

Greta’s origin story—the one where the autistic girl spends months so depressed over climate inaction that she can’t eat or leave her room, until finally, no longer able to bear the psychic burden, she ditches school and carries a handmade protest sign to the front of the Swedish parliament—is not merely a prerequisite to a real contribution. It is Greta’s real contribution (so far anyway), and by that I don’t mean to diminish it. The idea was “trivial,” yes, but only in the sense that the wheel, Arabic numerals, or “personal computers will be important” were trivial ideas. Greta modeled for the rest of the world how they, too, would probably feel about climate change were they able to sync up their lizard brains with their higher brains … and crucially, a substantial segment of the world was already primed to agree with her. But it needed to see one successful example of a succesful sync between the science and the emotions appropriate to the science, as a crystal needs a seed.

The thesis of Rocketman is that Elton John’s great achievement was not only to invent a new character, but actually to become that character, since only by succesfully fusing the two could he touch the emotions of the masses. In a similar way, Greta Thunberg’s great accomplishment of her short life has been to make herself into the human race’s first Greta Thunberg.

Monday January 20

Happy 7th birthday to my daughter Lily!  (No, I didn’t miss her birthday party.  We did it on the 18th, right before I flew out.)

I think my goals for Davos have been downgraded from delivering a message of peace and nerd liberation to the world’s powerful, or even getting a selfie with Greta, to simply taking in a week in an environment that’s so alien to me.

Everything in Davos is based on a tiered system of badges, which determine which buildings you can get into to participate in the sessions.  I have a white badge, the highest tier, which would’ve set me back around $71,000 had WEF not thankfully waived its fees for academics.  I should mention that I’m also extremely underdressed compared to most of the people here, and that I spent much of my time today looking for free food.  It turns out that there’s pretty copious and excellent free food, although the sponsors sometimes ask you to leave your business card before you take any.  I don’t have a business card.

The above, for me, represents the true spirit of Davos: a conference at a Swiss ski resort that costs $71,000 to attend, held on behalf of the ideal of human equality.

But maybe I shouldn’t scoff.  I learned today about a war between Greece and Turkey that was averted only because the heads of the two countries talked it over at Davos, so that’s cool.  At the opening ceremony today, besides a beautiful orchestral rendition of “Ode to Joy,” there were a bunch of speeches about how Davos pioneered the entire concept of corporate social responsibility.  I suppose the critics might say instead that Davos pioneered the concept of corporate whitewashing—as with the wall-sized posters that I saw this afternoon, wherein a financial services corporation showcased a diverse cast of people each above their preferred pronouns (he/him, she/her, they/them).  Amazing how pronouns make everything woke and social-justicey!  I imagine that the truth is somewhere between these visions.  Just like the easiest way for NASA to fake a moon landing was actually to send humans to the moon, sometimes the easiest way to virtue-signal is actually to become more virtuous.

Tonight I went to a reception specifically for the academics at Davos.  There, for the first time since my arrival, I saw people who I knew (Shafi Goldwasser, Neha Narula…), and met someone who I’d known by reputation (Brian Schmidt, who shared the Nobel Prize in Physics for the discovery of dark energy).  But even the people who I didn’t know were clearly “my people,” with familiar nerdy mannerisms and interests, and in some cases even a thorough knowledge of SlateStarCodex references.  Imagine visiting a foreign country where no one spoke your language, then suddenly stumbling on the first ones who did.  I found it a hundred times easier than at the main conference to strike up conversations.

Oh yeah, quantum computing.  This afternoon I hosted three roundtable discussions about quantum computing, which were fun and stress-free — I spent much more of my mental energy today figuring out the shuttle buses.  If you’re a regular reader of this blog or my popular articles, or a watcher of my talks on YouTube, etc., then congratulations: you’ve gotten the same explanations of quantum computing for free that others may have paid $71,000 apiece to hear!  Tomorrow are my two “real” quantum computing sessions, as well as the speeches by both the Donald and the Greta (the latter being the much hotter ticket).  So it’s a big day, which I’ll tell you about after it’s happened. Stay tuned!

Tuesday January 21

PsiQuantum’s Jeremy O’Brien and I did the Davos quantum computing panel this morning (moderated by Jennifer Schenker). You can watch our 45-minute panel here. For regular readers of this blog, the territory will be familiar, but I dunno, I hope someone enjoys it anyway!

I’m now in the Congress Hall, in a seat near the front, waiting for Trump to arrive. I will listen to the President of the United States and not attract the Secret Service’s attention by loudly booing, but I have no intention to stand or applaud either.

Alas, getting a seat at Greta’s talk is looking like it will be difficult or impossible.

I was struck by the long runup to Trump’s address: the President of Switzerland gave a searing speech about the existential threats of climate change and ecosystem destruction, and “the politicians in many nations who appeal to fear and bigotry”—never mentioning Trump by name but making clear that she despised the entire ideology of the man people had come to hear. I thought it was a nice touch. Then some technicians spent 15 minutes adjusting Trump’s podium, then nothing happened for 20 minutes as we all waited for a tardy Trump, then some traditional Swiss singers did a performance on stage (!), and finally Klaus Schwab, director of the WEF, gave Trump a brief and coldly cordial introduction, joking about the weather in Davos.

And … now Trump is finally speaking. Once he starts, I suddenly realize that I have no idea what new insight I expected from this. He’s giving his standard stump speech, America has regained its footing after the disaster of the previous administration, winning like it’s never won before, unemployment is the lowest in recorded history, blah blah blah. I estimate that less than half of the audience applauded Trump’s entrance; the rest sat in stony silence. Meanwhile, some people were passing out flyers to the audience documenting all the egregious errors in Trump’s economic statistics.

Given the small and childish nature of the remarks (“we’re the best! ain’t no one gonna push us around!”), it feels somehow right to be looking down at my phone, blogging, rather than giving my undivided attention to the President of the United States speaking 75 feet in front of me.

Ok, I admit I just looked up, when Trump mentioned America’s commitment to developing new technologies like “5G and quantum computing” (he slowly drew out the word “quantum”).

His whole delivery is strangely lethargic, as if he didn’t sleep well last night (I didn’t either).

Trump announced that the US would be joining the WEF’s “1 trillion trees” environmental initiative, garnering the only applause in his speech. But he then immediately pivoted to a denunciation of the “doomsayers and pessimists and socialists who want to control our lives and take away our liberty” (he presumably meant people worried about climate change).

Now, I kid you not, Trump is expanding on his “optimism” theme by going on and on about the architectural achievements of Renaissance Florence.

You can watch Trump’s speech for yourself here.

While I wasn’t able to get in to see Greta Thunberg in person, you can watch her (along with others) here. I learned that her name is pronounced “toon-berg.”

Having now listened to Greta’s remarks, I confess that I disagree with the content of what she says.  She explicitly advocates a sort of purity-based carbon absolutism—demanding that companies and governments immediately implement, not merely net zero emissions (i.e. offsetting their emissions by paying to plant trees and so forth), but zero emissions period.  Since she can’t possibly mean literally zero, I’ll interpret her to mean close to zero.  Even so, it seems to me that the resulting economic upheavals would provoke a massive backlash against whoever tried to enforce such a policy.  Greta also dismisses the idea of technological solutions to climate change, saying that we don’t have time to invent such solutions.  But of course, some of the solutions already exist—a prime example being nuclear power.  And if we no longer have time to nuclearize the world, then to a great extent, that’s the fault of the antinuclear activists—an unbelievable moral and strategic failure that may have doomed our civilization, and for which there’s never been a reckoning.

Despite all my disagreements, if Greta’s strident, uncompromising rhetoric helps push the world toward cutting emissions, then she’ll have to be counted as one of the greatest people who ever lived. Of course, another possibility is the world’s leaders will applaud her and celebrate her moral courage, while not taking anything beyond token actions.

Wednesday January 22

Alas, I’ve come down with a nasty cold (is there any other kind?).  So I’m paring back my participation in the rest of Davos to the stuff that really interests me.  The good news is that my quantum computing sessions are already finished!

This morning, as I sat in the lobby of the Congress Centre checking my email and blowing my nose, I noticed some guy playing a cello nearby.  Dozens were gathered around him — so many that I could barely see the guy, only hear the music.  After he was finished, I worked up the courage to ask someone what the fuss was about.  Turns out that the guy was Yo-Yo Ma.

The Prince Regent of Liechtenstein was explaining to one of my quantum computing colleagues that Liechtenstein does not have much in the way of quantum.

Speaking of princes, I’m now at a cybersecurity session with Shafi Goldwasser and others, at which the attendance might be slightly depressed because it’s up against Prince Charles. That’s right: Davos is the conference where the heir apparent to the British throne speaks in a parallel session.

I’ve realized these past few days that I’m not very good at schmoozing with powerful people.  On the other hand, it’s possible that my being bad at it is a sort of mental defense mechanism.  The issue is that, the more I became a powerful “thought leader” who unironically used phrases like “Fourth Industrial Revolution” or “disruptive innovation,” the more I used business cards and LinkedIn to expand my network of contacts or checked my social media metrics … well, the less I’d be able to do the research that led to stuff like being invited here in the first place.  I imagine that many Davos regulars started out as nerds like me, and that today, coming to Davos to talk about “disruptive innovation” is a fun kind of semi-retirement.  If so, though, I’m not ready to retire just yet!  I still want to do things that are new enough that they don’t need to be described using multiple synonyms for newness.

Apparently one of the hottest tickets at Davos is a post-Forum Shabbat dinner, which used to be frequented by Shimon Peres, Elie Wiesel, etc.  Alas, not having known about it, I already planned my travel in a way that won’t let me attend it.  I feel a little like the guy in this Onion article.

I had signed up for a session entitled What’s At Stake: The Arctic, featuring Al Gore. As I waited for them to start letting people in, I suddenly realized that Al Gore was standing right next to me. However, he was engrossed in conversation with a young woman, and even though I assumed she was just some random fan like I was, I didn’t work up the courage to interrupt them. Only once the panel had started, with the woman on it two seats from Gore, did I realize that she was Sanna Marin, the new Prime Minister of Finland (and at 34, the world’s second-youngest head of state).

You can watch the panel here. Briefly, the Arctic has lost about half of its ice cover, not merely since preindustrial times but since a few decades ago. And this is not only a problem for polar bears. It’s increasing the earth’s absorption of sunlight and hence significantly accelerating global warming, and it’s also screwing up weather patterns all across the northern hemisphere. Of course, the Siberian permafrost is also thawing and releasing greenhouse gases that are even worse than CO2, further accelerating the wonderful feedback loop of doom.

I thought that Gore gave a masterful performance. He was in total command of the facts—discoursing clearly and at length on the relative roles of CO2, SO2, and methane in the permafrost as well as the economics of oil extraction, less in the manner of thundering (or ‘thunberging’?) prophet than in the manner of an academic savoring all the non-obvious twists as he explains something to a colleague—and his every response to the other panelists was completely on point.

In 2000, there was indeed a bifurcation of the universe, and we ended up in a freakishly horrible branch. Instead of something close to the best, most fact-driven US president one could conjure in one’s mind, we got something close to the worst, and then, after an 8-year interregnum just to lull us into complacency, we got something even worse than the worst.

The other panelists were good too. Gail Whiteman (the scientist) had the annoying tic of starting sentence after sentence with “the science says…,” but then did a good job of summarizing what the science does say about the melting of the Arctic and the permafrost.

Alas, rather than trying to talk to Gore, immediately after the session ended, I headed back to my hotel to go to sleep. Why? Partly because of my cold. But partly also because of incident immediately before the panel. I was sitting in the front row, next to an empty seat, when a woman who wanted to occupy that seat hissed at me that I was “manspreading.”

If, on these narrow seats packed so tightly together that they were basically a bench, my left leg had strayed an inch over the line, I would’ve addressed the situation differently: for example, “oh hello, may I sit here?” (At which point I would’ve immediately squeezed in.) Amazingly, the woman didn’t seem to didn’t care that a different woman, the one to my right, kept her pocketbook and other items on the seat next to her throughout the panel, preventing anyone else from using the seat in what was otherwise a packed house. (Is that “womanspreading”?)

Anyway, the effect of her comment was to transform the way I related to the panel. I looked around at the audience and thought: “these activists, who came to hear a panel on climate change, are fighting for a better world. And in their minds, one of the main ways that the world will be better is that it won’t contain sexist, entitled ‘manspreaders’ like me.”

In case any SneerClubbers are reading, I should clarify that I recognize an element of the irrational in these thoughts. I’m simply reporting, truthfully, that they’re what bubbled up outside the arena of conscious control. But furthermore, I feel like the fact that my brain works this way might give me some insight into the psychology of Trump support that few Democrats share—so much that I wonder if I could provide useful service as a Democratic political consultant!

I understand the mindset that howls: “better that every tree burn to the ground, every fish get trawled from the ocean, every coastal city get flooded out of existence, than that these sanctimonious hypocrites ‘on the right side of history,’ singing of their own universal compassion even as they build a utopia with no place for me in it, should get to enjoy even a second of smug self-satisfaction.” I hasten to add that I’ve learned how to override that mindset with a broader, better mindset: I can jump into the abyss, but I can also climb back out, and I can even look down at the abyss from above and report what’s there. It’s as if I’d captured some virulent strain of Ebola in a microbiology lab of the soul. And if nearly half of American voters (more in crucial swing states) have gotten infected with that Ebola strain, then maybe my lab work could have some broader interest.

I thought about Scott Minerd, the investor on the panel, who became a punching bag for the other panelists (except for Gore, a politician in a good sense, who went out of his way to find points of agreement). In his clumsy way, Minerd was making the same point that climate activists themselves correctly make: namely, that the oil companies need to be incentivized (for example, through a carbon tax) to leave reserves in the ground, that we can’t just trust them to do the noble thing and write off their own assets. But for some reason, Minerd presented himself as a greedy fat-cat, raining on the dreams of the hippies all around him for a carbon-free future, so then that’s how the other panelists duly treated him (except, again, for Gore).

But I looked at the audience, which was cheering attacks on Minerd, and the Ebola in my internal microbiology lab said: “the way these activists see Scott Minerd is not far from how they see Scott Aaronson. You’ll never be good enough for them. The people in this room might or might not succeed at saving the world, but in any case they don’t want your help.”

After all, what was the pinnacle of my contribution to saving the world? It was surely when I was 19, and created a website to defend the practice of NaderTrading (i.e., Ralph Nader supporters in swing states voting for Al Gore, while Gore supporters in safe states pledged to vote Nader on their behalf). Alas, we failed. We did help arrange a few thousand swaps, including a few hundred swaps in Florida, but it was 538 too few. We did too little, too late.

So what would I have talked to Gore about, anyway? Would I have reminded him of the central tragedy of his life, which was also a central tragedy of recent American history, just in order to babble, or brag, about a NaderTrading website that I made half a lifetime ago? Would I have made up a post-hoc rationalization for why I work on quantum computing, like that I hope it will lead to the discovery of new carbon-capture methods? Immediately after Gore’s eloquent brief for the survival of the Arctic and all life on earth, would I have asked him for an autograph or a selfie? No, better to just reflect on his words. At a crucial pivot point in history, Gore failed by a mere 538 votes, and I also failed to prevent the failure. But amazingly, Gore never gave up-–he just kept on fighting for what he knew civilization needed to do—and yesterday I sat a few feet away while he explained why the rest of us shouldn’t give up either. And he’s right about this—if not in the sense of the outlook being especially hopeful or encouraging right now, then surely in the sense of which attitude is the useful one to adopt. And my attitude, which you might call “Many-Worlds-inflected despair,” might be epistemically sound but it definitely wasn’t useful. What further clarifications did I need?

Thursday January 23

I attended a panel discussion on quantum computing hosted by IBM. The participants were Thomas Friedman (the New York Times columnist), Arvind Krishna (a senior Vice President at IBM), Raoul Klingner (director of a European research organization), and Alison Snyder (the managing editor of Axios magazine). There were about 100 people in the audience, more than at all of my Davos quantum computing sessions combined. I sat right in front, although I don’t think anyone on the panel recognized me.

Ginni Rometty, the CEO of IBM, gave an introduction. She said that quantum will change the world by speeding up supply-chain and other optimization problems. I assume she was talking about the Grover speedup? She also said that IBM is committed to delivering value for its customers, rather than “things you can do in two seconds that are not commercially valid” (I assume she meant Google’s supremacy experiment). She asked for a show of hands of who knows absolutely nothing about the science behind quantum computing. She then quipped, “well, that’s all of you!” She may have missed two hands that hadn’t gone up (both belonging to the same person).

I accepted an invitation to this session firstly for the free lunch (which turned out to be delicious), and secondly because I was truly, genuinely curious to hear what Thomas Friedman, many of whose columns I’ve liked, had to teach me about quantum computing. The answer turns out to be this: in his travels around the world over the past 6 years, Friedman has witnessed firsthand how the old dichotomy between right-wing parties and left-wing parties is breaking down everywhere (I assume he means, as both sides get taken over by populist movements?). And this is just like how a qubit breaks down the binary dichotomy between 0’s and 1’s! Also, the way a quantum computer can be in multiple states at once, is like how the US now has to be in multiple states at once in its relationship with China.

Friedman opened his remarks by joking about how he never took a single physics course, and had no idea why he was on a quantum computing panel at all. He quickly added, though, that he toured IBM’s QC labs, where he found IBM’s leaders to be wonderful explainers of what it all means.

I’ll note that Friedman, the politics and Middle East affairs writer — not the two panelists serving the role of quantum experts — was the only one who mentioned, even in passing, the idea that the advantage of QCs depends on something called “constructive interference.”

Krishna, the IBM Vice President, explained why IBM rejects the entire concept of “quantum supremacy”: because it’s an irrelevant curiosity, and creating value for customers in the marketplace (for example by solving their supply-chain optimization problems) is the only test that matters. No one on the panel expressed a contrary view.

Later, Krishna explained why quantum computers will never replace classical computers: because if you stored your bank balance on a quantum computer, one day you’d have $1, the next day $1000, the day after that $1 again, and so forth! He explained how, where current supercomputers use the same amount of energy needed to power all of Davos to train machine learning models, quantum computers would use less than the energy needed to power a single house. New algorithms do need to be designed to run neural networks quantumly, but fortunately that’s all being done as we speak.

I got the feeling that the businesspeople who came to this session felt like they got a lot more out of it than the businesspeople who came to my and Jeremy O’Brien’s session felt like they got out of ours. After all, this session got across some big real-world takeaways—e.g., that if you don’t quantum, your business will be left in the dust, stuck with a single value at a time rather than exploring all values in parallel, and IBM can help you rather than your competitors win the quantum race. It didn’t muddy the message with all the incomprehensible technicalities about how QCs only give exponential speedups for problems with special structure.

Later Update:

Tonight I went to a Davos reception hosted by the government of Canada (🇨🇦). I’m not sure why exactly they invited me, although I have of course enjoyed a couple years of life “up north” (well, in Waterloo, so actually further south than a decent chunk of the US … you see that I do have a tiny speck of a Canadian in me?).

I didn’t recognize a single person at the reception. So I just ate the food, drank beer, and answered emails. But then a few people did introduce themselves (two who recognized me, one who didn’t). As they gathered around, they started asking me questions about quantum computing: is it true that QCs could crack the classically impossible Traveling Salesman Problem? That they try all possible answers in parallel? Are they going to go commercial in 2-5 years, or have they already?

It might have been the beer, but for some reason I decided to launch an all-out assault of truth bombs, one after the next, with what they might have considered a somewhat emotional delivery.

OK fine, it wasn’t the beer. That’s just who I am.

And then, improbably, I was a sort of localized “life of the party” — although possibly for the amusement / novelty value of my rant more than for the manifest truth of my assertions. One person afterward told me that it was by far the most useful conversation he’d had at Davos.

And I replied: I’m flattered by your surely inflated praise, but in truth I should also thank you. You caught me at a moment when I’d been thinking to myself that, if only I could make one or two people’s eyes light up with comprehension about the fallacy of a QC simply trying all possible answers in parallel and then magically picking the best one, or about the central role of amplitudes and interference, or about the “merely” quadratic nature of the Grover speedup, or about the specialized nature of the most dramatic known applications for QCs, or about the gap between where the experimentalists are now and what’s needed for error correction and hence true scalability, or about the fact that “quantum supremacy” is obviously not a sufficient condition for a QC to be useful, but it’s equally obviously a necessary condition, or about the fact that doing something “practical” with a QC is of very little interest unless the task in question is actually harder for classical computers, which is a question of great subtlety … I say, if I could make only two or four eyes light up with comprehension of these things, then on that basis alone I could declare that the whole trip to Davos was worth it.

And then one of the people hugged me … and that was the coolest thing that happened to me today.

Friday January 24

I attended a second session with Al Gore, about the problem of the world filling up with plastic. I learned that the world’s plastic waste is set to double over the next 15-20 years, and that a superb solution—indeed, it seems like a crime that it hasn’t been implemented already—-would be to set up garbage booms at the mouths of a few major rivers from which something like 80% of the plastic waste in the ocean gets there.

Anyway, still didn’t introduce myself.

I wrote before about how surprisingly clear and logical the trains to Davos were, even with multiple changes. Unfortunately God’s mercy on me didn’t last. All week, I kept getting lost in warren-like buildings with dozens of “secret passageways” (often literally behind unmarked doors) and few signs—not even exit signs. In one case I missed a tram that was the only way out from somewhere because I arrived to the wrong side of the tram—and getting to the right side required entering a building and navigating another unmarked labyrinth, by which point the tram had already left. In another case, I wandered through a Davos hotel for almost an hour trying to find an exit, ricocheting like a pinball off person after person giving me conflicting directions. Only after I literally started ranting to a crowd: ”holy f-ck, is this place some psychological torture labyrinth designed by Franz Kafka? Am I the only one? Is it clear to all of you? Please, WHERE IS THE F-CKING EXIT???” until finally some local took pity and walked me through the maze. As I mentioned earlier, logistical issues like these made me about 5,000 times more anxious on this trip than the prospect of giving quantum computing talks to the world’s captains of industry. I don’t recall having had a nightmare about lecturing even once—but I’ve had never-ending nightmares about failing to show up to give a lecture because I’m wandering endlessly through an airport or a research center or whatever, always the only one who’s lost.

An alternative argument for why women leave STEM: Guest post by Karen Morenz

Thursday, January 16th, 2020

Scott’s preface: Imagine that every time you turned your blog over to a certain topic, you got denounced on Twitter and Reddit as a privileged douchebro, entitled STEMlord, counterrevolutionary bourgeoisie, etc. etc. The sane response would simply be to quit blogging about that topic. But there’s also an insane (or masochistic?) response: the response that says, “but if everyone like me stopped talking, we’d cede the field by default to the loudest, angriest voices on all sides—thereby giving those voices exactly what they wanted. To hell with that!”

A few weeks ago, while I was being attacked for sharing Steven Pinker’s guest post about NIPS vs. NeurIPS, I received a beautiful message of support from a PhD student in physical chemistry and quantum computing named Karen Morenz. Besides her strong words of encouragement, Karen wanted to share with me an essay she had written on Medium about why too many women leave STEM.

Karen’s essay, I found, marshaled data, logic, and her own experience in support of an insight that strikes me as true and important and underappreciated—one that dovetails with what I’ve heard from many other women in STEM fields, including my wife Dana. So I asked Karen for permission to reprint her essay on this blog, and she graciously agreed.

Briefly: anyone with a brain and a soul wants there to be many more women in STEM. Karen outlines a realistic way to achieve this shared goal. Crucially, Karen’s way is not about shaming male STEM nerds for their deep-seated misogyny, their arrogant mansplaining, or their gross, creepy, predatory sexual desires. Yes, you can go the shaming route (God knows it’s being tried). If you do, you’ll probably snare many guys who really do deserve to be shamed as creeps or misogynists, along with many more who don’t. Yet for all your efforts, Karen predicts, you’ll no more solve the original problem of too few women in STEM, than arresting the kulaks solved the problem of lifting the masses out of poverty.

For you still won’t have made a dent in the real issue: namely that, the way we’ve set things up, pursuing an academic STEM career demands fanatical devotion, to the exclusion of nearly everything else in life, between the ages of roughly 18 and 35. And as long as that’s true, Karen says, the majority of talented women are going to look at academic STEM, in light of all the other great options available to them, and say “no thanks.” Solving this problem might look like more money for maternity leave and childcare. It might also look like re-imagining the academic career trajectory itself, to make it easier to rejoin it after five or ten years away. Way back in 2006, I tried to make this point in a blog post called Nerdify the world, and the women will follow. I’m grateful to Karen for making it more cogently than I did.

Without further ado, here’s Karen’s essay. –SA

Is it really just sexism? An alternative argument for why women leave STEM

by Karen Morenz

Everyone knows that you’re not supposed to start your argument with ‘everyone knows,’ but in this case, I think we ought to make an exception:

Everyone knows that STEM (Science, Technology, Engineering and Mathematics) has a problem retaining women (see, for example Jean, Payne, and Thompson 2015). We pour money into attracting girls and women to STEM fields. We pour money into recruiting women, training women, and addressing sexism, both overt and subconscious. In 2011, the United States spent nearly $3 billion tax dollars on STEM education, of which roughly one third was spent supporting and encouraging underrepresented groups to enter STEM (including women). And yet, women are still leaving at alarming rates.

Alarming? Isn’t that a little, I don’t know, alarmist? Well, let’s look at some stats.

A recent report by the National Science Foundation (2011) found that women received 20.3% of the bachelor’s degrees and 18.6% of the PhD degrees in physics in 2008. In chemistry, women earned 49.95% of the bachelor’s degrees but only 36.1% of the doctoral degrees. By comparison, in biology women received 59.8% of the bachelor’s degrees and 50.6% of the doctoral degrees. A recent article in Chemical and Engineering News showed a chart based on a survey of life sciences workers by Liftstream and MassBio demonstrating how women are vastly underrepresented in science leadership despite earning degrees at similar rates, which I’ve copied below. The story is the same in academia, as you can see on the second chart — from comparable or even larger number of women at the student level, we move towards a significantly larger proportion of men at the more and more advanced stages of an academic career.

Although 74% of women in STEM report “loving their work,” half (56%, in fact) leave over the course of their career — largely at the “mid-level” point, when the loss of their talent is most costly as they have just completed training and begun to contribute maximally to the work force.

A study by Dr. Flaherty found that women who obtain faculty position in astronomy spent on average 1 year less than their male counterparts between completing their PhD and obtaining their position — but he concluded that this is because women leave the field at a rate 3 to 4 times greater than men, and in particular, if they do not obtain a faculty position quickly, will simply move to another career. So, women and men are hired at about the same rate during the early years of their post docs, but women stop applying to academic positions and drop out of the field as time goes on, pulling down the average time to hiring for women.

There are many more studies to this effect. At this point, the assertion that women leave STEM at an alarming rate after obtaining PhDs is nothing short of an established fact. In fact, it’s actually a problem across all academic disciplines, as you can see in this matching chart showing the same phenomenon in humanities, social sciences, and education. The phenomenon has been affectionately dubbed the “leaky pipeline.”

But hang on a second, maybe there just aren’t enough women qualified for the top levels of STEM? Maybe it’ll all get better in a few years if we just wait around doing nothing?

Nope, sorry. This study says that 41% of highly qualified STEM people are female. And also, it’s clear from the previous charts and stats that a significantly larger number of women are getting PhDs than going on the be professors, in comparison to their male counterparts. Dr. Laurie Glimcher, when she started her professorship at Harvard University in the early 1980s, remembers seeing very few women in leadership positions. “I thought, ‘Oh, this is really going to change dramatically,’ ” she says. But 30 years later, “it’s not where I expected it to be.” Her experiences are similar to those of other leading female faculty.

So what gives? Why are all the STEM women leaving?

It is widely believed that sexism is the leading problem. A quick google search of “sexism in STEM” will turn up a veritable cornucopia of articles to that effect. And indeed, around 60% of women report experiencing some form of sexism in the last year (Robnett 2016). So, that’s clearly not good.

And yet, if you ask leading women researchers like Nobel Laureate in Physics 2018, Professor Donna Strickland, or Canada Research Chair in Advanced Functional Materials (Chemistry), Professor Eugenia Kumacheva, they say that sexism was not a barrier in their careers. Moreover, extensive research has shown that sexism has overall decreased since Professors Strickland and Kumacheva (for example) were starting their careers. Even more interestingly, Dr. Rachael Robnett showed that more mathematical fields such as Physics have a greater problem with sexism than less mathematical fields, such as Chemistry, a finding which rings true with the subjective experience of many women I know in Chemistry and Physics. However, as we saw above, women leave the field of Chemistry in greater proportions following their BSc than they leave Physics. On top of that, although 22% of women report experiencing sexual harassment at work, the proportion is the same among STEM and non-STEM careers, and yet women leave STEM careers at a much higher rate than non-STEM careers.

So,it seems that sexism can not fully explain why women with STEM PhDs are leaving STEM. At the point when women have earned a PhD, for the most part they have already survived the worst of the sexism. They’ve already proven themselves to be generally thick-skinned and, as anyone with a PhD can attest, very stubborn in the face of overwhelming difficulties. Sexism is frustrating, and it can limit advancement, but it doesn’t fully explain why we have so many women obtaining PhDs in STEM, and then leaving. In fact, at least in the U of T chemistry department, faculty hires are directly proportional to the applicant pool —although the exact number of applicants are not made public, from public information we can see that approximately one in four interview invitees are women, and approximately one in four hires are women. Our hiring committees have received bias training, and it seems that it has been largely successful. That’s not to say that we’re done, but it’s time to start looking elsewhere to explain why there are so few women sticking around.

So why don’t more women apply?

Well, one truly brilliant researcher had the groundbreaking idea of asking women why they left the field. When you ask women why they left, the number one reason they cite is balancing work/life responsibilities — which as far as I can tell is a euphemism for family concerns.

The research is in on this. Women who stay in academia expect to marry later, and delay or completely forego having children, and if they do have children, plan to have fewer than their non-STEM counterparts (Sassler et al 2016Owens 2012). Men in STEM have no such difference compared to their non-STEM counterparts; they marry and have children about the same ages and rates as their non-STEM counterparts (Sassler et al 2016). Women leave STEM in droves in their early to mid thirties (Funk and Parker 2018) — the time when women’s fertility begins to decrease, and risks of childbirth complications begin to skyrocket for both mother and child. Men don’t see an effect on their fertility until their mid forties. Of the 56% of women who leave STEM, 50% wind up self-employed or using their training in a not for profit or government, 30% leave to a non-STEM more ‘family friendly’ career, and 20% leave to be stay-at-home moms (Ashcraft and Blithe 2002). Meanwhile, institutions with better childcare and maternity leave policies have twice(!) the number of female faculty in STEM (Troeger 2018). In analogy to the affectionately named “leaky pipeline,” the challenge of balancing motherhood and career has been titled the “maternal wall.”

To understand the so-called maternal wall better, let’s take a quick look at the sketch of a typical academic career.

For the sake of this exercise, let’s all pretend to be me. I’m a talented 25 year old PhD candidate studying Physical Chemistry — I use laser spectroscopy to try to understand atypical energy transfer processes in innovative materials that I hope will one day be used to make vastly more efficient solar panels. I got my BSc in Chemistry and Mathematics at the age of 22, and have published 4 scientific papers in two different fields already (Astrophysics and Environmental Chemistry). I’ve got a big scholarship, and a lot of people supporting me to give me the best shot at an academic career — a career I dearly want. But, I also want a family — maybe two or three kids. Here’s what I can expect if I pursue an academic career:

With any luck, 2–3 years from now I’ll graduate with a PhD, at the age of 27. Academics are expected to travel a lot, and to move a lot, especially in their 20s and early 30s — all of the key childbearing years. I’m planning to go on exchange next year, and then the year after that I’ll need to work hard to wrap up research, write a thesis, and travel to several conferences to showcase my work. After I finish my PhD, I’ll need to undertake one or two post doctoral fellowships, lasting one or two years each, probably in completely different places. During that time, I’ll start to apply for professorships. In order to do this, I’ll travel around to conferences to advertise my work and to meet important leaders in my field, and then, if I am invited for interviews, I’ll travel around to different universities for two or three days at a time to undertake these interviews. This usually occurs in a person’s early 30s — our helpful astronomy guy, Dr. Flaherty, found the average time to hiring was 5 years, so let’s say I’m 32 at this point. If offered a position, I’ll spend the next year or two renovating and building a lab, buying equipment, recruiting talented graduate students, and designing and teaching courses. People work really, really hard during this time and have essentially no leisure time. Now I’m 34. Within usually 5 years I’ll need to apply for tenure. This means that by the time I’m 36, I’ll need to be making significant contributions in my field, and then in the final year before applying for tenure, I will once more need to travel to many conferences to promote my work, in order to secure tenure — if I fail to do so, my position at the university would probably be terminated. Although many universities offer a “tenure extension” in cases where an assistant professor has had a child, this does not solve all of the problems. Taking a year off during that critical 5 or 6 year period often means that the research “goes bad” — students flounder, projects that were promising get “scooped” by competitors at other institutions, and sometimes, in biology and chemistry especially, experiments literally go bad. You wind up needing to rebuild much more than just a year’s worth of effort.

At no point during this time do I appear stable enough, career-wise, to take even six months off to be pregnant and care for a newborn. Hypothetical future-me is travelling around, or even moving, conducting and promoting my own independent research and training students. As you’re likely aware, very pregnant people and newborns don’t travel well. And academia has a very individualistic and meritocratic culture. Starting at the graduate level, huge emphasis is based on independent research, and independent contributions, rather than valuing team efforts. This feature of academia is both a blessing and a curse. The individualistic culture means that people have the independence and the freedom to pursue whatever research interests them — in fact this is the main draw for me personally. But it also means that there is often no one to fall back on when you need extra support, and because of biological constraints, this winds up impacting women more than men.

At this point, I need to make sure that you’re aware of some basics of female reproductive biology. According to Wikipedia, the unquestionable source of all reliable knowledge, at age 25, my risk of conceiving a baby with chromosomal abnormalities (including Down’s Syndrome) is 1 in about 1400. By 35, that risk more than quadruples to 1 in 340. At 30, I have a 75% chance of a successful birth in one year, but by 35 it has dropped to 66%, and by 40 it’s down to 44%. Meanwhile, 87 to 94% of women report at least 1 health problem immediately after birth, and 1.5% of mothers have a severe health problem, while 31% have long-term persistent health problems as a result of pregnancy (defined as lasting more than six months after delivery). Furthermore, mothers over the age of 35 are at higher risk for pregnancy complications like preterm delivery, hypertension, superimposed preeclampsia, severe preeclampsia (Cavazos-Rehg et al 2016). Because of factors like these, pregnancies in women over 35 are known as “geriatric pregnancies” due to the drastically increased risk of complications. This tight timeline for births is often called the “biological clock” — if women want a family, they basically need to start before 35. Now, that’s not to say it’s impossible to have a child later on, and in fact some studies show that it has positive impacts on the child’s mental health. But it is riskier.

So, women with a PhD in STEM know that they have the capability to make interesting contributions to STEM, and to make plenty of money doing it. They usually marry someone who also has or expects to make a high salary as well. But this isn’t the only consideration. Such highly educated women are usually aware of the biological clock and the risks associated with pregnancy, and are confident in their understanding of statistical risks.

The Irish say, “The common challenge facing young women is achieving a satisfactory work-life balance, especially when children are small. From a career perspective, this period of parenthood (which after all is relatively short compared to an entire working life) tends to coincide exactly with the critical point at which an individual’s career may or may not take off. […] All the evidence shows that it is at this point that women either drop out of the workforce altogether, switch to part-time working or move to more family-friendly jobs, which may be less demanding and which do not always utilise their full skillset.”

And in the Netherlands, “The research project in Tilburg also showed that women academics have more often no children or fewer children than women outside academia.” Meanwhile in Italy “On a personal level, the data show that for a significant number of women there is a trade-off between family and work: a large share of female economists in Italy do not live with a partner and do not have children”

Most jobs available to women with STEM PhDs offer greater stability and a larger salary earlier in the career. Moreover, most non-academic careers have less emphasis on independent research, meaning that employees usually work within the scope of a larger team, and so if a person has to take some time off, there are others who can help cover their workload. By and large, women leave to go to a career where they will be stable, well funded, and well supported, even if it doesn’t fulfill their passion for STEM — or they leave to be stay-at-home moms or self-employed.

I would presume that if we made academia a more feasible place for a woman with a family to work, we could keep almost all of those 20% of leavers who leave to just stay at home, almost all of the 30% who leave to self-employment, and all of those 30% who leave to more family friendly careers (after all, if academia were made to be as family friendly as other careers, there would be no incentive to leave). Of course, there is nothing wrong with being a stay at home parent — it’s an admirable choice and contributes greatly to our society. One estimate valued the equivalent salary benefit of stay-at-home parenthood at about $160,000/year. Moreover, children with a stay-at-home parent show long term benefits such as better school performance — something that most academic women would want for their children. But a lot of people only choose it out of necessity — about half of stay-at-home moms would prefer to be working (Ciciolla, Curlee, & Luthar 2017). When the reality is that your salary is barely more than the cost of daycare, then a lot of people wind up giving up and staying home with their kids rather than paying for daycare. In a heterosexual couple it will usually be the woman that winds up staying home since she is the one who needs to do things like breast feed anyways. And so we lose these women from the workforce.

And yet, somehow, during this informal research adventure of mine, most scholars and policy makers seem to be advising that we try to encourage young girls to be interested in STEM, and to address sexism in the workplace, with the implication that this will fix the high attrition rate in STEM women. But from what I’ve found, the stats don’t back up sexism as the main reason women leave. There is sexism, and that is a problem, and women do leave STEM because of it — but it’s a problem that we’re already dealing with pretty successfully, and it’s not why the majority of women who have already obtained STEM PhDs opt to leave the field. The whole family planning thing is huge and for some reason, almost totally swept under the rug — mostly because we’re too shy to talk about it, I think.

In fact, I think that the plethora of articles suggesting that the problem is sexism actually contribute to our unwillingness to talk about the family planning problem, because it reinforces the perception that that men in power will not hire a woman for fear that she’ll get pregnant and take time off. Why would anyone talk about how they want to have a family when they keep hearing that even the mere suggestion of such a thing will limit their chances of being hired? I personally know women who have avoided bringing up the topic with colleagues or supervisors for fear of professional repercussions. So we spend all this time and energy talking about how sexism is really bad, and very little time trying to address the family planning challenge, because, I guess, as the stats show, if women are serious enough about science then they just give up on the family (except for the really, really exceptional ones who can handle the stresses of both simultaneously).

To be very clear, I’m not saying that sexism is not a problem. What I am saying is that, thanks to the sustained efforts of a large number of people over a long period of time, we’ve reduced the sexism problem to the point where, at least at the graduate level, it is no longer the largest major barrier to women’s advancement in STEM. Hurray! That does not mean that we should stop paying attention to the issue of sexism, but does mean that it’s time to start paying more attention to other issues, like how to properly support women who want to raise a family while also maintaining a career in STEM.

So what can we do to better support STEM women who want families?

A couple of solutions have been tentatively tested. From a study mentioned above, it’s clear that providing free and conveniently located childcare makes a colossal difference to women’s choices of whether or not to stay in STEM, alongside extended and paid maternity leave. Another popular and successful strategy was implemented by a leading woman in STEM, Laurie Glimcher, a past Harvard Professor in Immunology and now CEO of Dana-Farber Cancer Institute. While working at NIH, Dr. Glimcher designed a program to provide primary caregivers (usually women) with an assistant or lab technician to help manage their laboratories while they cared for children. Now, at Dana-Farber Cancer Institute, she has created a similar program to pay for a technician or postdoctoral researcher for assistant professors. In the academic setting, Dr. Glimcher’s strategies are key for helping to alleviate the challenges associated with the individualistic culture of academia without compromising women’s research and leadership potential.

For me personally, I’m in the ideal situation for an academic woman. I graduated my BSc with high honours in four years, and with many awards. I’ve already had success in research and have published several peer reviewed papers. I’ve faced some mild sexism from peers and a couple of TAs, but nothing that’s seriously held me back. My supervisors have all been extremely supportive and feminist, and all of the people that I work with on a daily basis are equally wonderful. Despite all of this support, I’m looking at the timelines of an academic career, and the time constraints of female reproduction, and honestly, I don’t see how I can feasible expect to stay in academia and have the family life I want. And since I’m in the privileged position of being surrounded by supportive and feminist colleagues, I can say it: I’m considering leaving academia, if something doesn’t change, because even though I love it, I don’t see how it can fit in to my family plans.

But wait! All of these interventions are really expensive. Money doesn’t just grow on trees, you know!

It doesn’t in general, but in this case it kind of does — well, actually, we already grew it. We spend billions of dollars training women in STEM. By not making full use of their skills, if we look at only the american economy, we are wasting about $1.5 billion USD per year in economic benefits they would have produced if they stayed in STEM. So here’s a business proposal: let’s spend half of that on better family support and scientific assistants for primary caregivers, and keep the other half in profit. Heck, let’s spend 99% — $1.485 billion (in the states alone) on better support. That should put a dent in the support bill, and I’d sure pick up $15 million if I saw it lying around. Wouldn’t you?

By demonstrating that we will support women in STEM who choose to have a family, we will encourage more women with PhDs to apply for the academic positions that they are eminently qualified for. Our institutions will benefit from the wider applicant pool, and our whole society will benefit from having the skills of these highly trained and intelligent women put to use innovating new solutions to our modern day challenges.

NIPS vs. NeurIPS: guest post by Steven Pinker

Monday, December 23rd, 2019

Scott’s Update (Dec. 26): Comments on this post are now closed, since I felt that whatever progress could be made, had been, and I wanted to move on to more interesting topics. Thanks so much to everyone who came here to hash things out in good faith—which, as far as I’m concerned, included the majority of the participants on both sides.

If you want to see the position paper that led to the name change movement, see What’s In A Name? The Need to Nip NIPS, by Daniela Witten, Elana Fertig, Anima Anandkumar, and Jeff Dean. I apologize for not linking to this paper in the original post.

To recap what I said many times in this post and the comments: I myself am totally fine with the name NeurIPS. I think several of the arguments for changing the name were good arguments—and I thank some of the commenters on this post for elucidating those arguments without shaming anybody or calling them names. In any case the decision is done, and it belongs to the ML community, not to me and not to Steven Pinker.

The one part that I’m against is the bullying of anyone who disagrees by smearing them as a misogynist. And then, recursively, the smearing as a misogynist of anyone who objected to that bullying, and so on and so on. Most supporters of the name change did not engage in such bullying, but one leader of the movement very conspicuously did, and continues to do it even now (to, I’m told, the consternation even of many of her allies).

Since this post went up, something extremely interesting happened: Steven Pinker and I started getting emails from researchers in the NeurIPS community that said, in various words: “thank you for openly airing perspectives that we could not air, without jeopardizing our careers.” We were told that even women in ML, and even those who agreed with the activists on most points, could no longer voice opposition without risking their hiring or tenure. This put into a slightly different light, I thought, the constant claims of some movement leaders about their own marginalization and powerlessness.

Since I was 7 or 8 years old, the moral lodestar of my life has been my yearning (too often left unfulfilled) to stand up to the world’s bullies. Bullies come in all shapes and sizes: some are gangsters or men who sexually exploit vulnerable women; one, alas, is even the President of the United States. But bullying knows no bounds of ideology or gender. Some bullies resort to whisper networks, or Twitter shaming campaigns, or their power in academic hierarchies, to shut down dissenting voices. With the latter kinds of bully—well, to whatever extent this blog is now in a position to make some difference, I’d feel morally complicit if it didn’t.

As I wrote in the comments: may the 2020s be an era of intellectual freedom, compassion, and understanding for all people regardless of background. –SA

Scott’s prologue:

Happy Christmas and Merry Chanukah!

As a followup to last Thursday’s post about the term “quantum supremacy,” today all of us here at Shtetl-Optimized are humbled to host a guest post by Steven Pinker: the Johnstone Professor of Psychology at Harvard University, and author of The Language Instinct, How the Mind Works, The Blank Slate, Enlightenment Now (which I reviewed here), and other books.

The former NIPS—Neural Information Processing Systems—has been the premier conference for machine learning for 30 years. As many readers might know, last year NIPS changed its name to NeurIPS: ironically, giving greater emphasis to an aspect that I’m told has been de-emphasized at that conference over time. The reason, apparently, was that some male attendees had made puns involving the acronym “NIPS” and nipples.

I confess that the name change took me by surprise, simply because it had never occurred to me to make the NIPS/nipples connection—not when I gave a plenary at NIPS in 2012, and not when my collaborators and I coauthored a NIPS paper. It’s not that I’m averse to puerile humor. It’s just that neither I, nor anyone else I knew, had apparently ever felt the need for a shorthand for “nipples.” Of course, once I did learn about this controversy, it became hard to hear “NIPS” without thinking about it.

Back when this happened, Steven Pinker tweeted about NIPS being “forced to change its acronym … because some thought it was sexist. ?????,” apparently as part of a longer thread about “the new Victorians.” In response, a computer science professor sent Pinker an extremely stern email, saying that Pinker’s tweeting about this had “caused harm to our community” and “just [made] the world a bleaker place for everyone.” After linking to a National Academies report on bias in STEM, the email ended: “I hope you will choose to inform yourself on the discussion to which you have just contributed and that you will offer a well-considered follow up.” I won’t risk betraying confidences by quoting further. Of course, the author is warmly welcomed to share anything they wish in the comments here (or I can add it to the main post).

Steve’s guest post today consists of his response to this email. (He told me that, after sending it, he received no further responses.)

I don’t have any dog in the NIPS/NeurIPS debate, being at most on the “margin” (har!) of machine learning. And in any case the debate ended a year ago: the name is now NeurIPS and it’s not changing back. Reopening the issue would seem to invite a strong risk of social-media denunciation for no possible gain.

So why am I doing this? Mostly because I thought it was in the interest of humanity to know that, even when Steven Pinker is answering someone’s email, with no expectation that his reply will be made public, he writes the same way he does in his books: with clarity, humor, and an amusing quote from his mom.

But also because—again, without taking a position on the NIPS vs. NeurIPS issue itself—there’s a tactic displayed by Pinker’s detractors that fundamentally grates on me. This is where you pretend to an open mind, but it turns out that you’re open only to the possibility that your opponent might not have read enough reports and studies to “do better”—i.e., that they sinned out of ignorance rather than out of malice. You don’t open your mind even a crack to the possibility that the opponent might have a point.

Without further ado, here’s Steven Pinker’s email:

I appreciate your frank comments. At the same time, I do not agree with them. Please allow me to explain.

If this were a matter of sexual harassment or other hostile behavior toward women, I would of course support strong measures to combat it. Any member of the Symposium who uttered demeaning comments toward or about women certainly deserves censure.

But that is not what is at issue here. It’s an utterly irrelevant matter: the three-decades-old acronym for the Neural Information Processing Symposium, the pleasingly pronounceable NIPS. To state what should be obvious: nip is not a sexual word. As Chair of the Usage Panel of the American Heritage Dictionary, I can support this claim.

(And as my mother wrote to me: “I don’t get it. I thought Nips was a brand of caramel candy.”)  [Indeed, I enjoyed those candies as a kid. –SA] Even if people with an adolescent mindset think of nipples when hearing the sound “nips,” the society should not endorse the idea that the concept of nipples is sexist. Men have nipples too, and women’s nipples evolved as organs of nursing, not sexual gratification. Indeed, many feminists have argued that it’s sexist to conceptualize women’s bodies from the point of view of male sexuality.

If some people make insulting puns that demean women, the society should condemn them for the insults, not concede to their puerility by endorsing their appropriation of an innocent sound. (The Linguistics Society of America and Boston Debate League do not change their names to disavow jejune clichés about cunning linguists and master debaters.) To act as if anything with the remotest connection to sexuality must be censored to protect delicate female sensibilities is insulting to women and reminiscent of prissy Victorian taboos against uncovered piano legs or the phrase “with the naked eye.”

Any harm to the community of computer scientists has been done not by me but by the pressure group and the Symposium’s surrender. As a public figure who hears from a broad range of people outside the academic bubble, I can tell you that this episode has not played well. It’s seen as the latest sign that academia has lost its mind—that it has traded reasoned argument, conceptual rigor, proportionality, and common sense for prudish censoriousness, snowflake sensibility, and virtue signaling. I often hear from intelligent non-leftists, “Why should I be impressed by the scientific consensus on climate change? Everyone knows that academics just fall into line with the politically correct position.” To secure the credibility of the academy, we have to make reasoned distinctions, and stop turning our enterprise into a laughingstock.

To repeat: none of this deprecates the important effort to stamp out harassment and misogyny in science, which I’m well aware of and thoroughly support, but which has nothing to do with the acronym NIPS.

You are welcome to share this note with interested parties.