Optimal Demand-Oriented Topology for Hypertext Systems

July 29, 1997

ACM SIGIR’97

Scott Aaronson <aaronson@voicenet.com>

Database Systems Research Department

Bell Laboratories / Lucent Technologies

Research done at:

Department of Mathematics and Computer Science, Clarkson University

Advised by Dr. Christopher Lynch

Starting Fall ’97:

Department of Computer Science, Cornell University

Overview

How do we organize hypertext systems to minimize the time it takes users to find information?

A numerical index is proposed for rating how well-organized a hypertext system is.

Proven: Rearranging links to maximize this index is NP-complete. A genetic algorithm is used to search for the optimal link topology.

Evidence that the numerical index is correlated with actual hypertext efficiency comes from an experiment with 70 computer users.

Graph-Theoretic Model of Hypertext

A hypertext system P has pages p (P, which are vertices in a graph.

For each page p: demand dp represents popularity.

 degree (p represents max number of outgoing links.

A link is a directed edge from page pA to page pB. There are 3 kinds:

Virtual links (�
pA could link to pB.�
�
Real links R (((variables)�
pA does link to pB.�
�
Mandatory links M (R�
pA must link to pB.�
�

The system degree (s is the maximum number of links in the hypertext.

The attention-span factor 0 (((1 estimates users’ persistence.

Example of Hypertext System as Directed Graph

�

This system has 6 virtual links and system degree 4. The continuous arrows show one of 15 possible choices of real links.

The Organizational Index

We want to choose a set of real links that maximize the efficiency of the hypertext system. To do this, we need to measure efficiency.

Let l be the number of links in a hypertext path. Assume that at each link, users will get sidetracked with probability 1 - (. Then the strength of the path is (l - 1.

�

The Organizational Index (continued)

�

For any ordered pair of pages, let the weighted path strength be the product of the weight factor and the strength of the shortest path in real links. Then, to obtain the organizational index (, we sum the weighted path strengths over every (pA , pB) such that pA (pB:	

Maximizing this index tends to ensure that:

The pages with the highest demand are linked together.

Closely related pages are easily reachable from one another.

All of the links on a given page are relevant to that page.

Drawbacks of the Organizational Index

It does not ensure that every page is reachable from every other. There are several ways to fix this:

Increase the attention-span factor (.

Create a tree of mandatory links.

Rearrange links manually or with a separate algorithm.

It does not account for the hierarchical structure of most hypertexts. It treats all pages as equal, distinguished only by their popularity with users.

It treats pages as constants, and considers only how they are linked together. In reality, deciding what information goes within each page is a large part of hypertext design.

Sketch of NP-Completeness Proof

Given: An instance of the Hamiltonian cycle problem on a directed graph with N vertices. We map the vertices onto pages of a hypertext system and the edges onto virtual links. We set dp = (p = 1 for each page p and (s = N. Finally, we choose (((1 - 2 ((N2 - N))1 / (2N - 2).

If there is a Hamiltonian cycle in the virtual links, then choosing the real links to lie on that cycle gives us a lower bound on the organizational index: ((½ (N2 - N) ((2N - 2). If there is no Hamiltonian cycle in the virtual links, then we can set an upper bound on the organizational index: ((½ (N2 - N) - 1.

Because of the bound on (, (is always greater if a Hamiltonian cycle exists than if it doesn’t. So maximizing (is NP-complete.

Systems With and Without Hamiltonian Cycles

�

Given the bound on (, A is guaranteed to have a higher index than B

Sketch of Genetic Algorithm

Generating the initial population: For each candidate, real links are added randomly (without exceeding page degree constraints) until the system degree is reached.

Fitness evaluation: Evaluating a candidate’s organizational index (requires finding the minimum distance between every pair of pages: the classical all-pairs shortest paths problem. We solve it using Floyd’s algorithm, which runs in O(V 3) time, but better methods exist.

Candidate selection: If the fitness scaling parameter is turned on, we subtract the lowest index from each candidate’s index and add 1. Then, for each member of the new generation, we select two distinct parents by Monte Carlo or roulette-wheel selection, with the selection chance proportional to the index.

Sketch of Genetic Algorithm (continued)

Crossover: First, all real links that are present in both parents are copied to the child. Then, real links that are present in either parent are randomly selected and copied to the child (without exceeding page degree constraints), until the system degree is reached.

Mutation: A real link is selected at random and deleted; then a real link is added in a random empty position (without exceeding page degree constraints). This procedure is repeated until a random real number between 0 and 1 is greater than the mutation rate.

Initializing a new generation: If the elitist selection parameter is turned on, we copy the most fit candidate from the old generation to the first position in the new generation. Then we swap generations and repeat, halting after a specified number of seconds have elapsed.

Genetic Algorithm Convergence

�

Population = 20, Mutation Rate = 0.2, Elitist Selection On, Scaling On

Experiment with Human Subjects

We constructed a 46-page hypertext system on the topic of the Watergate scandal. We arbitrarily chose (= 0.7; (s = 120; and (p = 6 and dp = either 1 or 2 for each p (P.

Using the genetic algorithm (with a few manual changes to ensure connectivity), we created three sets of real links for this hypertext:

System�
A�
B�
C�
�
Org Index (�
7382�
8186�
9039�
�

We converted these hypertexts into HTML and placed them on a web server. We asked participants to search for two (randomly chosen) “research topics” in each of the three hypertexts, and rate how quickly they found information. We also recorded what pages they accessed.

Results of Experiment

User Ratings�
A ((= 7382)�
B ((= 8186)�
C ((= 9039)�
�
Number of Datasets�
140�
140�
140�
�
Mean Rating�
3.7�
5.3�
6.6�
�
Median Rating�
1�
7�
8�
�
Mode Rating�
0�
0�
10�
�
Standard Deviation�
4.1�
3.9�
3.9�
�

Pages Accessed�
A ((= 7382)�
B ((= 8186)�
C ((= 9039)�
�
Number of Datasets�
125�
125�
125�
�
Mean Path Length�
26.2�
16.4�
12.0�
�
Median Path Length�
20�
9�
7�
�
Mode Path Length�
2�
3�
2�
�
Standard Deviation�
23.5�
3.9�
3.9�
�
�

Distribution of User Ratings

Note that 0 was recorded when a user could not find information

�

Distribution of Number of Pages Accessed

Conclusion

An experiment with 70 computer users and 3 hypertexts found that hypertext systems with higher indices

Get higher ratings from users; and

Require fewer clicks to access desired information.

Though these results do not prove that the organizational index has practical value, they suggest that mathematical models might aid in the design of hypertext systems.

