A Full Characterization of Quantum Advice

Scott Aaronson Andrew Drucker MIT

June 6, 2010

Scott Aaronson, Andrew Drucker MIT,

A Full Characterization of Quantum Advice

What is the information content of a quantum state?

- This question has fueled a great deal of research in recent decades.
- We give a new way to concisely describe quantum states, with applications in quantum complexity theory.

Quick quantum review

• A quantum state over *n* qubits is a 'superposition'

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \quad \in \mathbb{C}^{2^n},$$

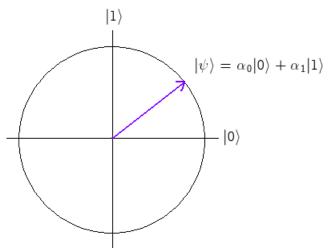
where the values $\{\alpha_x\}$ satisfy

$$\sum_{x} |\alpha_x|^2 = 1.$$

- If we measure |ψ⟩, it 'collapses' to a classical string: we see outcome |x⟩ with probability |α_x|².
- More general measurements are allowed: may first apply a unitary linear transformation U to |ψ⟩.

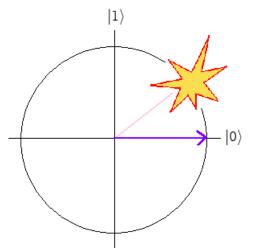
Quantum states are continuous

• Even a single-qubit state $|\psi\rangle$ takes an infinite number of classical bits to specify exactly! However...



Quantum states are continuous

• Most of this information is <u>destroyed</u> upon measurement. We receive only a single-bit outcome.



- To encode and reliably retrieve *m* classical bits from a quantum state, we need nearly *m* qubits **[Hol73]**.
- Quantum states are much less 'spacious' than they first appear!

- So perhaps concise (approximate) descriptions are possible...
- But, what kind of description is 'good enough'?

Measurement-preserving descriptions

- Suggestion [Aar04, Aar06]: given a state $|\psi\rangle$, try to describe a state $|\widetilde{\psi}\rangle$ which is statistically close to $|\psi\rangle$ under every simple, 2-outcome measurement.
- 'Simple' \leftrightarrow 'Performable by a small quantum circuit'.
- Could reflect an assumption about <u>nature</u>, or about our intended uses of the state $|\psi\rangle$.

Theorem (Aar04)

Fix c > 0, and let $|\psi\rangle$ be an n-qubit state. Using poly $(n, 1/\varepsilon)$ bits, one can describe a state $|\widetilde{\psi}\rangle$, for which $|\psi\rangle$ and $|\widetilde{\psi}\rangle$ are ε -close in statistical distance under every 2-outcome measurement by quantum circuits of size $\leq n^{c}$.

- Unfortunately, **[Aar04]** gave no efficient way to actually construct the approximating state $|\widetilde{\psi}\rangle$ from its classical description!
- This problem remains open.
- But we can improve substantially on the previous result.

Main Theorem

Fix c > 0, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C_{|\psi\rangle}$ of size poly $(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to <u>simulate</u> $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^{c}$.

 \bullet We can efficiently recognize an encoded copy of $|\psi\rangle,$ provided by an untrusted prover!

- ($|\phi
 angle$ is not just a copy of $|\psi
 angle$.)
- Caveat: the mapping $|\psi\rangle \to C_{|\psi\rangle}$ is nonconstructive.

Main Theorem

Fix c > 0, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C_{|\psi\rangle}$ of size poly $(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to <u>simulate</u> $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^{c}$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- $(|\phi\rangle$ is not just a copy of $|\psi\rangle$.)
- Caveat: the mapping $|\psi\rangle \rightarrow C_{|\psi\rangle}$ is nonconstructive.

Main Theorem

Fix c > 0, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C_{|\psi\rangle}$ of size poly $(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to <u>simulate</u> $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^{c}$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- ($|\phi
 angle$ is not just a copy of $|\psi
 angle$.)
- Caveat: the mapping $|\psi\rangle \to C_{|\psi\rangle}$ is nonconstructive.

Main Theorem

Fix c > 0, and let $|\psi\rangle$ be an n-qubit state. There exists a quantum circuit $C_{|\psi\rangle}$ of size poly $(n, 1/\varepsilon)$ performing a test on an input state $|\phi\rangle$.

Any $|\phi\rangle$ that passes the test can be used to <u>simulate</u> $|\psi\rangle$ to ε accuracy, under every 2-outcome measurement by quantum circuits of size $\leq n^{c}$.

- We can efficiently recognize an encoded copy of $|\psi\rangle$, provided by an untrusted prover!
- ($|\phi
 angle$ is not just a copy of $|\psi
 angle$.)
- Caveat: the mapping $|\psi
 angle o C_{|\psi
 angle}$ is nonconstructive.

Proof sketch (rough)

• Each *n*-qubit state $|\zeta\rangle$ defines a function

 $F_{|\zeta\rangle}$: {Size- n^c quantum circuits} \rightarrow [0, 1],

by the rule

$$F_{|\zeta\rangle}(C) := \Pr[C(|\zeta\rangle) = 1].$$

- Let S be the set of all such functions.
- Key known fact: S has low 'fat-shattering dimension' [Aar06], [ANTV99].

Wishful thinking

- Perhaps F_{|ψ⟩} can be 'singled out' among functions in S, by specifying its values on a small number (poly(n, 1/ε)) of measurement circuits.
- In this case, say $|\psi\rangle$ is isolatable in S.
- Then, our test $C_{|\psi\rangle}$ could simply request many copies of $|\psi\rangle$, and measure to compare against these values!

- Alas, $|\psi
 angle$ may not be isolatable...
- But something almost as good occurs:
- $F_{|\psi\rangle}$ can be 'built' out of a small number of functions in S which are isolatable!

The majority-certificates lemma

Lemma (informal) For each $F_{|\psi\rangle} \in S$, we can express

$$\mathcal{F}_{\ket{\psi}}pproxrac{1}{k}\sum_{i=1}^k\mathcal{F}_{\ket{\zeta_i}},$$

where

- i) $k = O(poly(n, 1/\varepsilon));$
- ii) Each $|\zeta_i\rangle$ is isolatable;
- iii) The equation above holds to high accuracy on every measurement circuit of size $\leq n^{c}$.

Scott Aaronson, Andrew Drucker MIT,

The majority-certificates lemma

- Then, to prove our main theorem:
- Our test circuit $C_{|\psi\rangle}$ requests copies of $|\zeta_1\rangle, \ldots, |\zeta_k\rangle$;
- It tests each according to our earlier idea.
- Having accurate copies of $|\zeta_1\rangle, \ldots, |\zeta_k\rangle$ lets us simulate $|\psi\rangle$.

The majority-certificates lemma

- The lemma's proof is a boosting-type argument (using results in learning theory of real-valued functions).
- Our lemma is not specific to quantum, and may find other uses.

Application: Quantum complexity classes

- Our main theorem gives new bounds on the complexity class **BQP/qpoly** [NY03].
- This class models quantum poly-time computation aided by a <u>non-uniform quantum advice state</u> (on poly(*n*) qubits), which depends only on the input length.

Theorem $BQP/qpoly \subseteq QMA/poly$.

- We can replace quantum advice with classical advice, with the help of an untrusted prover.
- Improves on results from [Aar04], [Aar06].

Application: Quantum complexity classes

- In fact, we can <u>exactly</u> characterize **BQP/qpoly** in terms of a quantum class involving only classical nonuniform advice.
- Other applications, and open problems, in the paper...

Thanks!