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I. ABSTRACT

Previous work by Aaronson[1] and others has es-
tablished the complexity class PostBQP, the class of
problems efficiently solvable (with bounded error) by a
quantum computer, given the ability to “postselect” on
the outcomes of subpolynomial measurements. Recent
work by Kuperberg[2] has revealed desirable refinements
to the original formulation of the class, namely, the
restriction of the power of postselection to outcomes
of probability Ω(exp(−poly(n))). We survey results
bounding, for particular gatesets, the rate at which
amplitudes shrink asymptotically in number of gates
applied. Most relevantly for PostBQP, we survey several
sufficient conditions on a gateset Γ for PostBQPΓ =
PostBQP (especially regarding Aaronson’s formulation
of ‘tameness’), compare the essential ideas of certain
extant proofs of a central relevant theorem in tame-
ness, and provide minor results concerning the rate at
which amplitudes shrink while applying known-to-be-
tame gates after a constant number of not-known-to-be-
tame ones. In this latter paradigm, we find that ‘most’
gates do not create fast-shrinking amplitudes after only
a constant number of applications.

II. CONTEXT AND RELATED WORK

‘Postselection’, as the coiner of the phrase puts it, is a
hypothetical power in probabilistic computing, allowing
one to discard all runs of a computation in which a given
(noncertain) event does not occur. It was introduced
by that name in a 2005 paper by Aaronson[1], who
proposed it as a way to ask about the power of quatum
computation under slightly different quantum mechanics
(as, say, a way of understanding where exactly ‘the power
of quantum computation comes from’), but who later
also proved it classically useful when he demonstrated
in the same paper PostBQP = PP, and, as a corollary,
a simple proof that PP was closed under intersection.

Others have used expanded upon the concept of post-
selection, either applying it to other complexity classes
than BQP[3], or by using PostBQP = PP as a Rosetta
Stone of sorts, to translate certain quantum results into
e.g. the collapse of the polynomial hierarchy[4][5].

Unfortunately, recent work by Kuperberg revealed
certain unjustified assumptions in Aaronson’s original
formulation[2], most notably the assumption of gateset-
independence. By way of resolution, Kuperberg has
proposed that we use “PostBQP” to refer to the class
with postselection limited to outcomes with probability
of occurrence Ω(exp(−poly(n))); with this formulation,
Aaronson’s original proofs of, inter alia, PostBQP =
PP are valid as stated. However, it is currently an
open problem whether or not the ability to postselect
on sub-singly-exponential outcomes creates a separably
stronger complexity class than the one obtained with this
restriction, and we have no results on this question to
present (beyond the mention of an obvious oracle relative
to which separation can be demonstrated).

We will, however, survey the work of Kuperberg
and others on the question of whether we can prevent
the occurrence of any possible outcomes of probability
o(exp(−poly(n))) by suitable restriction on the gateset,
thus allowing, within PostBQP, postselection on any
nonzero outcome, since such outcome will necessarily
have probability Ω(exp(−poly(n))). We present Aaron-
son’s formulation of ‘tameness’, a useful such charac-
terization in terms of the set of transition amplitudes,
in section III (we also provide our own formulation of
‘very-tame-ness’, which captures most known cases of
tameness with a tighter bound), and in section IV provide
a few illustrative examples of very tame, tame and non-
tame sets. In section V, we provide an exposition of Ku-
perberg’s main result on the tameness of algebraic sets,
as well as alternative proofs expressing the same con-
cepts in the language of other mathematical fields. We
present new formulations of tameness in the language of
transcendence theory (i.e. transcendental number theory)
in section VI, along with minor novel results regarding
not-known-to-be-tame numbers (or, alternatively, gates)
which do not allow for non-tame blowups when applied
a constant number of times amid many applications of
others known to be tame. In section VII, we list a few
questions which remain open.
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III. TAMENESS: A MATHEMATICAL FORMULATION

This formulation of ‘tameness’ was proposed by
Aaronson on MathOverflow[6]. The addition of ‘very
tame’ is ours.

Let A := a1, . . . , ar be a fixed, finite set of Real ai ∈
[−1, 1]. Such a set ‘expresses’ (‘in n applications’) the
elements of the set

SA(n) :=


2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣∣ ai(j,k) ∈ A {−1, 0, 1}

 ,

(1)

i.e. 2n-sums of n-products of arbitrary ai ∈ A ∪
{−1, 0, 1}. (Including 0, 1 allows our sums and products
to be “up to. . . ” without loss of generality.) We’re partic-
ularly interested in the smallest-absolute-value nonzero
A-expressible number:

dA(n) := min
x∈S∗

A(n)
{|x|} , (2)

(where S∗A(n) := SA(n)\ {0}) and in particular, just
how quickly it shrinks as n increases (asymptotically
speaking). In particular, it will be useful to discuss the
quantity − log dA(n) as a function fA : N→ R:

fA(n) := − log dA(n). (3)

Definition. We say that a set A is tame iff fA(n) =
O(poly(n)), and non-tame otherwise. Iff fA(n) = O(n),
we say A is very tame.

Tameness is of interest primarily because it is a suf-
ficient condition for PostBQPΓ = PostBQP that A :=
{a | a is a transition amplitude of some gate g ∈ Γ} is
tame.

IV. EXAMPLES OF (NON-)TAMENESS

In this section, we give a few illustrative examples of
very tame, tame and non-tame A.

A. A = {1/2} (very tame)

Let A := {1/2}. Then any
∏n
k ai(k) takes the form 2−`

for some ` ≤ n, and elements of SA(n) take the form
h/2` for ` ≤ n. The minimal number of this form is

dA(n) = 1/2n = 2−n, (4)

so fA(n) = n, and A is very tame.

B. A ∈ Qr (very tame)

Let A := {a1, . . . , ar} = {p1/q1, . . . , pr/qr}, with
pi, qi ∈ Z. Then any

∏n
k ai(k) takes the form

n∏
k

ai(k) =

∏n
k pi(k)∏n
k qi(k)

=

∏r
i p

ei
i∏r

i q
ei
i

(5)

for some ei such that
∑
i ei = n, and elements s ∈

SA(n) take the form

s =

2n∑
j

n∏
k

ai(j,k) =

2n∑
j

∏r
i p

ej,i
i∏r

i q
ej,i
i

=
h∏r

i q
maxj ej,i

,

(6)

where h is some polynomial in Z[xi, yi]. Note that
∀i,maxj ej,i ≤ n; then the least nonzero element is
bounded below by letting h = 1 and every maxj ej,i =
n:

dA ≥
1∏r
i y

n
= 2−n

∑r
i log yi , (7)

so fA(n) ≤ n
∑r
i log yi = O(n), and A is very tame.

C. Arbitrarily non-tame A

A particular case of this construction was given by
Achinger on MathOverflow[7] in response to Aaronson’s
question, demonstrating the existence of non-tame A.
The simple generalization to ‘arbitrarily non-tame’ A
is ours.

Claim IV.1. Let g : N→ N be some abritrary function
(for convenience, we will assume g(n) > n). Then there
is an A such that fA(n) 6= O(g(n)).

Consider, for this purpose, A =
{

1/2,
∑
i 2−G(i)

}
,

where G(0) := 1 (or any appropriate initial condition)
and G(n+ 1) := g(G(n)). Then, at least for n ∈ G(N),

dA(G(n)) ≤
∑
i

2−G(i) −
n∑
i

2−G(i)

=
∑
i=n+1

2−G(i)

≤ 2 · 2−G(n+1)

= 2 · 2−g(G(n)), (8)

so fA(n) ≥ g(n) − 1 whenever n ∈ G(N), and, since
G(N) includes arbitrarily large elements whenever g =
Ω(n), fA(n) 6= O(g).

Letting g(n) := 2n, then, we show that there exist
non-tame A.1 Such constructions, which for g(n) =
ω(n) involve a necessarily transcendent second element,
have interpretations in transcendence theory, which are
discussed in section VI below.

V. ALGEBRAIC RESULTS

Having observed the existence of both tame and arbi-
trarily non-tame A, the natural next question is: “What
conditions on the ai are necessary or sufficient for the

1Letting g(n) := n2, by contrast, we find a not-very-tame A. If,
as we suspect but cannot here prove, the bound on this A is tight, it
gives the example of a tame A which is not very tame.
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tameness of A?” In this section, we present three extant
proofs of the tameness of algebraic sets, i.e. the following
theorem:

Theorem V.1. Let A := {a1, . . . , ar}, with all ai
algebraic. Then A is very tame.

By examples above, this bound is tight.
Unsurprisingly, the three proofs discussed are effec-

tively equivalent from a general perspective, and follow
the form:
• Let our ai generate some finite algebraic field

extension K ⊇ Q.
• Bound below the quantity∏

σi:K↪→C
|σis|C , (9)

where s is the amplitude under investigation and σ
runs over the embeddings K ↪→ C.

• Bound above the |σis|C, similarly bounding below
each (but most importantly for our purposes, the
natural embedding).

However, for readers who prefer explicit formalizations
in one theory or another, we present three different
formulations of the proof, which express the above idea
in the language of valuation theory, linear algebra, and
Galois theory, respectively.

A. Applications of the Algebraic Tameness Theorem

Since the Hadamard and Toffoli gates exhibit only
algebraic transition amplitudes (namely {0, 1, 1/√2}),
no possible outcome of a Hadamard-Toffoli circuit is
less likely than Ω(2−n). So PostBQP{H,CCNOT} =
PostBQP, for PostBQP as refined by Kuperberg[2].
Since {H,CCNOT} is universal for PostBQP, this
implies, speaking colloquially, that any postselection
algorithm that isn’t making explicit use of gateset pe-
culiarities should be no stronger than PostBQP.

B. Proof In Valuation Theory, by Rosen

This proof was provided by Rosen on
MathOverflow[8] in response to Aaronson’s question.
Proofs of certain elementary lemmas, or surveys of such
proofs provided elsewhere, are ours.

Let A := {a1, . . . , ar} be a finite set of algebraic
numbers, and let K := Q(a1, . . . , ar) be a number field
containing them (along with, necessarily, all rationals).
Then a standard result in valuation theory (proved in
Appendix A) is

∀x ∈ K∗,
∏
v

|x|v = 1 (10)∑
v

log |x|v = 0, (11)

where v runs over (normalized) places on K. Then,
letting v0 be the place from the natural embedding of K
in R, i.e. the absolute value of an element so embedded,
we see

− log |x|v0 =
∑
v 6=v0

log |x|v (12)

and so, we can bound above the left side by bounding
above the right.

Considering |ai|v for fixed
{
ai = pi

qi

}
(with pi, qi ∈

Z[α1, . . . , αs] for suitable algebraic roots αj = y
√
x :

y, x ∈ Z) over places v, we see

|ai|v > 1⇐⇒ v
∣∣qi, (13)

and so, since qi has a finite set of divisors, there exists
a finite set of places Pai :=

{
z ∈ K∗

∣∣ z∣∣qi} such that

v ∈ Pai ⇐⇒ log |ai|v > 0. (14)

Then, seeing that

log

∣∣∣∣∣
n∏
k

ai(k)

∣∣∣∣∣
v

= log

n∏
k

∣∣ai(k)∣∣v
=

n∑
k

log
∣∣ai(k) ∣∣v , (15)

we conclude

log

∣∣∣∣∣
n∏
k

ai(k)

∣∣∣∣∣
v

> 0⇐⇒ v ∈
n⋃
i

Pai . (16)

Defining PA := Parch ∪
⋃n
i Pai , we see

log

∣∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣∣
v

> 0⇐⇒ v ∈ PA, (17)

and so reduce the infinite-sum bound above to the finite

− log |x|v0 ≤
∑
v∈P∗

A

log |x|v , (18)

where P ∗A := PA\ {v0}.
Since, for fixed v, log max

x∈SA(n)
{|x|v} = O(n) (proof

in Appendix B), we see

fA(n) = max
x∈SA(n)

{
− log |x|v0

}
≤ max
x∈SA(n)

∑
v∈P∗

A

log |x|v


≤
∑
v∈P∗

A

max
x∈SA(n)

{log |x|v}

≤ |P ∗A|O(n)

= O(n). (19)
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C. Proof In Linear Algebra, by Sawin

This proof was provided by Sawin on
MathOverflow[9] in response to Aaronson’s question.

The abstract-algebraic ideas of Rosen’s proof can be
expressed in linear-algebraic terms, for readers who find
such formulations more familiar:

Consider the d-degree field extension K =
Q[α1, . . . , αs] ⊇ Q as a d-degree vector space over Q;
then we can express multiplication by any x ∈ K as an
operator linear in the basis elements, so linear K → K.
So identify it with a matrix with entries in Q and note
that the natural real absolute value of an element is
given by the eigenvalue corresponding to the eigenvector
(|e1|−1

σ0
, . . . , |ed|−1

σ0
), where |e1|σ0

is the real absolute
value of (1, 0, . . . , 0) and |ed|σ0

is the real absolute value
of (0, . . . , 0, 1), etc.

NB: The essential relation to Kuperberg’s proof (be-
low, in V.D) here is that the other eigenvectors are
similarly of the form (. . . , |ei|−1

σj
, . . .), for σj some other

embedding K ↪→ C, and the determinant, naturally, is
their product.

We quote the remainder of Sawin’s proof:
We can lower bound it by lower bounding
the determinant and upper bounding the other
eigenvalues. Observe:
The entries grow at most exponentially, so the
other eigenvalues grow at most exponentially.
Because the number field is a field, the element
is invertible, so the determinant is nonzero.
The denominators of the entries grow at most
exponentially, so the denominator of the deter-
minant grows at most exponentially.
Then you get a lower bound on one eigenvalue
by division and the fact that the numerator of
the determinant must be at least 1.

D. Proof in Galois Theory, by Kuperberg

This proof is given by Kuperberg[2]. His proof is more
succint, but we are slightly more careful here to prove
very-tame-ness where he only proved tameness.

Given a n-degree Q-polynomial in r algebraic vari-
ables ai (which together generate a finite extension
K ⊃ Q of degree d), we have by the Primitive Element
Theorem of Galois that K has some primitive root α,
i.e. each ai is epxressible as some d-degree polynomial
qi(α). So it suffices to consider r = 1 (and, say, a1 = α),
n increasing only by a linear factor of d.

Then let α2, . . . , αd be distinct Galois conjugates of
α (i.e. replacing α with one of them gives us a different
embedding K ↪→ C). Note then that each |p(αi)| is
bounded above by |αi|n 2nPmax, for Pmax the largest
coefficient in p, itself bounded by (QnΣ2n), for QΣ the
sum of all coefficients in the qi above.

The product

q′
(
x1

y1
, . . . ,

xd
yd

)
:=

d∏
i

p(αi) (20)

is some rational polynomial of degree ddeg(p) in
x1

y1
, . . . , xdyd the rational coordinates of α; since the ar-

guments are fixed, we can bound it below (in absolute

value) by
(∏d

i yi

)−n
Plcm for Plcm the least common

multiple in the denominators of the coefficients in p,
itself bounded below by (Qlcm)−n, for Qlcm the least
common multiple of all coefficients in the qi above.

So, for some p of degree n, we bound |p(α)| below
by 2Ω(n) with the bounds∣∣∣∣∣

d∏
i

p(αi)

∣∣∣∣∣ = 2Ω(n) (21)

∀i, |p(αi)| = 2O(n). (22)

VI. TRANSCENDENCE RESULTS

A. A Brief Layover in Liouville
A Liouville number α has the property

∀r, ∃p/q ∈ Q :

∣∣∣∣α− p

q

∣∣∣∣ < 1

qr
; (23)

in fact, this ∃ finds infinitely many distinct p/q (Proof:
Note that any particular p/q approximates only to 1/qR

only for some finite R, and take the p′/q′ given for
r = R + 1. Repeat.), and we call this ability to be
approximated to within qr by infinitely many p/q “r-
approximability”. Similarly, non-Liouville numbers β
can be assigned a finite irrationality coefficient µ(β) ∈
R+ by

µ(β) := inf {r ∈ R+ | α is r-approximable} . (24)

(It is conventional to assign Liouville numbers α an
irrationality coefficient of ∞.)

It follows readily that p/q ∈ Q =⇒ µ(p/q) = 1, and
it is a difficult result of Roth that β is algebraic =⇒
µ(β) = 2. Note, however, that this is not bicondi-
tional—there are transcendental γ such that µ(γ) = 2,
and in fact, {γ ∈ R | µ(γ) > 2} is a set of measure zero
in R.

B. Applied Irrationality
In demonstrating the existence of arbitrarily non-tame

A above, we saw that, by using only a single application
of one transcendent gate and several applications of a
rational one—a small piece of the expressivity of our
sum-product form—we could produce amplitudes which
shrank arbitrarily fast. Thus inspired, we define

dαa (n) := min((αS{a}(n) + S{a}(n))\ {0}) (25)
fαa (n) := − log daα, (26)
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which corresponds approximately to the minimal am-
plitude (or the logarithm of its shrinkage) after one
application of the α gate and n applications of the a gate.
A little more suggestively, we attempt to capture whether
a number has an ‘bounded’ or ‘unbounded’ amount of
non-tameness by considering whether or not a single
application can make otherwise tame numbers non-tame,
even as the fraction of otherwise-tame numbers applied
approaches 1 without bound.
Definition. We say that a number α is safe (for one
application) iff fαA(n) = O(poly(n)) for any algebraic2

A, and non-safe otherwise. Iff fαA(n) = O(poly(n)), we
say α is very safe.

In general, f{a,α} = Ω(fαa ), and our results from
section IV above can be written thus

fA = Ω

(
f

(
∑
i 2−G(i))

1/2

)
6= O(g). (27)

i.e. there exist α which are arbitrarily unsafe, even for a
single application.

We also have the theorem:

Theorem VI.1. fα1/2(n) 6= O(n1+ε) =⇒ µ(α) =∞.

Corollary VI.1. µ(α) <∞ =⇒ fα1/2(n) = Õ(n).

(proved in Appendix C) So safeness is a more gen-
eral condition than non-Liouville-ness—that is, while
our examples of non-safeness involve an application of
some Liouville α and its approximation by dyadics,
the Liouville-ness of α is insufficient to produce non-
safeness, and in ‘most’ cases only produces non-very-
safeness. Note, however, that safeness is a more general
condition than tameness, and this result does not resolve
whether tameness or more or less general than non-
Liouville-ness.

At a minimum, though, it does imply that several con-
stants of known-bounded irrationality[10] are safe for at
least one application, including e−1, π−1, π−2, (ln 2)−1,
(ln 3)−1, (ζ3)−1, after noting that Liouville-Roth coef-
ficient is invariant under Möbius transforms[11].

C. Unsafe Unions

Unforuntately, this result (that non-Liouville-ness of α
guarantees very-safeness) is not robust under the obvious
set-union. If we take α, β such that fα1/2(n), fβ1/2(n) =

O(n), it is nevertheless possible for fα,β1/2 (defined with
one application each of α, β and n applications of 1/2)
to grow arbitrarily quickly!
Example. Fix some arbitrarily-unsafe γ (say, :=∑
i 2−G(i) for some fast-growing g), and consider

(α, β) of the form (α, γ − α). Since α with

2We might instead define this for tame A, but it is unclear at this
time how and if that condition differs from algebraicity, and in any
case, we find things easier to prove in this formulation.

µ(α) > 2 have measure zero in R, so too does
{α ∈ R | µ(α) > 2 or µ(γ − α) > 2}; so both elements
of this tuple have µ(∗) = 2 for almost all α—it follows
that fα1/2(n), fβ1/2(n) = O(n). But γ = α + β by
construction, so γ ∈ Sα,β1/2 (n), so fα,β1/2 (n) 6= O(g).

This construction, interestingly enough, works even if:
• the only gates corresponding to α and β are applied

on (at the time) unentangled registers (using the
above (α, γ − α)),

• the only gates corresponding to α and β are single-
wire gates applied immediately after one another
on the same wire (using (α, γ/α) with similar
measure-theoretic proof).

D. Recovering the Single-α Case for (Constant) Multi-
ple Applications

So two gates which are (very) safe individually can be
combined to produce a set which is arbitrarily non-safe
after only a single application of each—can the same
be true of a (very) safe gate and itself ? i.e. slightly
more generally: if α is safe for a single application, is it
safe for some constant number of applications? In terms
of transcendence theory, we might make the following
conjectures:

Conjecture VI.1. (Weak Form) µ(α) < ∞ =⇒
µ(p(α)) <∞, for any polynomial p.

Conjecture VI.2. (Strong Form) µ(α) ≥ µ(p(α)), for
any polynomial p.

This says, intuitively, that we cannot make a num-
ber ‘more irrational’ by taking mapping it by some
polynomial. (The version restricted to algebraic and
rational numbers is quite obviously true.) The disproofs
of additive and multiplicative closure in general don’t
apply here to, say, tuples (α, p(α)), as they require
enforcing a different dependence between the elements
than the algebraic one requested here. However, we do
not at this time have a proof; see VI.E for the best
alternative we are prepared to present.

E. The Single-α Case in Probability

Theorem VI.2. Fix some d. For a real α chosen uni-
formly at random on some interval, with probability 1,
µ(p(α)) ≤ 2 for all polynomials p of degree ≤ d with
algebraic coefficients.

Corollary VI.2. The theorem holds for real α chosen at
random from any uniformly continuous distribution on
R.

The corollary means, among other things, that if we
choose an angle θ uniformly at random from some
interval, and let a1, . . . , ar be algebraics, then sin θ is,
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with probability 1, very safe for any constant number of
applications.

In fact, they both generalize to the s-dimensional case:

Theorem VI.3. Fix some d. For a real (α1, . . . , αs) cho-
sen uniformly at random on some [0, 1]s, with probability
1, µ(p(α1, . . . , αs)) ≤ 2 for all polynomial p of degree
≤ d with algebraic coefficients.

Corollary VI.3. The theorem holds for vectors chosen
at random from any uniformly continuous distribution on
Rs.

Here we prove the first theorem, and address its
extensions to the other claims in Appendix D.
Outline of proof: It suffices to consider nonconstant poly-
nomials. There are countably many such polynomials
p of degree ≤ d with algebraic coefficients, and, for
each such p, each z ∈ R is expressible as p(x) for
at most d distinct x. So the set of x which can be
mapped into some y with µ(y) > 2 is the sum of at
most countably many images of {y | µ(y) > 2} under
almost everywhere absolutely continuous mappings, and
so has measure zero.

Proof. It suffices to consider nonconstant polynomials,
of which there are countably many when restricted to
algebraic coefficients. (Recall that there are countably
many algebraic numbers.) For each such pi and arbitrary
c ∈ {1, . . . , d}, define qi,c :

qi,c(y) :=
(
p−1(y)

)
min{c,#p−1(y)} , (28)

i.e. the inverse of p−1(y) at points where the preimage
has only 1 point, and at all others the cth-least preimage
x (or the greatest such x if there are fewer than c). Such
functions are almost everywhere absolutely continuous.
Then, if y = pi(x) for some pi, we have qi,c(y) = x for
some c. So define B:

B :=
⋃
i

d⋃
c

qi,c {y | µ(y) > 2} , (29)

the set of points which are mapped into some y with high
Liouville-Roth coefficient by some algebraic-coefficient
polynomial of degree ≤ d. Then, since the latter set has
measure zero, it is mapped by each (a.e.a.c.) q to a set
of measure zero, and the union-set has measure zero by
the countable subadditivity of measure.

VII. STILL OPEN QUESTIONS

While PostBQP is not really new, the restric-
tion of postselection to outcomes of probability
Ω(exp(−poly(n))) is. Various questions remain open,
which we present here by way of conclusion, without
commentary:

• Are there gatesets Γ for which PostBQPΓ )
PostBQP?

• Are there reasonable gatesets with non-tame tran-
sition amplitudes which are nonetheless tame? (i.e.
when actually built into circuits)

• Are there sufficient conditions for tameness more
general than algebraicity?

• Are there useful nonobvious conditions for safe-
ness? (either in one or multiple αi)

• Conjectures VI.1 and VI.2: Does safeness for one
application imply safeness for d applications?

• Are there useful generalizations of safeness to e.g.
safeness for log n applications?

• What quantum-algorithmic questions rely on an-
swers to these questions in tameness/safeness?

APPENDIX A
PROOF: PRODUCT RULE ON VALUATIONS

Proposition A.1. Let K be a finite extension of Q.
Then ∀x ∈ K,

∏
v |x|v = 1, letting v run over the

(normalized) valuations of primes on K.

We begin by proving the case K = Q:

Lemma A.1. ∀x ∈ Q,
∏
v |x|v = 1.

Proof. Note that this product formula is a homomor-
phism over multiplication, i.e. that

∏
v

|xy|v =

(∏
v

|x|v

)(∏
v

|y|v

)
, (30)

so it suffices to prove the claim for prime and unit x.
Note then that, on units,∏

v

|x|v =
∏
v

1 = 1 (31)

and on primes,∏
v

|x|v = |x|x · |x|∞ ·
∏

v/∈{x,∞}

|x|v

= x−1 · x ·
∏

v/∈{x,∞}

1

= 1, (32)

as desired.

We then proceed to prove the original proposition for
general K a finite extension of Q.
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Proof.

∏
v∈val(K)

|x|v =
∏

p∈Spec(K)

|x|p

=
∏

q∈Spec(Q)

∣∣∣‖x‖K/Q∣∣∣1/[K:Q]

q
(∗)

=

 ∏
q∈Spec(Q)

∣∣∣‖x‖K/Q∣∣∣
q

1/[K:Q]

=

 ∏
v∈val(Q)

∣∣∣‖x‖K/Q∣∣∣
q

1/[K:Q]

= 11/[K:Q] (by 32)
= 1 (33)

∗: The second step follows from the definition of ‖·‖K/Q:

‖x‖K/Q :=
∏

σi:K↪→C
|σix|C , (34)

which should be reminiscent of the other proofs above.
Readers seeking a deeper understanding of the de-
tails should refer to a text in algebraic number the-
ory. We consulted lecture notes from Milne’s course at
Michigan[12] for this purpose.

APPENDIX B
PROOF: |xn|v = 2O(n)

For any fixed v, we note the bound
log max

x∈SA(n)
{|x|v} = O(n) in both the Archimedian

case:

s ∈ SA(n) =⇒ log |s|v = log

∣∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣∣
v

≤ log 2n

∣∣∣∣∣
n∏
k

|·|v
max
j
ai(j,k)

∣∣∣∣∣
v

= n+ log

n∏
k

max
j

{∣∣ai(j,k)∣∣v}
≤ n+

n∑
k

log max
i
{|ai|v}

≤ n+ n log max
i
{|ai|v}

= O(n) (35)

and the non-Archimedian:

s ∈ SA(n) =⇒ log |s|v = log

∣∣∣∣∣∣
2n∑
j

n∏
k

ai(j,k)

∣∣∣∣∣∣
v

≤ log

∣∣∣∣∣
n∏
k

|·|v
max
j

{
ai(j,k)

}∣∣∣∣∣
v

≤ log

n∏
k

max
j

∣∣ai(j,k)∣∣v
≤

n∑
k

log max
i
|ai|v

= n log max
i
|ai|v

= O(n). (36)

APPENDIX C
PROOF: fα1/2(n) 6= O(n1+ε) =⇒ µ(α) =∞

Fix some positive ε; then, by hypothesis, there exist
infinitely many n such that

− log
∣∣∣αqn

2n
− pn

2n

∣∣∣ > n1+ε∣∣∣αqn
2n
− pn

2n

∣∣∣ < 1

2n1+ε∣∣∣∣α− pn
qn

∣∣∣∣ < 1

qn2n1+ε−n . (37)

But, noting for any fixed r that n1+ε−n = Ω(n(r−1)),
we can choose sufficiently large n such that∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qn2n1+ε−n (by 37)

<
1

qn2n(r−1)
(for n sufficiently large)

≤ 1

qnq
r−1
n

( qn2n ≤ 1 =⇒ qn ≤ 2n)

=
1

qrn
, (38)

so µ(α) =∞. The corollary follows contrapositively.

APPENDIX D
EXTENSIONS OF THEOREM VI.2

From Theorem VI.2, we prove Corollary VI.2:

Proof. Let X be a uniformly continuous probability
distribution; let F : R → [0, 1] be its CDF, which
is thus absolutely continuous. (Proof: By a theorem
of Lesbegue, any measure can be decomposed into an
absolutely continuous part, a singular part, and an atomic
part. But X has neither of the latter two, by its uniform
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continuity. So the integral with respect to its measure,
i.e. its CDF, is absolutely continuous.) Define B ⊆ R:

B := {α ∈ R | ∃p : µ(p(α)) > 2} , (39)

for some polynomial p of degree ≤ d. Then, by the
probability integral transform, we have

P (X ∈ B) = P (F−1(U) ∈ B), (40)

where U ∼ Unif[0, 1]. Note F−1(U) ∈ B ⇐⇒ U ∈
F (B), so

P (F−1(U) ∈ B) = P (U ∈ F (B)) (41)

But since B has measure zero, it has measure zero
under any absolutely continuous mapping. Thus F (B)
has measure zero, and P (U ∈ F (B)) = 0.

We prove the second theorem by reducing to the first:
Note again that it suffices to consider nonconstant pi,
note that there exist countably many such polynomials,
that each produces an at most (s − 1)-dimensional
manifold ⊂ Rs as the preimage of any point y. So, for
almost all αs, the preimage of any point y is an (s−2)-
dimensional manifold. By finite induction, we reduce to
the s = 1 case with probability 1.

We prove the second corollary from the second theo-
rem by identical argument to the first.

APPENDIX E
THE NUMBER ZOO

For the reader’s reference, we summarize here impor-
tant fixtures in the hierarchy of tameness/safeness, and
state a few facts, either common results or consolidations
of results surveyed or proven here. For conciseness, we
omit “or above” and “or below” when obviated by the
inclusion relations.

Q ( Q (42)
( {γ | µ(γ) = 2} (43)
( {β | µ(β) <∞} = Lc (44)

(
{
α
∣∣∣ f{α}(d)
{a1,...,ar}(n) = O(n)

}
(45)

• The first line has measure 0, as does the comple-
ment of the second. (Lc is the complement of the
Liouville numbers.)

• The first line is countable; the second is uncount-
able. All lines have uncountable complement.

• Sets of numbers from the first line are known to be
very tame.

• With probability 1, sets of numbers from any line
are known to be very safe for d applications.

• There exist pairs of numbers from the second line,
each individually safe for d applications, which
together are arbitrarily unsafe for one application
each. Such pairs, however, have measure zero in
R2.
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