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Abstract

We prove an infinite separation between quantum information complexity and quantum
communication complexity by considering the exclusion game, first introduced by Perry, Jain
and Oppenheim [1], who showed that for appropriately chosen parameters of the game, the
quantum information cost vanishes as the size of the problem n increases. We extend their
result by showing that for those parameters, the quantum communication cost is lower bounded
by Ω(log n), thereby proving that there are protocols for which an infinite gap exists between
their quantum information and communication costs. We show that this holds not only for
zero-error protocols, but also for protocols that have a sufficiently small probability of error.

1 Introduction

The exclusion game, introduced by Perry, Jain and Oppenheim (PJO) [1], provides the first example
of a communication task for which there is an infinite separation in information costs between
classical and quantum strategies. The game, which involves two players Alice and Bob who have
infinite computational power, may be described as follows: Alice and Bob randomly draw an n-bit
string x and some subset y ⊆ [n], where |y| = m, respectively. They win the game if Bob is able
to output a string z that is different from x restricted to the bits specified by y, subject to the
constraint that the only allowed communication, whether classical or quantum, is from Alice to
Bob.

There are two quantities that are relevant to the communication task, namely the information
cost and the communication cost. The information cost of a protocol measures the amount of
classical or quantum information exchanged, whereas the communication cost measures the number
of bits or qubits exchanged in order for the protocol to succeed. In [1], the authors consider the
information costs required for the exclusion game and they prove that for certain values of m, while
the information cost of any classical protocol scales linearly with n, there exists a quantum protocol
with an information cost that goes to zero as n increases, thus giving the first example of an infinite
separation between quantum and classical information costs.

The PJO protocol, however, requires that n qubits be sent from Alice to Bob. Therefore, even
though the information cost becomes vanishingly small with increasing n, the communication cost
of the protocol grows with n. An interesting question that then arises is whether it is possible to
succeed in the game with a smaller communication cost, i.e. can Alice and Bob still succeed if Alice
compresses her quantum message? In particular, is it possible for the message to be compressed so
that the communication cost also goes to zero with increasing n?

In this paper, we answer the above question in the negative, thus giving the first example of an
infinite separation between the quantum information and communication costs. The significance of
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this result may be compared with its classical counterpart, where only an exponential separation
was shown between classical information and communication costs [2].

This paper is organized as follows. In Section 2, we review the general formulation of one-way
communication tasks and introduce the exclusion game. In Section 3, we review the quantum
strategy employed by [1] that shows that the quantum information cost of the exclusion game goes
to zero as the size of the problem increases. In Section 4, we prove a Ω(log n) lower bound on
the communication cost of any quantum protocol that wins the exclusion game; its variant, where
a vanishingly small error is allowed is also discussed. Both cases lead to an infinite separation
between quantum information and communication costs for certain parameters of the game.

2 General formulation of one-way communication tasks

A typical one-way communication task described by the function f : {0, 1}a×{0, 1}b → {0, 1} may
be described as follows: Alice draws some string x ∈ {0, 1}a and Bob draws some string y ∈ {0, 1}b.
Alice sends a message to Bob and then Bob outputs a string z. They win the game if z = f(x, y).

The exclusion game introduced in [1] requires a more general framework, which we introduce
here. We shall describe a general one-way communication task by the function F : {0, 1}a ×
{0, 1}b → P({0, 1}∗), where P(S) denotes the power set of S. As before, Alice and Bob draw some
strings x ∈ {0, 1}a and y ∈ {0, 1}b respectively. Then, Alice sends a message to Bob and Bob
outputs a string z. The winning condition is made more general though. We say they win the
game if z ∈ F (x, y).

It is clear that the more general framework reduces to the typical framework when F (x, y)
contains exactly one element, say f(x, y) . In this case, the only way in which they can win the
game is if z = f(x, y).

We shall now define the exclusion game. Let

M : Y(n,m) × {0, 1}n → {0, 1}m

(y, x) 7→ My(x).

where Y(n,m) is the set of all subsets of {1, . . . , n} of size m, and My(x) is the m-bit string formed
by restricting the string x to the bits specified by y. The exclusion-game function EXCn,m is then
defined as

EXCn,m : {0, 1}s(m) × {0, 1}n → {0, 1}m

(xyy, x) 7→ {z|z 6=My(x)},

where xyy is the binary representation of y, and s(m) is the number of bits needed to specify a
subset y of size m. The winning condition may then be stated as follows: Alice and Bob win if for
given x and y, Bob outputs a string z such that z 6=My(x).

We now define two different ways to measure the complexity of one-way communication proto-
cols, namely the communication complexity and information complexity.

For a protocol Π that wins the game defined by the function F , we denote the information cost
of a λ-protocol (where λ = C (classical) or = Q (quantum)) by λFCC(Π), and the corresponding
communication cost by RFIC(Π).

Then λFCC(Π) is defined to be the number of bits or qubits exchanged throughout the protocol,
and λFIC(Π) is defined as follows: λFIC(Π) = I(X : Π|Y ) + I(Y : Π|X), where I(S : T |U) =
H(SU) +H(TU)−H(STU)−H(U) measures the mutual information between S and T given U .

The λ-information complexity of a game is then defined to be λFIC = infΠ λ
F
IC(Π). The λ-

communication complexity is defined similarly.
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3 Perry-Jain-Oppenheim quantum strategy

In this section, we review the quantum strategy used by [1] that proves that the quantum infor-
mation complexity of the exclusion game EXCn,m vanishes as n→∞, when m is chosen to satisfy
m ∈ ω(n1/2+ε).

For given strings x and xyy that Alice and Bob, respectively, draw, we first describe how
Alice encodes the string x in her quantum message: she encodes each classical bit xi using the
state |ψxi(θ)〉 = cos(θ/2)|0〉 + (−1)xi sin(θ/2)|1〉, where θ = 2 tan−1(21/r − 1). Her n-bit string
x = x1 . . . xn is then encoded as |Ψx(θ)〉 = ⊗ri=1|ψxi(θ)〉, which she sends to Bob via the quantum
channel.

Upon receiving the state from Alice, Bob now has to perform a measurement. The measurement
technique used may be described as a conclusive-exclusion measurement, which was first introduced
by [3] and subsequently used to prove the PBR theorem [4], a result in the field of quantum
foundations that rules out a certain class of ψ-epistemic models of quantum mechanics. In [1, 5], it
was shown that if Bob performs the projective measurement {|ζz〉}z∈{0,1}r , where |ζz〉 = 1√

2r
(|0〉 −∑

s 6=0(−1)z·s|s〉), then the probability that Alice’s string is xy given that z = xy is zero, and hence,
by outputting the result corresponding to the projection |ζz〉, they win the game with certainty.

It now suffices to show that the quantum information cost of the protocol can be made van-
ishingly small. Indeed, the quantum information can be calculated to be given by Q

EXCn,m

IC (Π) ≤
2S(MQ) ∈ o(n−2ε), where S(MQ) is the von Neumann entropy of the quantum message MQ that
Alice sends to Bob. Hence, it vanishes in the large n limit.

4 Lower bound on the quantum communication cost

Since the amount of quantum information that Alice actually reveals to Bob in the PJO quantum
strategy (i.e., the information cost Q

EXCn,m

IC (PJO)) tends to zero in the large-n limit, one might
ask if the number of qubits that Alice has to send in any winning strategy could also go to zero
in the limit. In this section, we show that this is not possible by proving an Ω(log n) lower bound
on the quantum communication complexity for certain parameters of the game. We consider two
cases: when zero error is allowed and when a vanishingly small error is allowed. For both these
cases, our proof involves simulating a quantum protocol ΠQ by a classical protocol but with an

exponential overhead, so that the existence of a quantum strategy with Q
EXCn,m

CC (ΠQ) = o(log n)
would contradict the following classical communication cost lower bound:

Lemma 1. Let ω(n
1
2

+ε) ≤ m ≤ αn, where 0 < α < 1
2 is a constant. Any classical strategy that

wins the exclusion game EXCn,m in the large n limit with certainty, requires that the number of

bits sent from Alice to Bob be of order Ω(n), i.e., for all strategies Π, C
EXCn,m

CC (Π) ∈ Ω(n) where
m is within the above regime.

Proof. In Theorem 2 of [1], it was shown that C
EXCn,m

IC (Π) ≥ n− log2

(∑m−1
i=0

(
n
i

))
. For ω(n

1
2

+ε) ≤

m ≤ αn, where 0 < α < 1
2 , the lower bound could be simplified to C

EXCn,m

IC (Π) ∈ Ω(n) (see
Appendix B2 of [1]). Since the amount of information revealed is bounded above by the commu-
nication cost, i.e., CIC ≤ CCC for any communication protocol, it follows that CCC ∈ Ω(n). As
Alice can always send the whole string to Bob in order to win, this bound is tight, and we obtain
C

EXCn,m

CC (Π) ∈ Ω(n) in the specified regime of m, as desired.

Before proving the main results, we state and prove the following lemma.
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Lemma 2. A q-qubit quantum state can be classically described by a set of real numbers encoding
the real and imaginary parts of all amplitudes to accuracy ε using O

(
2q log(1

ε )
)

bits.

Proof. A general q-qubit pure state |ψq〉 can be written as |ψq〉 =
∑2q

i=1 αi|i〉, where αi ∈ C, and
{|i〉} is a complete orthonormal basis set containing 2q elements. We express all complex amplitudes
as αi = bi + ici where bi, ci ∈ R, satisfying

∑2q

i=1 |αi|2 =
∑2q

i=1(b2i + c2
i ) = 1. Thus, 0 ≤ |bi|, |ci| ≤ 1.

To approximate each of these real numbers to accuracy ε = 2−l, we keep the first l bits after the
binary point, and we make use of one bit to indicate its sign, i.e., we can find an (l+1)-bit classical
string that encodes an approximation b̃i of each bi such that |b̃i − bi| ≤ ε (same for ci). Notice
that there are 2 · 2q such numbers in total, thus only 2q+1(l+ 1) = O

(
2q log(1

ε )
)

bits are needed to
encode |ψq〉 such that we have specified the real and imaginary parts of all amplitudes to accuracy
ε.

4.1 Zero error

We now prove that in a specific regime of the original exclusion game where no error is allowed,
Ω(log n) qubits of communication is necessary.

Theorem 3. For the exclusion game EXCn,m where ω(n
1
2

+ε) ≤ m ≤ αn in the large n limit for
some constant α s.t. 0 < α < 1

2 , QCC ≥ Ω(log n).

Proof. Suppose that QCC ∈ o(log n). Then there exists a winning quantum strategy ΠQ in which
Alice sends a q-qubit state |ψx〉 to Bob upon receiving the n-bit string x, where q = o(log n).
WLOG, the state |ψq〉 that Alice sends to Bob is pure. (Indeed, any mixed state can be described
by a pure state on a large Hilbert space of dimension at most twice as large, and hence, the
quantum communication cost can increase by at most a constant factor and does not affect the
scaling asymptotically.)

Using ΠQ, we shall now construct a classical protocol ΠC that succeeds in the game by using
only o(n) bits, thus contradicting the classical lower bound of Lemma 1. The reduction runs as
follows: let |Ψx〉 be the quantum message that Alice sends in the protocol ΠQ when she draws the
string x ∈ {0, 1}. From |Ψx〉, she constructs an approximate classical description C(ψx) of |Ψx〉
that has an error of at most ε. By plugging the expression q = o(log n) into Lemma 2, it follows
that this can be done using o(n log(1/ε)) bits. She sends the classical message C(ψx) across the
classical channel. We shall denote the state that is described by C(ψx) by |ψ̃x〉.

Now, let {P yk }k be the POVM used by Bob in ΠQ to measure the state received from Alice.
Bob computes all the probabilities of each of the outcomes k of the POVM, by using Born’s rule
pk = 〈ψ̃x|P yk |ψ̃x〉. There exists a threshold δ such that if the probability pk were below the threshold

for the state |ψ̃x〉, then if the state were |ψx〉, the probability would have been zero. Hence, Bob
rounds down all probabilities pk that are bounded above by δ to zero. For any such k, the string
z that Bob outputs is guaranteed to be different from xy. Hence, we have reached a contradiction
by constructing an o(n)-classical protocol for the exclusion game.

4.2 Vanishingly small probability of error

Now we present a variant of the above protocol that shows that when a very tiny amount of error
is allowed, a nonvanishing amount of quantum communication is still required.

Theorem 4. Suppose that there exists a winning quantum strategy ΠQ with Q
EXCn,m

CC (ΠQ) = Θ(s),

then there must also exist a classical strategy ΠC with C
EXCn,m

CC (ΠC) = Θ(2s) whose probability of
error can be made arbitrarily small.
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Proof. We revise Bob’s local part of the protocol presented in Theorem 3 to prove this argument.
As before, Alice prepares an approximate classical encoding of the real and imaginary parts of all
the amplitudes of the state |ψs〉 to accuracy ε using Θ

(
2s log(1

ε )
)

bits, and sends these bits to Bob.
Again, we emphasize that in studying communication tasks, we don’t limit the computational
cost of each player: they can do whatever they want without worrying about time or space as
computational resources on the local side. Hence Bob can translate the classical information of
the amplitudes into a new quantum state |ψ̃s〉, and make as many copies as he needs. A subtlety
here is that the state with exactly the same value of amplitudes may not be perfectly normalized,
but since Bob can manipulate the state preparation protocol to infinite accuracy, it follows that
the normalized state |ψ̃s〉 is very close to |ψs〉 (say, ε-close in trace distance, the rigorous proof
of which is lengthy but straightforward, so we will omit it). And therefore, the perturbation on
the probability for any measurement outcome is bounded (the idea of the proof is similar to the
inverse of Almost-As-Good-As-New-Lemma (AAGANL) [6]). So Bob can just feed |ψ̃s〉 into his
local circuit of ΠQ, and run the protocol a multiple number of times (say, t) with his copies. Denote
the perturbation on the probabilities as ε′ (detailed proof will follow up), then Bob just refuses to
output anything corresponding to a certain outcome that appears for less than c (constant) times,
and the probability that he makes a mistake decays exponentially with t by Chernoff bound, hence
can be made arbitrarily small by increasing t, i.e., preparing more copies.

In this revised protocol we do not need to consider the details of the protocol ΠQ. Since the
encoding of the original state is approximate, a nonzero probability of error will be inevitable, but
it can be made arbitrarily small by amplification. Therefore we have the following corollary:

Corollary. The infinite gap between quantum information and communication costs still holds
when the error allowed is sufficiently small.

The general idea is that as the tolerable probability of error goes from 1
2m (random guess, no

communication needed) to 0, the lower bound of CCC will grow from 0 to Ω(n) (the complete
characterization of its behavior remains unknown), and by Theorem 4, QCC is at least logarithmic
in CCC . (For instance, the lower bound CCC should approach Ω(n) for an allowed probability
of error that is sufficiently close to 0, then the corresponding QCC is lower bounded by Ω(log n),
though for an infinite separation of QCC and QIC the restriction can be loosened.) Note that for
the special case m =

√
n, if we allow an error of 1

2m+1 (half of random guess), then it is possible to
give a strategy with only 1 bit of classical communication [1], so we expect the allowed error to be
smaller than 1

2m+1 if we want to establish an infinite separation.

5 Concluding remarks

In this paper, we considered the exclusion game and showed that an infinite gap exists between its
quantum communication complexity and quantum information complexity, whether we allow for
zero error or a vanishingly small error. It remains an open question whether the Ω(log n) bound is
tight, i.e., it is not known if a gap between QCC and CCC exists for this game (Fig. 1).

The general formulation of communication tasks presented in this paper may open up some new
doors. Analogously, the task of quantum state discrimination, where we essentially reduce k possi-
bilities to 1, can be generalized to k → (k −m) state exclusion task via semidefinite programming
(SDP), which may provide insight for the generalization of communication models. For example,
a duality between quantum random access coding (QRAC) [7, 8] and the exclusion game under
certain restrictions may be formalized in this spirit. We expect interesting new results to emerge
in this direction.
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Figure 1: Exclusion game EXCn,m with ω(n
1
2

+ε) ≤ m ≤ αn in the large n limit, where 0 < α < 1
2 is

a constant. Solid arrows indicate established separations (pointing towards the smaller one), while
the dashed one indicates an unknown separation.
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