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Abstract

The ε-approximate degree of a boolean function f : {1,−1}n → {1,−1} is the minimum degree of a real
polynomial that approximates f to with error ε for every x ∈ {1,−1}n. In this project, we explored questions
related to approximate degree of AND-OR trees. In particular, we started with the broad goal of addressing
the following conjecture (due to Aaronson [Aar14]) : Every read-once AND-OR formula with N leaves has
approximate degree Ω(

√
N).

We present some partial progress towards the above conjecture for constant depth non-regular AND-OR
trees.

1 Introduction

Approximate degree is an important measure of the complexity of a boolean function. It captures whether
a function can be point-wise approximated by low-degree polynomials with real coefficients. In quantum
computing, the measure of approximate degree has been used to prove tight lower bounds on quantum
query complexity of several functions. Lower bounds on approximate degree have a lot of applications,
related to circuit lower bounds and communication complexity. Also, upper bounds on approximate degree
of functions underly the best known algorithms for PAC learning DNFs and read-once formulas.

AND-OR trees is a very general class of functions, which form the skeleton of formulas. Approximate
degree of AND-OR trees have received a lot of interest and after several years of developments, tight lower
bounds on approximate degree of certain special sub-class of AND-OR trees are known. From a beautiful
result of Reichardt [Rei11], it is known that the quantum query complexity of any AND-OR tree with N

leaves is Θ(
√
N). This immediately gives an upper bound of O(N 1/2) on the approximate degree of any

AND-OR tree. Aaronson [Aar14] conjectured that this bound might be optimal.
Prior work on lower bounding the approximate degree of AND-OR trees has shown tight lower bounds

for “regular” AND-OR trees † of depth-2, and nearly optimal lower bounds for “regular” AND-OR trees
of constant depth. In this work, we try to prove lower bounds for “non-regular” AND-OR trees. Our
contributions are as follows,

(i) We give a lower bound of Ω

((
N

2d log2d−3N

)1/2
)

on the approximate degree of any (non-regular) depth-d

AND-OR formula. This is a generalization of the lower bound of Ω

((
N

logd−2N

)1/2
)

on approximate

degree of regular AND-OR formulas, due to Bun-Thaler [BT13b].

(ii) The above result gives an Ω
(

(N/ logN)
1/2
)

lower bound on approximate degree of depth-2 formulas.
We introduce the notion of approximate weighted degree, and suggest an approach which can potentially
give a lower bound of Ω

(
N 1/2

)
on the approximate degree of depth-2 formulas. We point out connec-

tions between approximate weighted degree and Ambainis’ result on quantum search with variable
times [Amb06].

†By “regular”, we mean that all gates in the same layer have the same fan-in
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2 Preliminaries

Definition 1. A polynomial p : Rn → R is said to ε-approximate a Boolean function f : {−1, 1}n → {−1, 1} if
‖f − p‖∞ , maxx∈{−1,1}n |f(x)− p(x)| ≤ ε.

Definition 2. For any function f : {1,−1}n → {1,−1}, d̃egε(f) is the smallest degree of a polynomial that ε-
approximates it. For ease of notation, we use d̃eg(f) to denote d̃eg1/2(f).

Definition 3. For any S ⊆ [n], we define the polynomial χS : Rn → R as χS(x1, . . . , xn) =
∏
i∈S xi.

Note that we can write any multilinear polynomial p : Rn → R as p(x) =
∑
S⊆[n] cSχS(x) for some co-

efficients {cS}. We use x or y to denote a collection of variables, and xi or xij to denote individual variables.

3 Prior Work

Our work mainly builds upon prior work on approximate degree lower bounds for constant depth regular
AND-OR trees.

Closing a long line of work Sherstov and Bun-Thaler independently proved a tight lower bound on the
approximate degree of depth-2 regular AND-OR trees.

Theorem 1 ([BT13a, She13]). If f =
∧m
i=1

∨n
j=1 xij , then d̃eg(f) = Ω(

√
mn).

Building upon this work, Bun and Thaler proved close-to-optimal lower bounds on approximate degree of
constant depth regular AND-OR trees, by introducing a new technique of hardness amplification.

Theorem 2 ([BT13b]). If f is a regular AND-OR tree of depth d, with N leaves, then

d̃eg(f) ≥ Ω

(√
N

log(d−2)N

)

4 Dual Functions

In this section, we present the technique of dual functions that was used to prove most of the results men-
tioned earlier. Much of the exposition here is taken from [BT13a] and sources cited therein.

4.1 Functions

Given a function f : {−1, 1}n → {−1, 1}, suppose p : {−1, 1}n → R, is a polynomial of degree d that ε-
approximates f (that is, ‖f − p‖∞ ≤ ε). Without loss of generality, we may assume that p is multilinear - we
only care about its values on {−1, 1}n. So we can write p as p(x) =

∑
S:|S|≤d cSχS(x),

Then, it is straightforward to see that the value of the following linear program, with cS as variables, is
at most ε (because the objective at p is at most ε).

Min : δ

Constraints : ∀x ∈ {−1, 1}n :
∣∣∣ f(x)−

∑
S:|S|≤d

cSχS(x)
∣∣∣ ≤ δ

The dual of this linear program is as follows, in variables φ(x), for each x ∈ {−1, 1}n.

Max :
∑
x

φ(x)f(x)

Constraints :
∑
x

|φ(x)| = 1∑
x

φ(x)χS(x) = 0 ∀S : |S| ≤ d
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By weak duality, and by the observation about the primal above, if there is indeed a polynomial that
approximates f to within ε, then the value of this dual is less than ε. The contrapositive says that if we can
find a function φ : {−1, 1}n → R such that the objective of the dual at the point φ is more than ε, then there
is no polynomial of degree d that ε-approximates f .

The converse of this statement is implied by strong duality, which gives us the following theorem.

Theorem 3. For any f : {−1, 1}n → {−1, 1}, d̃egε(f) ≥ d iff there is a function φ : {−1, 1}n → R such that:∑
x∈{−1,1}n

|φ(x)| = 1

∑
x∈{−1,1}n

φ(x)f(x) > ε

∑
x∈{−1,1}n

φ(x)χS(x) = 0 ∀S : |S| < d

We call such a function a dual function for f that witnesses d̃egε(f) ≥ d.

4.2 Distributional view of dual functions

An equivalent, sometimes more intuitive, view of the above is in terms of dual distributions.
Suppose d̃egε(f) ≥ d, and φ is a dual function witnessing this. One of the implications of this is that φ

does not correlate with any polynomial of degree < d. In particular, it doesn’t correlate with the constant
polynomial 1. This implies that

∑
x φ(x) = 0. We already have

∑
x |φ(x)| = 1, and these two together give

imply that:
∑

x:φ(x)<0 |φ(x)| =
∑

x:φ(x)>0 |φ(x)| = 1
2 .

This ensures that the following pair of functions, defined from {−1, 1}n → R, are, in fact, probability
distributions.

µ1(x) =

{
2φ(x) if φ(x) ≥ 0

0 if φ(x) < 0

µ−1(x) =

{
0 if φ(x) ≥ 0

−2φ(x) if φ(x) < 0

Observe, now, that for any function g,
∑

x φ(x)g(x) = 1
2

(
Ex∼µ1

[g(x)]− Ex∼µ−1
[g(x)]

)
. Hence the correla-

tion properties of the dual function translate directly to properties of expectations under these distributions.
In the other direction, given any pair of disjoint distributions µ1, µ−1, we can define a function φ(x) =

1
2 (µ1(x) − µ−1(x)) that inherits as properties of its correlation with other functions whatever properties the
difference in expected values under the distributions had. (The requirement of disjointness of the supports
of µ1 and µ−1 may be traded for some stronger requirement on the expectations, but we will make do with
this for now.)

This process lets us translate the above theorem into the language of these dual distributions as follows.

Theorem 4. For any f : {−1, 1}n → {−1, 1}, d̃egε(f) > d iff there is a pair of disjoint distributions (µ1, µ−1) on
{−1, 1}n such that:

E
x∼µ1

[f(x)] − E
x∼µ−1

[f(x)] > 2ε

E
x∼µ1

[χS(x)]− E
x∼µ−1

[χS(x)] = 0 for all S : |S| ≤ d

Thus, intuitively, we show that a function f cannot be approximated by polynomials of a certain de-
gree d, by demonstrating two distributions such that f can distinguish between these distributions with 2ε
advantage, while no polynomial of degree d can distinguish them at all.

4.3 Application

One simple example of an approximate degree lower bound is of PARITY. We know that d̃egε(PARITY) =
n for any ε < 1. This can be shown by exhibiting the dual function which is PARITY itself! This is easy to
see if one considers that PARITY(x) = χ[n](x) =

∏
i xi.
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The case with most other functions turns out to not be so straightforward, though - constructing dual
functions even for simple functions like OR (done in [Spa08]) seems to be somewhat non-trivial. Note that
we know, even prior to the above work, by applying symmetrization lemma and Markov’s theorem, that the
ε-approximate degree for any constant ε for both ANDn and ORn is Ω(

√
n), and hence that the corresponding

dual functions exist.
But constructing dual functions (or distributions) seems to be more or less the strongest approach to

proving approximate degree lower bounds, at least in the case of AND-OR trees, seeing as both [BT13a]
and [She13], which bound the approximate degree of depth-2 AND-OR trees, and [BT13b], which extends
this to constant-depth trees, proceed essentially by either demonstrating the existence of or constructing the
necessary dual functions.

To give an idea of how such feats might be achieved, we present the following short sketch of the tech-
nique used in [She13] to prove theorem 1.

We start with the dual distributions witnessing d̃egε(ANDm) ≥ d and d̃eg1−δ(ORn) ≥ d′ given as
(µAND

1 , µAND
−1 ) and (µOR

1 , µOR
−1 ) respectively (ε and δ to be chosen later). We now construct the dual dis-

tributions for ANDm ◦ORn, namely µAND-OR
b (for b ∈ {1,−1}), which is sampled as follows:

1. First sample (z1, . . . , zm) ∼ µAND
b .

2. For each i, sample (xi1, . . . , xin) ∼ µOR
zi .

To show that this dual distribution, indeed proves the desired lower bound on approximate degree, we
need to show that it satisfies the two conditions stated in Theorem 4. We leave out the full proof of condition
(i) here, but using the one-sidedness of the dual function of ORn, it follows that under the distributions defined
as above,

E
x∼µAND-OR

1

ANDm ◦ORn(x)− E
x∼µAND-OR

−1

ANDm ◦ORn(x) ≥ 2(ε− δ)

[We suggest the reader to refer [She13] for complete details, although the presentation there is slightly dif-
ferent from ours].

We sketch the proof of condition (ii), since it will be relevant later for our notions of approximate weighted
degree. For any χS where |S| < d · d′, we have the following (where Si = S ∩ {xi1, xi2, . . . , xin}):

E
x∼µAND-OR

b

[χS(x)] = E
z∼µAND

b

[
m∏
i=1

E
xi∼µOR

zi

χSi
(xi)

]

= E
z∼µAND

b

[
m∏
i=1

(
(1 + zi)

2
E

xi∼µOR
1

χSi
(xi) +

(1− zi)
2

E
xi∼µOR

−1

χSi
(xi)

)]

Now, if for some i it happens that |Si| < d′, then the corresponding term in the product above would be a
constant, as the expected value under µOR

1 and µOR
−1 would be the same. As |S| < d · d′, less than d terms can

survive this. Each of these terms contribute a degree of 1 in z to the product, leading to a polynomial in z
of degree strictly less than d, which has the same expected value under µAND

1 and µAND
−1 as the approximate

degree of ANDm is at least d. This tells us that any polynomial of degree less than d · d′ has the same
expected value under either distribution, thus getting us the second condition in Theorem 4. Thus, we get
that d̃egε−δ(ANDm ◦ORn) ≥ d · d′ = Ω(

√
mn).

5 Our Results

We try to prove lower bounds for non-regular AND-OR trees. Our first result is a close-to-optimal lower
bound for constant depth AND-OR trees (see Theorem 5). We prove this by showing that it is possible to
find a “large enough” regular AND-OR tree embedded inside any non-regular AND-OR tree, and the lower
bound then follows from a direct reduction to Theorems 1 and 2.

Our second result (rather, a pseudo-result) is an approach to prove an optimal lower bound on approx-
imate degree of depth-2 AND-OR trees. We first generalize the notion of approximate degree to define
approximate weighted degree (denoted by wt-d̃eg : see Definition 5). We then show an upper bound on the
wt-d̃eg(ANDm), and conjecture the optimality of our upper bound (Conjecture 1). We show that this conjec-
ture in fact implies tight lower bounds on the approximate degree of non-regular depth-2 AND-OR trees.
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We also suggest an approach to prove this conjecture which goes via obtaining a certain generalization of
robust polynomials constructed by Sherstov [She09]. We don’t know if these generalized robust polynomials
exist or not, and we leave it as an open conjecture (Conjecture 2). We feel that this conjecture may be of
independent interest.

We present all our results in this section. All the main proofs have been shifted to the Appendix for better
clarity of reading.

5.1 Lower bounds by direct reduction

Theorem 5. For f being computed by any (non-regular) AND-OR tree of depth d ≥ 2 with N leaves,

d̃eg(f) ≥ Ω

(√
N

2d log(2d−3)N

)

Proof. See Appendix.

5.2 Lower bounds via weighted approximate degree

Definition 4 (Weighted Degree). Fix a weight function T : [n] → N. The weighted degree of the monomial
m =

∏n
i=1 x

ei
i is equal to wt- degT (m) =

∑n
i=1 T (i)ei. The weighted degree of any polynomial p ∈ F[x1, · · · , xn]

is the largest weighted degree of any monomial in p. For ease of notation, we use wt- deg(p) to denote wt- degT (p)
(whenever the weight function is obvious from context).

Intuitively, weighted degree is a generalization of degree where each variable has a different “cost”.

Definition 5 (ε-Approximate Weighted Degree). For a weight function T : [n] → N, and any function f :

{1,−1}n → {1,−1}, wt-d̃eg
T

ε (f) is the minimum value of wt- degT (p) where the polynomial p : Rn → R is such

that for all x ∈ {1,−1}n, |f(x)−p(x)| ≤ ε. For ease of notation, we use wt-d̃eg(f) to denote wt-d̃eg
T

1/2(f) (whenever
the weight function is obvious from context).

Our main motivation is to understand the approximate weighted degree of the AND function. By symmetry,
this is same as the approximate weighted degree of the OR function (since OR(x) = −AND(−x)). We now
show an upper bound on the approximate weighted degree of OR using a connection to Ambainis’ result on
quantum search with variable times [Amb06].

Lemma 1. Suppose we have an input x = (x1, · · · , xn) ∈ {1,−1}n, where querying xi takes time T (i). Let QTε (f)
be the minimum time taken by any quantum algorithm to compute f(x1, · · · , xn) with error probability less than ε.

Then, wt-d̃eg
T

2ε(f) ≤ 2 ·QTε (f).

Proof. See Appendix.

From Ambainis’ quantum search with variable times [Amb06], we know thatQT0.25(ORn) = Θ
((∑n

i=1 T (i)2
)1/2).

Combining this with the above lemma, we get the following theorem,

Theorem 6. For any weight function T : [n]→ N,

wt-d̃eg(ANDn) = wt-d̃eg(ORn) ≤ O

( n∑
i=1

T (i)2

)1/2


We conjecture that this upper bound is in fact optimal.

Conjecture 1. For any weight function T : [n]→ N, wt-d̃eg (ANDm) ≥ Ω
((∑n

i=1 T (i)2
)1/2)

We now show tight lower bounds for any depth-2 AND-OR tree, assuming Conjecture 1 to be true.
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Theorem 7. Let f(x) =
∧m
i=1

∨ni

j=1 xij . Suppose that for weight function T : [m] → N given by T (i) = c
√
ni

(where c is some appropriate constant chosen), wt-d̃eg (ANDm) ≥ Ω
((∑m

i=1 T (i)2
)1/2). Then,

d̃eg(f) ≥ Ω

( m∑
i=1

ni

)1/2


Proof. See Appendix.

5.2.1 Approach to Conjecture 1 using generalized robust polynomials

In a very beautiful result, Sherstov [She09] showed that for any polynomial p : {1,−1}n → [−1, 1], there
exists a robust polynomial probust such that for all x ∈ {1,−1}n and all e ∈ [−1/3, 1/3]n, |p(x) − probust(x +
e)| ≤ δ and deg(probust) = O(deg(p) + log(1/δ)). We propose a generalization of this result, based on the
notions of weighted degree. We then show that if this generalization holds, then it implies Conjecture 1.

Conjecture 2. For any weight function T : [n] → N, and any polynomial p : {1,−1}n → [−1, 1], there exists a
robust polynomial probust such that for all x ∈ {1,−1}n and all e ∈ [−1/3, 1/3]n, |p(x) − probust(x + e)| ≤ δ and
wt- degT (probust) = O(wt- degT (p) + log(1/δ))

We now prove that Conjecture 2 implies Conjecture 1. Combining this with Theorem 7, we conclude that
existence of these generalized robust polynomials implies the desired tight lower bound on the approximate
weighted degree of depth-2 AND-OR tree.

Theorem 8. If Conjecture 2 is true, then for any weight function T : [n]→ N,

wt-d̃eg (ANDn) ≥ Ω

( n∑
i=1

T (i)2

)1/2


6 Future directions

The immediate open questions that need to be answered are,

1. Prove a tight lower bound of Ω(N 1/2) on approximate degree of non-regular depth-2 AND-OR tree.
2. Prove a tight lower bound of Ω(N 1/2) on approximate degree of regular depth-3 AND-OR tree.
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A Proofs from Section 5

Proof of Theorem 5. For simplicity, we first prove this theorem for depth d = 2. Let f(x) =
∧m
i=1

∨ni

j=1 xij .
Our approach is to find a large enough regular tree embedded in f , and subsequently apply Theorem 1.

Suppose the fan-ins of the OR gates are n1 ≤ n2 ≤ · · · ≤ nm, where
∑m
i=1 ni = N . We define buckets

B0, B1, · · · ⊆ [m], as Bk =
{
i ∈ [m] : 2k−1 < ni ≤ 2k

}
. Since each ni < N , there can at most be logN buckets.

Define Sk =
∑
i∈Bk

ni. Clearly, since
∑logN
k=1 Sk = N , there exists a k such that Sk ≥ N/ logN . We have that

for such a k, the size of the bucket |Bk| ≥ Sk

2k
≥ N

2k logN
. Also, the fan-in of each OR gate is at least 2k−1.

Thus, we have that the function

g(y) =

|Bk|∧
p=1

2k−1∨
q=1

ypq

can be embedded into the function f (that is, it is possible to replace the xij ’s by either ypq’s or ±1 such that f
computes g exactly. Since g is a regular AND-OR tree, by Theorem 1, we get that

d̃eg(f) ≥ d̃eg(g) ≥ Ω

(√
|Bk| · 2k−1

)
≥ Ω

(√
N

logN

)

We now turn to prove the theorem for all d ≥ 2. Our approach is again to find a large enough regular tree
embedded in f , and subsequently apply Theorem 2.

For any variable, define it’s signature as (m1, · · · ,md), which is the tuple of fan-ins of all the gates on the path
from the root to that variable.‡ We partition these variables into buckets according to their signature values.
That is, define buckets B(k2, k3, · · · , kd) as a partition of the N variables with signature (m1,m2, · · · ,md)
such that for each i ∈ {2, · · · , d}, it holds that 2ki−1 ≤ mi < 2ki .§

Since there are only N variables, each ki ranges from 1 to at most logN . Thus, we have a total of at most
logd−1N buckets. Hence, there exists a bucket B(k∗2 , · · · , k∗d) with at least N

logd−1N
variables. We set all vari-

ables outside this bucket to appropriate values so that the function becomes equal to an AND-OR tree over
this bucket. Furthermore, for every i ∈ {2, · · · , d}, we pull down the fan-ins of the i-th layer to 2ki−1, by
setting more variables appropriately. This process reduces the number of variables in bucket B(k∗2 , · · · , k∗d)
by a factor of at most 2d−1.

Thus, we end up with a function g which is a regular AND-OR tree of depth d, with at least N ′ = N
(2 logN)d−1

leaves in all. From Theorem 2, we conclude that

d̃eg(f) ≥ d̃eg(g) ≥ Ω

(√
N ′

log(d−2)N ′

)
= Ω

(√
N

2d log(2d−3)N

)

�

Proof of Lemma 1. This proof is identical to that of its unweighted version : d̃eg2ε(f) ≤ 2 · Qε(f). Suppose
for some subset S ⊆ [n], the algorithm makes a query of the form,

∑
i∈S

αi,b,z |i〉 |b〉 |z〉 7→
∑
i∈S

αi,b,z |i〉 |b⊕ xi〉 |zi〉 =
∑
i∈S

αi,b,z

[(
1 + xi

2

)
|i〉 |b〉 |zi〉+

(
1− xi

2

)
|i〉 |¬b〉 |zi〉

]
To make this query, the algorithm consumes time equal to maxi∈S T (i). At the same time, the weighted
degree of any entry in the amplitude vector goes up by at most maxi∈S T (i). Thus, after any number of

‡We can assume without loss of generality that all the variables in the formula are at depth d. Because, if a variable is at depth less
than d, we can simply add gates with fan-in 1 and push it to depth d.

§Since m1 is the same for all variables, we don’t need to consider m1 as a parameter for the buckets.
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queries, the time consumed by the algorithm is an upper bound on the weighted degree of any entry of the
amplitude vector.

At the end of the algorithm, the probability that the algorithm declares the function value to be −1 is the
sum of squares of entries in the amplitude vector. Thus, we get that for any x ∈ {1,−1}n, |Pr[A(x) =

−1] − f̃(x)| ≤ ε, where |Pr[A(x) = −1]| is a polynomial in x of weighted-degree at most QTε (f), and
f̃(x) = (1 − f(x))/2 is the 0-1 version of f . Thus, we get an ε-approximating polynomial for f̃ and hence a
2ε-approximating polynomial for f , with weighted degree at most QTε (f). �

Proof of Theorem 7. We begin by noting that the notion of dual distributions generalises directly to handle
weighted-degree instead of degree. This may be done by replacing every occurrence of the condition |S| < d
with wt- deg(χS) < d in the statements of Section 4 to give the following lemma.

Lemma 2. For any f : {−1, 1}n → {−1, 1} and any weight function T : [n] → N, wt-d̃eg
T

ε (f) > d iff there is a
pair of disjoint distributions (µ1, µ−1) on {−1, 1}n such that:

E
x∼µ1

[f(x)]− E
x∼µ−1

[f(x)] > 2ε

E
x∼µ1

[χS(x)]− E
x∼µ−1

[χS(x)] = 0 for all S : wt- degT (χS) ≤ d

By the hypothesis of the theorem, there exists a constant c1, such that wt-d̃egε(ANDm) ≥ D ≥ c1
((∑m

i=1 T (i)2
)1/2).

From the above lemma, there exists a pair of dual distributions (µAND
1 , µAND

−1 ) over {−1, 1}m such that,

E
x∼µAND

1

[AND(x)]− E
x∼µAND

−1

[AND(x)] > 2ε

E
x∼µAND

1

[χS(x)] − E
x∼µAND

−1

[χS(x)] = 0 ∀S : wt- degT (χS) ≤ D

We know that there exists a constant c2 for any n, d̃eg1−δ(ORn) ≥ c2Ω(
√
n), which implies that there exist

dual distributions (µORn
1 , µORn

−1 ) over {−1, 1}n satisfying the following:

E
x∼µORn

1

[ORn(x)]− E
x∼µORn

−1

[ORn(x)] > 2(1− δ)

E
x∼µORn

1

[χS(x)] − E
x∼µORn

−1

[χS(x)] = 0 ∀S : |S| ≤ c2
√
n

Now consider the pair of distributions (µf1 , µ
f
−1), where µfb is sampled as follows:

1. Sample (z1, . . . , zm)← µAND
b .

2. For each i ∈ [m], sample (xi1, . . . , xini
)← µ

ORni
zi .

(Ex∼µf
1
[f(x)] − Ex∼µf

−1
[f(x)]) ≥ 2(ε − δ). This follows in the same as in Section 4 [For precise details

about how this may be done, see [She13]]
For any χS , we have the following (where Si = S ∩ {xi1, xi2, . . . , xini

}):

E
x∼µf

b

[χS(x)] = E
z∼µAND

b

[
m∏
i=1

E
xi∼µ

ORni
zi

χSi(xi)

]

= E
z∼µAND

b

 m∏
i=1

 (1 + zi)

2
E

xi∼µ
ORni
1

χSi
(xi) +

(1− zi)
2

E
xi∼µ

ORni
−1

χSi
(xi)


The term corresponding to any i in the product above is a constant independent of zi if |Si| ≤ c2

√
ni, by

the property of the dual distributions of ORni , in which case it doesn’t contribute to the weighted degree
of the product, and a linear term in zi otherwise, in which case it contributes c

√
n1 to the weighted degree.

Hence the weighted degree of the product is at most c
c2
|S|. We know that if this weighted degree is smaller

than cc1(
∑m
i=1 ni)

1/2, then the expectation of the product is the same under both µf1 and µf−1.
This implies that Ex∼µf

1
[χS(x)]− Ex∼µf

−1
[χS(x)] = 0 if |S| ≤ c1c2(

∑m
i=1 ni)

1/2.
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Hence, as they have the above two properties, (µf1 , µ
f
−1) are dual distributions certifying that d̃eg(f) ≥

Ω
(

(
∑m
i=1 ni)

1/2
)

.
�

Proof of Theorem 8. Suppose there exists a polynomial p such that wt- degT (p) = D and for all x ∈ {1,−1}n,
|p(x) − AND(x)| ≤ ε. Assuming Conjecture 2, there exists a robust polynomial, say q, such that for all
x ∈ {1,−1}n and all e ∈ [−1/3, 1/3]n, |p(x) − q(x + e)| ≤ δ and wt- degT (q) = O(wt- degT (p) + log(1/δ)) =
O(D + log(1/δ)).

We know that d̃eg1/3(ANDT (i)2) < C ·T (i) for some constantC. Thus, we have polynomials p1, p2, · · · , pn
such that for each i, pi(yi) (1/3)-approximates ANDT (i)2(yi). It is easy to see that q(p1(y1), · · · , pn(yn))
now (ε+ δ)-approximates AND(AND(y1), · · · ,AND(yn)). Also, it is easy to see that the ordinary degree of
q(p1, · · · , pn) is at most C · wt- degT (q) (since deg(pi) < C · T (i)).

We know that d̃eg(ANDN ) = Ω
(√

N
)

, forN =
∑n
i=1 T (i)2. Thus, choosing ε and δ such that ε+δ < 1/3,

we get that,

C · wt- degT (q) ≥ Ω

( n∑
i=1

T (i)2

)1/2


Thus we get that wt- degT (p) + O(1) = Ω(wt- degT (q)) ≥ Ω
((∑n

i=1 T (i)2
)1/2), which proves the desired

lower bound on the weighted approximate degree of ANDn. �
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