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1 Introduction

The lattice hortest vector problem, or lattice SVP, has gained a lot of attention in the field of quantum computing.
There are a number of reasons for this, including the fact that the hardness of lattice SVP is the foudation of a
number of post-quantum cryptosystems and that approximate-SVP is in NP ∩ coNP , so it is a prime target to use
in searching for exponential speedups over classical algorithms [5, 7, 4].

In this paper, we are interested in a particular attempt at a quantum algorithm for lattice SVP. In 2003 Regev
showed a polynomial-time quantum reduction to the dihedral coset problem, a variant of the dihedral hidden subgroup
problem [5]. In 2008, Kuperberg devised a subexponential algorithm for DCP [3], but this in conjunction with Regev’s
reduction did not lead to a subexponential algorithm for lattice SVP. On one level this is because Kuperberg’s
algorithm runs in 2O(

√
n) time, and Regev’s reduction gives a quadratic blowup in the input size. This paper tries

to give a deeper reason why Kuperberg’s algorithm does not work to provide a subexponential algorithm for lattice
SVP. Essentially the reason is that there exist classical sieves for lattice SVP that are too similar, and so the quantum
sieve cannot really give a substantial improvement. We will see more specifically what this means.

2 An Overview of Lattices and Definition of Lattice SVP

A lattice is a discrete additive subgroup of Rm. A basis for a lattice L is a set of n linearly independent vectors
b1...bn s.t. L = {Σn

i=1aibi|∀i ai ∈ Z}, i.e. a set of vectors s.t. the lattice is the set of all integer combinations of
these vectors. If we are given a set of linearly independent vectors B = b1...bn, we denote the lattice they generate
by L(B). It is true, though we don’t prove it here, that every lattice L in Rm has a basis of n vectors with n ≤ m.
In the case n = m, we say that L is a full-rank lattice. We restrict attention to full-rank lattices, as we can always
reduce the dimension of our space to be the dimension of the lattice in a polynomial time by looking at the space
spanned by the lattice vectors.

We denote by sh(L) the norm∗ of the shortest non-zero vector in L. We can now define SVP and f(n)-approximate
SVP.

Definition 2.1. The lattice shortest vector problem or lattice SVP takes as input a basis B of n linearly independent
vectors and outputs a vector u ∈ L = L(B) with ||u|| = sh(L).

Similarly we have:

Definition 2.2. The f(n)-approximate lattice shortest vector problem or f(n)-approximate SVP takes as input a
basis B of n linearly independent vectors and outputs a vector u ∈ L = L(B) with ||u|| ≤ f(n) ∗ sh(L).

In the latter problem we will mainly investigate the cases when f(n) = poly(n). This is for two reasons: this level
of approximation is enough to invalidate the security assumptions of a number of lattice based cryptosystems[7] ,
and there already exist polynomial-time algorithms for the case when f(n) = exp(n). In particular we have:

Theorem 2.3. Given a basis B of n vectors, there exists a basis for L(B) denoted by B, called an LLL-reduced
basis, with the property that ||b1|| ≤ 2n ∗ sh(L(B)). Furthermore, such a basis can be found in time polynomial in n.

A discussion of this can be found in [5, 4]. Then we have an algorithm for 2n-approximate SVP: given a basis B, we
find B, which we can do in polynomial time, and we output b1. This algorithm is important for a number of reasons,
amongst them the fact that both the classical and quantum sieves start by finding such a basis, and the complexity
analysis of both of these algorithms relies on theorem 2.3. Furthermore, because such a basis is computable from any

∗the norm will be denoted ||v|| and will refer to the L2-norm
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other basis, showing that either SVP or its approximate variants requires superpolynomial or exponential time can
be simplified to showing that SVP (or approximate variants) is hard starting from an LLL-reduced basis. In other
words, because we are looking at algorithms that take more than polynomial time, we may as well begin by reducing
our basis to an LLL-reduced basis.

3 Lattice SVP: Classical Sieve

We now present the classical randomized algorithm for lattice SVP that requires exponential time. This algorithm is
due to Ajtai, Kumar and Sivakumar and we will refer to it as the AKS algorithm or the AKS sieve. The algorithm
involves a number of parameters and a complete formal description is beyond the scope of this paper, but can be
found in [1]. We present here a simplified version of the algorithm that accounts for its exponential time requirement.
A more thourough analysis is required to find the constant factor in the exponent, and such analysis can be found
in [4] on which the present description is closely based. The existence and complexity of the algorithm is given by
the following theorem:

Theorem 3.1. There exists a randomized algorithm that solves SVP and fails with exponentially small probability.

Proof. (sketch) The algorithm works essentially by finding an r so that a ball Br centered at 0 with radius r contains
2O(n) lattice points, so that taking 2Ω(n) samples of lattice points in this ball gives a high probability that one of
these vectors is the shortest vector. The value for such an r is given by the following lemma:

Lemma 3.2. Given a lattice L and a ball Br of radius r, |L ∩Br| ≤ (1 + 2r
sh(L) )

n.

To prove this lemma, you simply note that if you take balls of radius less than sh(L)/2 around each point in
the larger ball, each ball contains a single lattice point. Then the number of lattice points in Br is bounded by the
volume of Br divided by the volume of a smaller such ball. This gives the desired expression.

Then we want to find an r = O(sh(L)). This value can be guessed, precisely because of the LLL-reduction
algorithm. To see this, note that is is sufficient to find an r such that sh(L) ≤ r ≤ 2 ∗ sh(L). Then for an LLL-
reduced basis B, we have ||b1|| ≤ 2n ∗ sh(L) and so there are n possible values of a constant c so that r = 2−c ∗ ||b1||.
Then we can simply try our algorithm with each value of c until we get the correct one. This adds at most a factor
of n to our runtime. Then we need a way to find 2Ω(n) samples in Br. It is not clear how to do this naively. This is
where the sieve comes into play. To begin with, we have to make use of an algorithm known as Babai’s Rounding
which gives the following lemma:

Lemma 3.3. Given an LLL-reduced basis B, and some vector t in Rn, there exists a polynomial time algorithm that

outputs a vector v in L(B) s.t. ||v − t|| ≤ Σn
i=1

||bi||
2 . In particular this means that ||v − t|| ≤ cn ∗ sh(L(B)) for some

constant c.

The proof of this lemma is not relevant to our analysis, so we leave it out. For more details see[1, 4]. We can
use this algorithm to create samples of L in Br0 for r0 = 2O(r) by sampling a number of O(1)-length vectors in Rn

and applying Babai’s Rounding. Then we want to show that by using a sieve we can get lattice points in Br from
points in Br0. The sieve itself works essentially as follows: we start with the given sample points, and we create a
set of “representatives” which is a subset of our points such that each point is at most a distance r0

2 away from a
representative. We then subtract our points by their representative points, and discard the representatives. This will
reduce the length of our vectors by some constant. What requires more involved analysis is that such a representative
set can be found that isn’t too big so that we are left with 2Ω(n) vectors after running the sieve. A proof of this
can be found in [1]. We then simply apply the sieve so that the size of the lattice points is reduced by this constant
factor enough times so that r0 is reduced to r. Since the constant factor is bounded below by 1

2 , we see that we need
run this sieve a linear number of times. Each time takes an exponential number of steps—it involves an exponential
number of arithmetic operations after Babai rounding—and so we have our algorithm.

4 Towards A Quantum Approach: Dihedral Hidden Subgroup Problem

We begin by defining DHSP and DCP.

Definition 4.1. Given a group G and a black-box function f , we say f hides a subgroup H ≤ G iff f is constant
on right cosets of H, and takes on different values for each distinct right coset of H. The hidden subgroup problem
then takes as input G and f and asks to find H. The dihedral hidden subgroup problem is simply HSP over the
dihedral group.
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Definition 4.2. The dihedral group of order 2N , DN , is the group of symmetries of a regular N -gon in R2. It can
be seen as the quotient of the free group on 2 elements x and y with the relations xN = y2 = xyxy = 1.

The above definitions are given largely to straighten out conventions: sometimes left cosets are used for HSP,
and sometimes DN is defined as the symmetries of a regular N

2 -gon, so that the size of the group is N . For a more
thorough development of HSP see [7] and for the dihedral group see [3]. We also have the following definition:

Definition 4.3. The dihedral coset problem or DCP takes as input polynomially many registers in the state 1√
2
(|

0, x⟩+ | 1, (x+ d) mod N⟩) where x can vary from register to register, but d is constant.

A result of Ettinger and Høyer showed that DHSP can be reduced to the case when H is a subgroup generated
by yxd for some d ∈ {1...N − 1} [2]. In other words, the DHSP reduces to finding the slope of an arbitrary reflection
of a regular N -gon. Informally this is because any other subgroup is generated by elements which don’t contain a
reflection, and so they are contained in the subgroup CN , which is abelian. The dihedral coset problem gets its name
because the inputs are registers in superpositions over cosets of such a subgroup. All known algorithms for DHSP
involve a method known as “coset sampling” or simply “the standard method” which creates registers of the form
involved in DCP, and then solves DCP over these registers [3].

5 The Kuperberg Algorithm for DHSP

We now turn to Kuperberg’s result:

Theorem 5.1. There exists an algorithm for the DHSP on DN that requires only 2O(
√
n) time where n = log(N)

is the input length. Because the algorithm works by sampling cosets, there is a slightly modified algorithm for DCP
with the same time complexity.

Proof. Let G = DN . We first show how to get from DHSP to DCP. We start by creating the uniform superposition
1√
|G|

∑
g∈G | g, f(g)⟩. If we then measure the registers containing f(g), our state collapses to a superposition over

a right coset of the hidden subgroup H, which means that for some x ∈ {1...N − 1} our register is in the state
| ψx⟩ = 1√

2
(| 0, x⟩+ | 1, (x+ d) mod N⟩) where d is the slope of the reflection we wish to find. By running this step

a polynomial number of times, we can create the polynomially many such registers composing the input for DCP.
For the sake of comparison between quantum and classical sieves, the rest of the description of this algorithm will

be divided into two parts: a reduction to an abstract classical problem, and then the solution to that problem. This
analysis can be seen in [6]. Because of the nature of Regev’s reduction, which we discuss below, we need only look at
the case that N = 2n for some n. To begin with we describe a quantum operation on one register containing | ψx⟩.
To start off we apply the Quantum Fourier Transform and we get the state 1√

N

∑
y∈Z/N (| 0, y⟩+ e

2πiyd
N (| 1, y⟩). By

measuring y we then get | Ψy⟩ = 1√
2
(| 0⟩+ (−1)

2yd
N | 1⟩) for some uniformly chosen random y. The key here is that

we know what y is for each register. Note that if we measured and got y in the state 2n−1, then we would have the
state | Ψ⟩ =| 0⟩ + (−1)d | 1⟩, and measuring in the Hadamard basis would tell us the parity of d. This is actually
enough, because we can repeat this process replacing our black box function f with either f1(y

txs) = f(ytx2s) if d

is even, as this hides the subgroup generated by yx
d
2 , or we call f2(y

txs) = f(ytx2s+1), which hides the subgroup

generated by yx
d−1
2 . Repeating this process we can learn all the bits of d.

We now turn to what we can do if instead of being given only one state | Ψy⟩ we have two states | Ψy1⟩ and
| Ψy2⟩. We first create | Ψy1 ⊗Ψy2⟩ =| 0, 0⟩ + e2πiy1d | 1, 0⟩ + e2πiy2d | 0, 1⟩ + e2πi(y1+y2)d | 1, 1⟩. Then we apply
a CNOT gate onto the right qubit controlled by the left. We measure the right qubit and on the left we have
| Ψy1±y2⟩ =| 0⟩+ e2πi(y1±y2)d | 1⟩, with the choice y1 + y2 or y1 − y2 chosen uniformly at random and determined by
the output of the measurement on the right qubit. We now have all the pieces for our classical abstraction.

Regev points out in [6] that the above can be reduced to essentially a classical problem. Suppose that we have
a machine that supplies us with blocks with a random label from 1 to 2n − 1. Suppose that we would like to get a
block with 2n−1. Initially we might think we have to ask for 2O(n) blocks before getting one with the right label. We
are also, however, given a way to combine the blocks. With two blocks labeled y1 and y2, we can combine them and
with probability 1

2 we get a block labeled y1 − y2, otherwise our blocks are lost (this isn’t really what happens in the

above case, but if we take advantage of the possibility y1 + y2 it doesn’t improve the runtime below 2O(
√
n) so we

choose to just use y1 − y2). Then we can apply a sieving algorithm as follows: at the mth step of the sieve we match
all elements sharing mk least significant bits for some chosen constant k. We apply this until we have only the last
bit left. The question we are interested in is how many blocks we need to make sure that at the end we still have at
least 1. For each block of k bits we expect to have the proper matches after about 2O(k) blocks have been produced.
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If each step of the sieve combines groups of 4 blocks (since combinations have a .5 chance of failure, we expect to
need to try twice) then we need 4O(m) ∗ 2O(k) blocks. Since we have the constraint that mk = n, we see that we get
a minimum at m = k =

√
n. Then we need 2O(

√
n) blocks to be able to produce a block with the correct label. If

we note that producing a block in this abstraction corresponds to a polynomial number of steps in the Kuperberg
sieve, then we have as a result that 2O(

√
n) is the runtime of our algorithm.

6 Lattice SVP and DCP

There is one more piece to the puzzle: Regev’s reduction. The details can be found here [5], and the rest of this
section comes from this paper. The reduction itself has a very intuitive geometric motivation. Essentially, the
reduction divides n-dimensional space up into regions so that there are only two lattice points in each regions. This
creates what is called the “Two-Point Problem” which is the n-dimensional analogue of DCP.

Definition 6.1. The two-point problem takes as input a polynomial number of registers of the form 1√
2
(| 0, a⟩+ | 1, b⟩)

where a and b are elements of {0...M − 1}n for some n and with M = 2O(n), that differ from register to register, but
so that b− a is constant across registers. The problem is to output b− a.

An instance of the two-point problem can then be converted to an instance of DCP. It is here that an important
’blowup’ occurs in the size of the problem, that will help to account for why Kuperberg’s sieve does not help us to
solve lattice SVP in subexponential time. The mapping is given by:

f(a1...an) =
n∑

i=1

ai(2M)(i−1) (1)

The mapping encodes the vector as an O(nlog(M)) bit string. Because M = 2O(n) we now have a problem with
input size O(n2) bits. This blowup then explains why Kuperberg’s algorithm which takes 2O(

√
n) time results in an

exponential algorithm.
The reduction to the two-point problem consists of finding a function which has the property that any two lattice

points that share an output must be only a distance of the shortest vector away from each other. The details of the
function can be found in [5], but essentially the function works by packing balls into the space and then checking
which ball the lattice point belongs to and writing that information into another register. By measuring that register,
you then can collapse the state into the desired one with high probability. To deal with the problems that the grid of
centerpoints might be aligned such that the lattice is lined up in a way so that each ball is empty, Regev introduces
a random permutation. To deal with the fact that with small probability a register might be bad, Regev introduces
the concept of the two-point problem and DCP “with failure parameter f” and argues that by creating enough
registers, you can get enough successful registers. There is one final point of interest here, and that has to do with
the creation of the balls. In particular, in order to get balls with the desired property—that each one contains only
two lattice points—we need to have an approximation l of the norm of the shortest vector with the property that
sh(L) ≤ l ≤ sh(L). We again use LLL-reduction, as in the classical case, to obtain a 2(

n
2 )-factor approximation, and

then guess the n
2 possibilies for l. We develop more similarities in the next section.

7 Classical and Quantum Sieve Similarity

The rest of this paper will attempt to give a description of the commonalities between the two presented algorithms
to explain why no speedup is gained in the quantum case. They both begin by performing an LLL-reduction to
obtain an exponential factor approximation of the shortest vector, which they use to try all O(n) possibilities for a
constant factor approximation. In both cases, they then partition the space into an exponential number of regions.
In the quantum case it is clear that this is what happens, but in the classical case this may not be quite as obvious.
When the set of “representatives” is created, we can define “regions” that contain all of the lattice points associated
with one representative. Then all of these regions are given as input to the next part of the sieve. This is analogous
to the quantum case in which we create registers containing different lattice points from different regions, but in
which we discard the data about which region they came from and look only at the differences between lattice points.

In the quantum case it may seem that more data is available to us sooner, in the form of the input registers
to the two-point problem. If we however look at the information that is available to us, since we cannot learn a
superposition, we see that it is in fact analogous to the classical case. In particular we have some number of regions.
Each one can be looked at as having one lattice point at its “center” and then they look identical, and the problem
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is to find the other point. There are 2O(n2) (the area of the region) possibilities. We of course cannot measure the
first point to find this center, but we do not need to. By applying the Fourier Transform, we discard it and leave
only the shift, which is what we are interested in. After we apply the Fourier transform we are still left with 2O(n2)

possibilities. At this point we use a sieve to get through these in only exponential time in n as opposed to exponential
in n2 that would come from waiting to sample the right point. In the classical case it might seem that we have only
2O(n) possibilities tosieve through, but this is not quite the case. The vector we output at the sieve is a sequence of
differences of lattice points from our original set of 2O(n) points. In other words, we select an exponential number of
points, and we subtract an exponential number of points from another set of points an exponential number of times.
If we tried enumeration, we would essentially have to try all sequences of 2O(n) subtractions to find the output of
the sieve. There are 2O(n2) such sequences.

In the quantum case we can in fact describe a modified version of Kuperberg’s algorithm. The step that maps the
two-point problem is in some ways an artifact of the way the problem was solved—first as a reduction to DCP, then
as a solution to DCP. We can instead apply the Fourier Transform directly to the registers containing the two-point
problem instances. The y that we get as a result is then a vector rather than a string in one dimension. The sieve
we perform on the y values is then very similar to the one we perform in the classical case. We generate 2O(n) and
then match them together. In this case however instead of regions being defined by chosen “representative” points,
they are defined by n-bit chunks on the n2 bit string describing y (which can be thought of as components).

With these similarities, it is then not so surprising that the Kuperberg sieve does not provide the speedup,
especially with the classical abstraction provided by Regev and discussed above. The non-classical components of
quantum computation provide us with the odd machine that produces labelled blocks, but the sieve itself is in some
sense “too classical.”

8 Conclusion

With these similarities drawn, it then seems proper to say not that Kuperberg’s sieve tries to take advantage of the
similarity in structure between DCP and lattice SVP to solve the latter faster, but to solve the former faster. In
other words, Kuperberg’s sieve is helpful to solve DHSP and DCP faster because it uses the similarity to lattice SVP
to apply a sieve that can be looked at as a quantum version of the AKS sieve. While this may be dissapointing to
someone hoping to improve algorithms for lattice SVP, it does help solve DHSP faster. Kuperberg’s sieve could be
said to show that DHSP is not harder than an instance of lattice SVP of dimension

√
n in some sense.
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