
Improved Quantum Query Complexity Bounds for Some Graph Problems

Prafulla Dhariwal, Vinay Mayar

Abstract

We prove improved quantum query complexity bounds for some graph problem. Our results are based on
a new quantum algorithm in [1] that could be used to improve query complexity upper bounds. We prove
a lower bound of Ω

(
k1/2n3/2

)
queries to an adjacency matrix for the k-source shortest paths problem for

unweighted graphs, which matches the upper bound proved in [1]. We also prove an upper bound of O(n1.5)
queries for finding the minimum vertex cover in a bipartite graph G if we are given the maximum matching
in G. In [1], Lin and Lin proved that the latter could be found in O(n1.75) queries, which gives us an O(n1.75)
upper bound for the minimum vertex cover problem for bipartite graphs. We also discuss the implications
of their results on the query complexity of other related graph problems.

Keywords: quantum computation, quantum query complexity, complexity theory, shortest path,
vertex cover, maximum matching, graph algorithms

1. Introduction

A key motivation for the study of quantum complexity theory is to determine when a quantum
computer can give a speedup over classical computers. Currently, only a few problems have been
shown to be computable in polynomial time by a quantum algorithm while requiring exponential
time classically. One of the ways we can analyze the computational speedup of quantum computers
is by comparing the number of bits of the input that a quantum algorithm has to check to compute
a function to the number of bits a classical algorithm has to check. The minimum number of bits
that an algorithm must check to compute a function is the query complexity of the function. The
query complexity of a function is often closely related to its time complexity and gives insight into
the relative power of quantum computers. In this paper we analyze the quantum query speedups
for some graph problems.

Quantum query complexity bounds already exist for many graph problems. Dürr et al. prove al-
most tight bounds for connectivity, strong connectivity, single-source shortest paths,
and minimum spanning tree [2]. Classically, an algorithm must look at almost the entire input
to solve these problems, but quantum algorithms can do better. To determine the quantum query
complexity of a problem, we find an upper bound for the quantum query complexity, usually by
devising and analyzing an algorithm, and a lower bound by a variety of methods. Once the gap
between the upper and lower bounds has been removed, we know the quantum query complexity
of the problem. There remains a gap between the best upper and lower bounds for the quantum
query complexity of k-source shortest paths, maximum matching, and minimum vertex
cover. The goal of this paper is to reduce these gaps.

Email addresses: prafulla@mit.edu (Prafulla Dhariwal), vmayar@mit.edu (Vinay Mayar)

1

1.1. Our Contributions

In Section 3, we prove a lower bound of Ω
(
k1/2n3/2

)
queries to an adjacency matrix for the

k-source shortest paths problem for unweighted graphs, which matches the upper bound proved in
[1]. In Section 4, we prove an upper bound of O(n1.5) queries for finding the minimum vertex cover
in a bipartite graph G if we are given the maximum matching in G. In [1], Lin and Lin proved
that a maximum matching for a bipartite graphs can be found in O(n1.75) queries. Combined with
our reduction, this proves a new upper bound of O

(
n1.75

)
for finding the minimum vertex cover

in bipartite graphs. From results in [2], we get a lower bound of Ω(n1.5) for the same. Though
not tight, our upper bound automatically decreases if a better upper bound is found for maximum
matching in bipartite graphs.

2. Preliminaries

2.1. Graph Theory

Let G = (V,E) be an undirected graph, where V and E denote the set of vertices and edges of
G. Let n = |V | be the number of vertices and m = |E| be the number of edges. In the problems
considered in this paper, we will be given a graph as input and will need to query the existence of
edges between vertices. We consider two models for querying edges in a graph.

Adjacency Matrix We are given the adjacency matrix A ∈ {0, 1}n×n of G with Ai,j = 1 iff
{i, j} ∈ E.

Adjacency List We are given the degrees of the vertices and for every vertex i ∈ V an array fi of
its neighbors. The value fi(j) is the j-th neighbor of i, in some arbitrary but fixed ordering.

2.2. Quantum Query Complexity

The quantum query complexity of a graph algorithm A is the number of queries to the adjacency
matrix or to the adjacency list made by A. We will use the following tool, a result by Lin and Lin,
to prove quantum query complexity upper bounds.

Theorem 1 ([1], Thm. 9). Suppose there is a classical algorithm A that computes f(x) in T
queries, and there is a guessing algorithm G that guesses the result of each query (0 or 1), making
no more than an expected G mistakes for all inputs x. Then we can design a quantum algorithm

that uses O
(√

TG
)

queries to compute f(x) with bounded error.

This result relates classical query complexity to quantum query complexity and proves useful
when an efficient classical algorithm for a problem exists. For more information about this result,
see Appendix A.

3. k-Source Shortest Paths

We are given an unweighted graph G and a set S of sources with |S| = k. The k-source shortest
paths problem is to find the shortest path from each vertex in s to each vertex in G. When k = 1,
this is the single-source shortest paths problem, and when k = n this is the all-pairs shortest paths
problem. The best classical algorithm for single-source shortest paths uses breadth-first or
depth-first search and has query complexity Θ

(
n2
)
. Dürr et al. provide a quantum algorithm for

single-source shortest paths for weighted graphs with query complexity O(n3/2 log3/2 n) [2].
They also prove a lower bound of Ω

(
n3/2

)
, leaving a gap of log factors.

2

3.1. Upper Bound

In [1], Lin and Lin give an upper bound of O(k1/2n3/2) queries to an adjacency matrix for the
k-source shortest paths problem for unweighted graphs. This improves the previous known bounds
by removing the log factors. They apply Theorem 1 by using a depth-first search algorithm k
times for A and a guessing algorithm which always guesses that the queried vertex pair is not an
edge. Since depth-first search visits at most n − 1 vertices (on any input), the algorithm makes
at most G = k(n − 1) mistakes total and has the trivial query complexity T = O

(
n2
)
. By

Theorem 1 the corresponding bounded-error quantum algorithm therefore has query complexity
O(
√
TG) = O

(
k1/2n3/2

)
.

3.2. Lower Bound

In [2], Dürr et al. prove a lower bound of Ω(
√
nm) in the adjacency list model for single-

source shortest paths. Cai et al. prove a lower bound of Ω(n2) for all-pairs shortest
paths [3]. We prove a lower bound of Ω(k1/2n3/2) for k-source shortest path by a reduction
from minimum finding, which is the problem of finding the minimum entry of each row of a
matrix. Dürr et al. prove the following lower bound for minimum finding:

Theorem 2 ([2], Thm. 19). In a matrix with c rows of d columns, finding the minimum value in

each row takes Ω
(
c
√
d
)

queries.

This theorem still holds when we restrict the matrix elements to be non-negative or to the set
{0, 1}.

Theorem 3. Finding the shortest paths from k source vertices in a graph requires Ω

(√
km2

n

)
queries in the adjacency list model and Ω(k1/2n3/2) queries in the adjacency matrix model.

Proof. Let M be a matrix with ke rows and d columns, each entry Mi,j being non-negative. By
theorem 2, finding the minimum in each row of M takes Ω(ke

√
d) queries. We construct the fol-

lowing weighted graph G (Figure 1).

Vertices: k vertices ui, i ∈ [k] in the first layer, kd vertices gi,j , i ∈ [k], j ∈ [d] in the second layer,
and e vertices vr, r ∈ [e] in the third layer.

Edges: For each i ∈ [k], j ∈ [d], there is an edge of weight 0 from ui to gi,j . For each i ∈ [k], j ∈
[d], r ∈ [e], there is an edge from gi,j to er of weight M(i−1)e+r,j .

The vertices ui are the sources. Finding the shortest path from a particular ui to a particular
vr is equivalent to findng the minimum value in the row (i − 1)e + r of M . Thus, finding the
shortest path from each source to each vertex vr requires yields the minimum of each row of M .
By Theorem 2, this requires Ω(ke

√
d) queries. G has n = k+kd+e vertices and m = kd+kde edges.

Given n and m, we can choose d and e appropriately to get the required number of vertices and

edges. As m = Θ(kde), and n > kd, we have a lower bound of Ω

(√
km2

n

)
for k-source shortest

paths in the adjacency list model. Since m can be Θ(n2), this gives a bound of Ω(k1/2n3/2) for
the adjacency matrix model. Theorem 2 holds even if the matrix M is restricted to contain only
elements from {1,∞}, which gives us the corresponding lower bound for unweighted graphs.

3

Figure 1: The graph for the reduction from minimum finding to vertex cover. The source vertices ui are each
connected to the d vertices in the corresponding group gi,j of vertices in the middle level. The vertices vr in the
bottom level are each connected to each vertex gi,j by an edge of weight M(i−1)e+r,j .

This proves the optimality of the algorithm in [1].

4. Maximum Matching and Minimum Vertex Cover in Bipartite Graphs

In maximum matching, we are given as input a graph G and are asked to find the set M ⊂ E
of maximum cardinality such that no two edges share a common endpoint. A related problem is
minimum vertex cover: given a graph G, find the set S ⊂ V of minimum cardinality such that
each edge in the graph is adjacent to at least one vertex in S. For the case of bipartite graphs,
König’s theorem states that the minimum vertex cover has the same cardinality as the maximum
matching. Lin and Lin provide a O

(
n1.75

)
query algorithm for maximum matching for bipartite

graphs [1]. This algorithm can be used to determine the size |S| of the minimum vertex cover of
a bipartite graph. Furthermore, we can construct a minimum vertex cover S given a maximum
matching in a bipartite graph [4, pp. 74]. We will use Theorem 1 to show that we construct S given
M using at most O

(
n1.5

)
additional queries to the adjacency matrix. Since finding the maximum

matching takes O(n1.75) queries, this gives an O(n1.75) algorithm for minimum vertex cover in
a bipartite graph.

4.1. Upper Bound

We are given the maximum matching M for a bipartite graph G. An unmatched vertex is a
vertex that is not adjacent to any edge in M . An alternating path is a path in G that alternates
between using edges in M and edges not in M . We use the following theorem:

Theorem 4 ([4], pp. 74). Let G = (V,E) be a bipartite graph where the vertex set V is partitioned
into a left set L and a right set R. Let M be a maximum matching for G. Let U be the set of
unmatched vertices in L, and let Z be the set of vertices that are either in U or connected to U by
alternating paths. Then, a minimum vertex cover of G is S = (L \ Z) ∪ (R ∩ Z).

4

We are given L,R,M . From M and L, we can find the set U without any queries. We can
find Z by doing a breadth-first search from the set U , and alternating between using matched and
unmatched edges in the search. To get an upper bound for the number of queries to find Z, we
use Theorem 1. Our classical algorithm will make at most T = O

(
n2
)

queries (the trivial upper
bound) to the adjacency matrix. Our guessing algorithm will make at most G = O(n) mistakes.
This gives an upper bound of O(

√
TG) = O(n1.5) for the query complexity.

Algorithm 1. Classical algorithm to find the minimum vertex cover S given the maximum match-
ing M in a bipartite graph G = (L ∪R,E):

1. Find the set U of vertices not matched by M .

2. Initialize the set S0 = U and L = V \ S0. Set i = 1.

3. Repeat while both L and Si−1 are non-empty:
Case 1. i is odd.

(a) For all vertices v ∈ L:

i. Query edges (v, u) with u ∈ Si−1 such that (v, u) 6∈M . The moment a query returns
1, add v to Si and remove v from L.

Case 2. i is even.

(a) For all vertices v ∈ L, use M to check if there is a (v, u) ∈M such that u ∈ Si−1. If so,
add v to Si and remove v from L.

4. Set Z = V \ L =
⋃
i
Si

5. Output S = (L \ Z) ∪ (R ∩ Z).

Proof of correctness: We started with S0 = U . If we define distance from U to be the length
of the smallest alternating path required to reach a vertex v, then a simple inductive argument
shows that Si is the set of all vertices at distance i from U . Thus, we see that the union of all Si

is exactly the set Z of all vertices reachable from U using alternating paths. Then, by Theorem 4,
set S is the required minimum vertex cover.

Theorem 5. Finding the minimum vertex cover, given the maximum matching in a bipartite graph
G takes O

(
n1.5

)
queries in the adjacency matrix model.

Proof. Algorithm 1 needs to query at most T = O
(
n2
)

entires in the adjacency matrix. (This is
the trivial query complexity upper bound for graph problems: if we have already queried an edge,
we never have to repeat that query, and there are n2 entries in the matrix in total.) We define our
guessing algorithm to always guess that there is no edge. We observe that whenever we make a
mistake on an edge (v, u) in step 3, the vertex v gets removed from L. Thus, as there are at most n
vertices, we can make at most n mistakes. Thus, G ≤ n. By Theorem 1, we have an upper bound

of O
(√

TG
)

= O
(
n1.5

)
queries.

Since the conversion from M to S can be done with O
(
n1.5

)
queries and M can be determined

with O
(
n1.75

)
queries, we have an algorithm to determine S using O

(
n1.75

)
queries.

5

4.2. Lower Bound

In [5, pp. 4], Zhang proves a lower bound of Ω
(
n1.5

)
for the decision problem of whether a

bipartite graph G has a perfect matching. If we could find the minimum vertex cover in o
(
n1.5

)
,

we also get the size of the minimum vertex cover, which by König’s theorem is the size of the
maximum matching. Then, without making any extra queries, we can solve the decision problem
of whether G has a perfect matching. Hence, we also get a lower bound of Ω

(
n1.5

)
for finding the

size of the minimum vertex cover in a bipartite graph.

5. Maximum Independent Set

An independent set in a graph is a set of vertices no two of which are adjacent. maximum
independent set is the problem of finding the largest such set. Since the maximum independent
set is the complement of a vertex cover, Algorithm 1 can be extended to give a maximum inde-
pendent set. Thus, the quantum query complexity of maximum independent set in a bipartite
graph is O

(
n1.75

)
.

6. Discussion and Open Problems

Our results improve the bounds for some important graph problems. A summary of our and
known results, as well as possible open problems, is given in Table 1.

Problem Query Complexity Open Problems

k-source shortest
paths

Θ(k1/2n3/2) Proving bounds for adjacency list model.
Generalizing to weighted graphs. Finding the
time complexity of the algorithm given in [1].

maximum match-
ing

Ω(n1.5), O(n1.75) Reducing the gap between the two bounds.
Finding bounds for general graphs, possibly
by applying Theorem 1 to the Micali-Vazirani
algorithm for maximum matching in a general
graph. Finding the time complexity of the
algorithm given in [1].

minimum vertex
cover

Ω(n1.5), O(n1.75) Same as above.

Table 1: A table of relevant bounds. The bounds for maximum matching and minimum vertex cover are for
bipartite graphs, and the bounds for k-source shortest paths are for general graphs.

Other open problems:

1. Can Theorem 1 be applied to more problems to improve or reproduce their query complexity
bounds? We tried applying it to:

(a) graph collision. The explicit algorithm used in the proof of Theorem 1 uses results
proved by Kothari in [6]. In the same paper, Kothari uses his span program construction
to remove the log factors in the upper bound for graph collision.

6

(b) planarity testing.
(c) triangle finding.
(d) quantum local search. The standard black box of making queries to the function

isn’t very useful as we need {0, 1} black-boxes. We experimented with blackboxes like
“Is f(x) < f(y)?” and “Is f(x) a local minimum?”.

2. One limitation of applications of Theorem 1 is that they apply only to unweighted graphs.
This is because the guessing algorithm makes binary guesses. If Lin and Lin’s results were
extended to allow non-binary queries, one could prove upper bounds for vertex cover
and maximum matching on weighted bipartite graphs and k-source shortest paths and
Minimum Spanning Tree on general weighted graphs. If the query, for example to an
adjacency matrix, were not binary, as in the case of weighted graphs, we could simulate a
guessing algorithm with a guessing algorithm for each bit of the input.

7. Acknowledgements

We would like to thank Cedric Yen-Yu Lin and Han-Hsuan Lin for helpful discussions and for
suggesting open problems related to their work in [1]. Special thanks to Prof. Scott Aaronson for
guiding us in this project for his class, Quantum Complexity Theory.

Appendix A. The Bomb Query Model

The bomb query model is a model of quantum computation inspired by the Elitzur-Vaidman
bomb tester [7]. The premise of this model is that all oracle queries are replaced by a queries to
a bomb circuit which executes a controlled query to the oracle, measures the result, and explodes
if a 1 was queried [1]. Explosion terminates the algorithm, preventing successful evaluation of the
function. Lin and Lin characterized the relation between the bomb query complexity B(f) of a
function f , which is the minimum number of bomb queries to the input required to compute f ,
and the quantum query complexity Q(f).

Theorem 6 ([1], Thm. 1). Q(f) = Θ
(√

B(f)
)

.

Lin and Lin then prove the existence of an efficient bomb query algorithm to compute f using
a randomized algorithm A for f and a guessing algorithm G that guesses queries to the input.

Theorem 7 ([1], Thm. 8). Suppose there is a classical algorithm A that computes f(x) in T
queries, and there is a guessing algorithm G that guesses the result of each query (0 or 1), making
no more than an expected G mistakes for all inputs x. Then we can design a bomb query algorithm
that uses B(f) = O (TG) queries to compute f(x) with bounded error.

Thus, by Theorem 6, this gives a non-constructive upper bound to Q(f) =
(√

TG
)

.

Inspired by this result, Lin and Lin then give a constructive proof by explicitly providing a

quantum algorithm that achieves the O
(√

TG
)

bound by using A and G as subroutines. The

quantum algorithm performs a Grover Search for the location of the first mistake made by the
guessing algorithm, and then repeats the process for the remaining queries. To remove the log
factors from their construction, they use a span program construction given by Kothari in [6].

Lin and Lin’s results yield improved bounds for many problems. In particular, they improve
the quantum query complexity upper bound for single-source shortest paths in unweighted

7

graphs to O
(
n1.5

)
in the adjacency matrix model, thus removing the log factors from previously

known results. They also give a bound of O
(
n1.75

)
queries for maximum matching for bipartite

graphs. A common technique used by these algorithm’s is to create a situation where the mistakes
in the guessing algorithm lead to additions of edges to a tree. This limits the number of mistakes
to O(n), as there are n− 1 edges in a tree.

References

[1] C. Y.-Y. Lin, H.-H. Lin, Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb
Tester (2014). arXiv:1410.0932.

[2] C. Durr, M. Heiligman, P. Hoyer, M. Mhalla, Quantum query complexity of some graph problems (2004).
arXiv:quant-ph/0401091.

[3] F. Cai, S. Tayu, S. Ueno, On the Quantum Query Complexity of All-Pairs Shortest Paths, in: Proceedings of
the 2007 IEICE General Conference, 2007.

[4] J. Bondy, U. Murty, Graph Theory with Applications, North Holland, 1976.
[5] S. Zhang, On the Power of Ambainis’s Lower Bounds (2003). arXiv:quant-ph/0311060.
[6] R. Kothari, An Optimal Quantum Algorithm for the Oracle Identification Problem, in: E. W. Mayr, N. Portier

(Eds.), 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014), Vol. 25 of
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014, pp. 482–493. arXiv:1311.7685v2.

[7] A. Elitzur, L. Vaidman, Quantum Mechanical Interaction-Free Measurements, Foundations of Physics 23 (7)
(1993) 987–997. doi:10.1007/BF00736012.

8

http://arxiv.org/abs/1410.0932
http://arxiv.org/abs/quant-ph/0401091
http://arxiv.org/abs/quant-ph/0311060
http://arxiv.org/abs/1311.7685v2
http://dx.doi.org/10.1007/BF00736012

	Introduction
	Our Contributions

	Preliminaries
	Graph Theory
	Quantum Query Complexity

	k-Source Shortest Paths
	Upper Bound
	Lower Bound

	Maximum Matching and Minimum Vertex Cover in Bipartite Graphs
	Upper Bound
	Lower Bound

	Maximum Independent Set
	Discussion and Open Problems
	Acknowledgements
	The Bomb Query Model

