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Abstract

In 2010, Jain et al. [JJUW10] provided the first proof that QIP=PSPACE. Jain et al. used a
constructive argument which applied the matrix multiplicative weight update method to a semidefinite
programming problem formulation of a QMAM protocol to achieve this proof. The proof that QIP=
PSPACE was alternately characterized by Xiaodi Wu [Wu10] that same year; Xiaodi Wu’s method, how-
ever, was simplified through the application of the equilibrium value method. In this survey, we evaluate
the equilibrium value method and its flexibility as a proof technique. We consider Gutoski and Watrous’s
proof that QRG=RG=EXP [GW07]. We look at Gutoski and Wu’s proof that QRG(2)=PSPACE
[GW10, GW12], which uses the equilibrium value method. Finally, we reason about the feasibility of
providing an alternate characterization that QRG=RG=EXP using the equilibrium value method.
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1 Introduction

Watrous first extended the class IP, which consists of those languages which can be decided by an interactive
proof system and was shown to be equal to PSPACE [Sha92], to its quantum analog, QIP, in 1999 [Wat03].
The complexity upper bound on this class was unknown until 2010, when Jain et al. [JJUW10] and Wu
[Wu10] provided proofs that QIP=IP=PSPACE. This result is extremely enticing as it demonstrates
that for interactive proof systems, the power of quantum computation is no greater than the power of
classical computation.

Similarly, for the domain of refereed games, quantum computation offers no additional power over classical
computation. Refereed games consist of the languages which can be decided by an alternate interactive
proof system with two competing provers. Gutoski and Watrous demonstrated that the class of quantum
refereed games, QRG, is exactly characterized by QRG=RG=EXP [GW07].

In this paper, we compare the two versions of the proof QIP = PSPACE. We postulate that it is
possible to provide a characterization of QRG=EXP using the equilibrium value method used in Wu’s
proof that QIP=PSPACE. We provide evidence of this by discussing Gutoski and Wu’s proof that
QRG(2)=PSPACE [GW10], which does indeed use the equilibrium value method. In short, in this survey
we discuss the application of the equilibrium value method as a proof technique for simplified applications
of the matrix multiplicative weight update method.

2 Definitions

In this section, we provide formal definitions of the complexity classes QIP and QRG, as well as
the QIP-complete problem of quantum circuit distinguishability (QCD). We also discuss semidefinite
programming, the matrix multiplicative weight update method (MMW), and the equilibrium value
method.

Definition 2.1 QIP
We define a verifier V :Σ∗→Σ∗ to be a quantum circuit which can compute a quantum polynomial-time
algorithm; hence V decides a language L′ in BQP.

We define a prover P :x∈Σ∗→l(|x|), where l(|x|) is defined to be a tuple of quantum circuits. The prover
P is said to have unbounded computational power.

Let all provers P and the verifier V each exchange m-messages. A language L can be decided in QIP
if and only if the following completeness and soundness conditions hold:

(Completeness) x∈L=⇒∃P , Pr[(P,V )(x)=1]≥2/3 (1)

(Soundness) x 6∈L=⇒∀P , Pr[(P,V (x)=1]≤1/3
Given the restriction of this protocol to m-messages, this protocol is said to belong to the class QIP(m).
QIP(1) is exactly the class QMA.

The full complexity class QIP is restricted to k(m)-messages, where k(m) is polynomial in m.

Parallelization and amplification of QIP protocols were demonstrated by Kitaev and Watrous [KW00].

Definition 2.2 QRG
The definition of the complexity class QRG is extremely similar to that of QIP; the difference is that
QRG has two provers, PY and PN , both of unbounded computational power, whereby the “yes” prover,
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PY , aims to cause the verifier to accept, while the “no” prover PN aims to cause the verifier to reject. A
language L can be decided in QRG if the following completeness and soundness conditions hold:

(Completeness) x∈L=⇒∃PY ∀PN , Pr[(PY ,PN ,V )(x)=1]≥ 2

3
(2)

(Soundness) x 6∈L=⇒∃PN∀PY , Pr[(PN ,PY ,V (x)=1]≤ 1

3
Definition 2.3 QCD The quantum circuit distinguishability (or QCD) problem for 0<ε<1, QCD2−ε,ε
is QIP-complete [RW05]. This problem is most generally parametrized by two constants a and b, where
0≤b<a≤2. The diamond norm, a measure of the distance between two quantum channels A and B, is
denoted as ||A−B||�. The problem QCDa,b is defined as follows:

Π=(ΠY ,ΠN) (3)
On input (Q0,Q1) where Q0,Q1 are mixed-state quantum circuits:

ΠY : ||Q0−Q1||�≥a
ΠN : ||Q0−Q1||�≤b

Semidefinite Programming

The concept of semidefinite programming, the optimization of a linear objective function over the entries
of a positive semidefinite matrix, is central to the proof sketches contained in this survey. We cover
this material with brevity; an interested reader may refer to Vandenberghe and Boyd’s exposition of
the topic [VB96] or to Jain et al. [JJUW10]. The syntax presented here is similar to Arora and Kale
[AK07].
For a vector space V, let the set of linear mappings of that operator be denoted by L(V).

An operator P ∈L(V) is said to be positive semidefinite if the following conditions are true:
• P is Hermitian
• P has only non-negative eigenvalues.
Let the space of positive semidefinite operators be denoted by Pos(V).

Taking Σ to be a finite, nonempty set of possible measurement outcomes, define the quantum state as
a density operator ρ, where A is a register. For the positive semidefinite operator collection:

{Pa|a∈Σ}⊆Pos(A)
We define a measurement to be: ∑

a∈Σ

Pa=IA

Define the relation A<B to mean A−B is positive semidefinite.
Let V be the complex vector spaces CΣ. Define m to be the number of constraints. Let A be some n×n
matrix. An example semidefinite program can be denoted as follows:

For: X∈Pos(V) (4)

Maximize: 〈C|X〉
Subject to: ∀d∈ [m] :〈Ad|X〉≤Bd

Where: X<0
The dual semidefinite program (to the semidefinite program above) is denoted as follows:

2



6.845 • Quantum Complexity Theory • Fall 2014

Minimize: B·Y (5)

Subject to:
m∑
d=1

AdYd<C

Where: Y ≥0
Notice that the matrix B consists of all constraints, and the matrix Y consists of all dual variables.

Matrix Multiplicative Weights Update Method

The matrix multiplicative weights update method (or MMW) is a meta-algorithm which tracks costs and
weights with applications to solving semidefinite programs; both Jain et al. and Wu use this meta-algorithm in
their respective proofs of QIP = PSPACE [JJUW10, Wu10]. A full exposition of the general multiplicative
weights update method was published by Arora et al. in 2012. In this survey, we do not discuss the analysis
which determines the acceptance probabilities for this algorithm. For such a discussion, we refer the reader
to Arora et al. in 2012 [AHK12].
The goal of using the MMW update method is to sample possible solutions to an SDP – either from an
oracle or from a distribution – and evaluate the helpfulness of the weight of each possible solution. The
algorithm is iterative, and each iteration refines the weight of each solution. However, for certain classes
of SDPs, the algorithm is parallelizable in NC(poly). This parallelizable class of SDPs which exhibit weak
duality, or can be expressed as feasibility problems, is of particular use to us.
For an operator A∈L(V), where V=CΣ (as above), the expontential of A is defined to be

exp(A)=1+A+
A2

2
+
A3

6
+...

Let M be a cost matrix in Rn×n. For each decision v∈ [−1,1] made by our algorithm’s evaluation, the
cost is v†Mv. This cost is used in analyzing the efficacy of the algorithm.
In a traditional multiplicative weight update approach, our algorithm would be advised by some form of
prover. In this case, however, we look for a solution among distributions. A relatively general sketch of
the algorithm follows.

Pre-processing:
1. Fix some η≤1/2.
2. Initialize a weight matrix W=IX. This matrix is updated with each iteration of the algorithm.
3. N=dim(V).
Processing:
For t=1,2,...,T :
1. Take the density matrix ρt=

Wt
ψt

, for ψt=Tr(Wt).

2. Evaluate Mt.
3. Update the matrix W to reflect the observed weights, Wt+1 =exp(−η

∑t
k=1Mk).

After T rounds, return 1
T

∑T
t=1ρt.

In order to use this method to solve a semidefinite program, we consider how it would fare on the semidefinite
program (and its dual) described above. Note that while this efficiently parallelizable approach is able
to provide solutions to semidefinite programs of duality, it is not necessarily able to do so for semidefinite
programs which do not take this form.

Assume the existence, for some ε, of a density matrix for which all values 〈Aj|X′〉≥ε. Define ρt=maxt||At||.
For each iteration of the algorithm, set the density matrix X to be ρt. With the value of X set to be
this, we then can evaluate whether the conditions of the semidefinite program are satisfied. If so, we have
found an accepting condition. Otherwise, we continue with our search. If there is a constraint d for which
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〈Ad|X〉≤0, then set the cost matrix to be Mt=
1
ρd
Ad.

Theorem 2.1 For the MMW algorithm sketched above, the algorithm after T rounds, the error margin
for any decision v is:

T∑
t=0

〈Mt|ρt〉≤
T∑
t=0

v†Mtv+η
T∑
t=0

〈M2
t |ρt〉+

lnX

η

For a proof of this theorem, see Arora et al.’s survey of the multiplicative weight update method [AHK12].

Equilibrium Value Method

The equilibrium value method is essentially a result of the Minimax theorem which was first presented
in 1928 by J. v. Neumann, and of the Nash equilibrium which was first presented by John Nash in 1958
[Nas50]. The equilibrium value method is a systematic approach to converting semidefinite programs with
feasibility problem representations to zero-sum games. The concept of the Nash equilibrium is key to
interpreting strategies in zero-sum or non-cooperative games; it thus appears to lend itself well to the class
of quantum refereed games, though a proof of its general applicability is yet unknown. The definition here
is similar to Wu’s argument. [Wu10].

For some vector spaces X0⊗X1, X2⊗X3, define L(X0⊗X1)→L(X2⊗X3). Let Ξ be the linear operator
mapping the function L. Define, in addition, Γ={Π|0≤Π≤1X2⊗X3}.

The equilibrium value is:
λ̂(Ξ)= min

ρ∈D(X0⊗X1)
max
Π∈Γ
〈Π|Ξ(ρ)〉=max

Π∈Γ
min

ρ∈D(X0⊗X1)
〈Π|Ξ(ρ)〉

An equilibrium point for this value is:
〈Π̂|Ξ(ρ̂)〉= min

ρ∈D(X0⊗X1)
〈Π̂|Ξ(ρ)〉=max

Π∈Γ

〈Π|Ξ(ρ̂)〉

3 Quantum interactive proofs

We discuss two proofs of the theorem QIP=PSPACE. The first proof uses the matrix multiplicative
weight update method; the second uses MMW as well as the equilibrium value method. This presentation
demonstrates that the latter method is significantly simpler, and, as such, this presentation opens the
question of where else the equilibrium value method may aid in proof simplification.

3.1 Semidefinite Formulation of QIP=PSPACE

The first step in Jain et al.’s proof QIP=PSPACE is to formulate the class QMAM, or QIP(3), in terms
of a semidefinite program and its dual [JJUW10]. The argument then demonstrates that applying the
MMW update meta-algorithm to this solve this semidefinite program results in an NC(poly)=PSPACE
algorithm. Given reference to Jain et al.’s earlier result that QIP(2)⊆PSPACE [JUW09] (a result that
also uses a semidefinite program formulation), this proves QIP=PSPACE. Note that the QIP(3) protocol
acts as a QIP-complete language; this fact is of interest as it illustrates a similarity between Jain et al. and
Wu’s formulations of QIP=PSPACE.

3.1.1 Semidefinite Program for a QIP(3) Protocol

The derivation of the following semidefinite program and its dual is contained in Appendix B; ψ, X, W ,
and Y are all defined within that appendix.
Primal semidefinite program:
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Given: X∈Pos(X⊗W⊗Y ), (6)

σ∈D(W)

Maximize: Tr(X)

Subject to: ψ(X)≤IX⊗σ
And its dual:

Given: Y ∈Pos(X⊗W), (7)

Minimize: ||TrX(Y )||
Subject to: ψ†(Y )≥IX⊗W⊗Y

3.1.2 Matrix Multiplicative Weight Update Method to Solve QIP(3) Protocol

The application of the matrix multiplicative weight update method to the dual semidefinite programs defined
for the QIP (3) protocol above is exceedingly intricate. This intricateness is one of the motivations for this
paper; using the equilibrium value method as we discuss in section 3.2, we can drastically simplify this proof.
Using the semidefinite program and its dual defined above, we present an algorithm which accepts when an
optimal solution which is greater than 7

8 exists, and which rejects when an optimal solution is less than 5
8 .

Pre-processing:
1. N=dim(X⊗W⊗Y ),
2. M=dim(W)
3. Π∈Pos(X⊗W)
4. Define a weight matrix: W=IX⊗W⊗Y
5. ρ=W/N ; ρt=Wt/N ; ρ∈D(X⊗W⊗Y )
6. Define another weight matrix: Z=IW
7. ζ=Z/M ; ζt=Zt/M ; ζ∈D(W)
Processing:
For t=1,2,...,T :

1. Let ε=1/64, δ= ε
2||Q−1|| , T=d4log(N)

ε2δ
e.

2. Set βt=〈Πt|ψ(ρt)〉, where Πt represents the projection onto the positive eigenspaces of ψ(ρt)− 4
3IX⊗ζt.

3. If βt≤ε: accept.
4. Else:

Wt+1 =exp

(
−εδ

t∑
j=1

ψ†(
Πj

βj
)

)

Zt+1 =exp

(
εδ

t∑
j=1

Tr(
Πj

βj
)

)
Update ρ and ζ accordingly.

5. If, after T rounds, we have not yet accepted, reject.

Grisly analysis of the acceptance and rejecting probabilities of this application of the matrix multiplicative
weight update method to the semidefinite formulations of a QIP(3) protocol indeed confirms that the
algorithm accepts when an optimal solution which is greater than 7

8 exists, and rejects when an optimal

solution is less than 5
8 . This analysis is achieved by using Theorem 2.1. For a full treatment of this analysis,

refer to Jain et al. [JJUW10].
The intuition for this algorithm is as follows. We sample density matrices from a some distribution, and use
these matrices as starting points from which to approximate solutions to the constraints of the semidefinite
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program. With each iteration, we project these density matrices onto the positive eigenspaces of the
constraint space. Using these projections and density matrices, we update our cost and weight matrices.
With each iteration, we attempt to narrow the gap between the value of the projection and the chosen
value for ε. If a solution’s projection approximately satisfies the system constraints, then the algorithm
accepts the density matrices as a solution to the system and accepts.

3.2 Equilibrium Value Method Formulation of QIP=PSPACE

This section discusses Wu’s [Wu10] proof of QIP=PSPACE; the goal of this section is to demonstrate the
simplification provided by this presentation of the result. In order to apply the equilibrium value method to
demonstrate QIP=PSPACE, we first characterize the class by considering the QIP-complete problem QCD,
or quantum circuit differentiability. It must be said, though, that we could equally apply the equilibrium
value method to the QIP(3) protocol above; we choose to use the class QCD for additional simplicity.
Using this categorization, we apply the equilibrium value method to again reformulate the problem. The
equilibrium values can then be approximated by applying the matrix multiplicative weight update algorithm.

3.2.1 Equilibrium Value formulation of QCDa,b

Recall our definition of the equilibrium value method.

For some vector spaces X0⊗X1, Z⊗Q, where X0,X1 are isomorphic copies of the space X, define
L(X0⊗X1)→L(Z⊗Q). Let Ξ be the linear operator mapping the function L.

The equilibrium value λ̂(Ξ) for QCDa,b is:

λ̂(Ξ)≤
√

(4−a2)

2
,||Q0−Q1||�≥a (8)

λ̂(Ξ)≥ 2−b
2
,||Q0−Q1||�≤b

The constraints,

√
(4−a2)

2 , 2−b
2 , on the equilibrium value are determined in part by analyzing the fidelity

of the quantum states. The algebraic manipulation which achieves this proof is discussed at length in Wu’s
original paper [Wu10]. We note that the operator Ξ is constructed efficiently in parallel (in NC(poly)),
a requirement for the application of this proof technique to PSPACE problems.

3.2.2 Converting the Equilibrium Value Formulation to a Semidefinite Program

Formulating a semidefinite program and its dual from this equilibrium value representation of the quantum
circuit distinguishability problem is immediate. Because the equilibrium point is determined through the
application of the Minimax theorem, the minimization and maximization criteria are explicitly spelled
out. This is a significant difference from the earlier demonstration of formulating a QIP(3) protocol as
a semidefinite program.
For coverage of how to convert an instance of the Minimax theorem to a semidefinite program to which the ma-
trix multiplicative weight update method is relevant, see Kale’s thesis [Kal07]. Here, we simply observe that
any problem which can be formulated as a Minimax problem also has strong duality between semidefinite pro-
grams, and thus the matrix multiplicative weight update algorithm can be used to parallelize the optimization.

3.2.3 Matrix Multiplicative Weight Solution to the Semidefinite Program

Given the Minimax program defined above, we can apply the matrix multiplicative weight algorithm in the
usual way so as to determine the equilibrium value, and, by doing so, we can then resolve theQCDa,b protocol
in NC(poly)=PSPACE. The following algorithm updates the cost matrix M in a non-standard way.
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Pre-processing:
1. Fix some ε= δ

4 . Fix T=d16logN
δ2
e.

2. Initialize a weight matrix W=IX.
3. N=dim(X).
Processing:
For t=1,2,...,T :
1. Take the density matrix ρt=

Wt
ψt

, for ψt=Tr(Wt).

2. Compute Ξ(ρt). Let Πt be the projection onto the positive eigenspaces of Ξ(ρt).
3. Evaluate

Mt=
Ξ†(Πt)+IX

2
4. Update the matrix W to reflect the observed weights, Wt+1 =exp(−ε

∑t
k=1Mk).

After T rounds, return λ̂(Ξ)= 1
T

∑T
t=1〈Πt|Ξ(ρt)〉.

Applying Theorem 2.1 to analyze this algorithm indeed demonstrates that this protocol solves the semidefinite
program defining the QIP-complete problem of quantum circuit distinguishability. For a detailed analysis
of the algorithm, including details of the promise separation, see Wu’s original paper.
As Ξ can be generated in NC(poly), and as the matrix multiplicative weight update algorithm described
above operates in NC(poly), given that this protocol is for a QIP-complete problem, this demonstrates
QIP=PSPACE.

4 Quantum Refereed Games

So far, this survey has discussed two different albeit similar approaches to proving QIP=PSPACE. The
goal of this discussion has been to demonstrate the simplifications made possible by applying the equilibrium
value method. In comparing these approaches, a natural next step is to see where else the equilibrium value
method can be used as a proof technique. In this section, we discuss quantum refereed games, a complexity
class which is an abstraction above QIP. As QIP=PSPACE, similarly QRG=EXP, whereby adding
quantum computational power does not increase the overall power of the complexity class. The technique
used to prove QRG=EXP is very similar to Jain et al.’s proof of QIP=PSPACE. Again, it requires
the manipulation of semidefinite programs along with the application of the matrix multiplicative weight
update algorithm to resolve these programs. The question of whether the equilibrium value method can
be used to simplify this proof remains open; this section lays the groundwork for approaching that problem,
first by discussing the known proof of QRG=EXP, and then by discussing how the equilibrium value
method has been effectively used to show QRG(2)=PSPACE. This latter proof is particularly interesting
as it requires a recursive implementation of the matrix multiplicative weight update algorithm

4.1 Semidefinite Formulation of QRG=RG=EXP

In this section, we follow Gutoski and Watrous’s [GW07] demonstration that the class QRG can be
expressed in terms of a semidefinite program which is polynomial in the size of the input string, and, as the
particular semidefinite program generated is similar to a convex programming semidefinite program, it can
be solved in polynomial time. This then demonstrates QRG⊆EXP. EXP⊆QRG follows immediately
from RG⊆QRG, combined with the result that RG=EXP.

We assume the definition of a strategy, quantum or otherwise. For more information about strategy
choices, see Gutoski and Watrous’s original paper [GW07]. The syntax employed here is to say that for
Sn(X1...n,W1...n), the strategy set Sn takes X1...n as input and gives W1...n as output.
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The following theorem is stated and proven in Gutoski and Watrous’s paper [GW07]. We refer to this
result in constructing our semidefinite program, and so we repeat it here:

Theorem 4.1 Let n ≥ 1, let X1,...,Xn, Y1,...,Yn be complex Euclidean spaces, and let {Qa|a ∈ Σ}
represent an n-turn measuring strategy with input spaces X1,...,Xn and output spaces Y1,...,Yn. Then for
each a∈Σ, the maximum probability with which this strategy can be forced to output a, maximized over
all choices of compatible co-strategies is given by:

min{p∈ [0,1]|Qa≤pR for some R∈Sn(X1...n,Y1...n)
With the same result applying to measuring co-strategies.

Now we return to our construction of a semidefinite program for QRG.
• Let m be the number of turns the “yes” prover and the “no” prover are allotted. Let the verifier
V ={Vy,Vn}.
• Let the yes-prover (defined in the definition of QRG) have a strategy Y ∈Sn(Y1...m,C1...m) and let the

no-prover have a strategy N∈Sn(N1...m,D1...m).
• From the strategies defined here, we construct linear super operators ΩY and ΩN :

ΩVy(Y )=TrY1...m⊗C1...m

(
(Y ⊗ID1...m⊗N1...m)Vy

)
ΩVn(Y )=TrN1...m⊗D1...m

(
(Y ⊗ID1...m⊗N1...m)Vn

)
• Assuming the provers conform to their chosen strategies, the verifier outputs 1 (a “yes” response) with

probability 〈Y ⊗N |Vy〉=〈N |ΩVy(Y )〉.
• The verifier outputs 0 (a “no” response) with probability 〈Y ⊗N |Vn〉=〈N |ΩVn(Y )〉.
In order to decide an input x, we compute the maximum probability that the no-prover can win the game.

Pr[Prover outputs 0]=max〈N |ΩVn(Y )〉
Which, using Theorem 4.1, is:

min{p≥0|ΩVn(Y )≤pQ for some Q∈co-Sn(N1...m,D1...m)}
Which gives the semidefinite program:

Minimize: p (9)

Subject to: ΩVn(Y )≤pQ
And: Y ∈Sn(Y1...m,C1...m)

And: Q∈co-Sn(N1...m,D1...m)
Note that this semidefinite program can be written in terms of linear and semidefinite constraints. With this
observation, the formulation of the semidefinite program is complete, and the result QRG⊆EXP is secured.

4.2 Equilibrium Value Method Proof QRG(2)=PSPACE

Restricting QRG to only allow two rounds of interactions between the “yes” and “no” provers and the
verifier, we can use the equilibrium value method to show QRG(2)⊆PSPACE. This result is of particular
interest, as it’s the first instance in which the equilibrium value method has resolved an open question
before a traditional formulation of a semidefinite program followed by the matrix multiplicative weight
update algorithm [GW10, GW12]. This discussion is of particular interest also because it requires the use
of a recursive implementation of the matrix multiplicative weight update method. The inclusion of this
second fact is evidence of the flexibility of the equilibrium value method as a proof technique.
Due to space constraints, we briefly discuss the application of the matrix multiplicative weight update
method to an approximation of the equilibrium values for QRG. We assume the following four conditions
can be achieved:
1. There exist equilibrium values bounded in the usual way which we can approximate to solve QRG(2).
2. We have the ability to apply the MMW update method to k-tuples of matrices simultaneously.
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3. We have the ability to ignore some k-tuples of matrices.
4. We have the ability to obtain consistent quantum states using a rounding lemma.
From these three assumptions, we can apply the matrix multiplicative weight update method in a recursive
form to approximate the equilibrium values for QRG(2). The recursive form is used to select first an
optimum quantum strategy for the “yes” prover, and at the next level to select an optimum quantum
strategy for the “no” prover. As the equilibrium value constraints can be determined in NC(poly), and
as the recursive implementation of the matrix multiplicative weight update method can run in NC(poly),
this demonstrates QRG(2)⊆PSPACE.

5 Open: Equilibrium Value Method Proof QRG=RG=EXP

In this paper, we have looked at the use of the equilibrium value method as an alternate characterization of the
proof of QIP=IP=PSPACE. We then looked at the matrix multiplicative weight proof of QRG=RG=
EXP, and we briefly discussed how the equilibrium value method was used to prove QRG(2)=PSPACE.
Between these results, it seems probably that the equilibrium value method could be used again to provide
an alternate characterization of the proof that QRG=RG=EXP. The equilibrium value method appears
to be flexible and robust as a proof technique, and hence we are hopeful that its application could be used
for further proof simplification and for proof resolution for a number of results in the coming years.
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Appendix A

For an input x, a QIP(3) model operates in the following manner:
The prover (defined earlier) communicates a quantum register W to the verifier. The verifier then generates
a random binary bit. The prover then sends an additional quantum register to the verifier. This completes
the number of rounds of communication allotted to this protocol. The verifier then applies a binary
measurement to the register (W,Y ). Defining operators P0 and P1 as accepting and I−P0, I−P1 as
rejecting, the outcome of the measurement is

{Pa,I−Pb}⊂Pos(W⊗Y )
We define an additional vector space

X=C{0,1}
We use this vector space to reason about the maximum accepting probability of the semidefinite program.
Take:

Q=
1

2
|0〉〈0|⊗P0+

1

2
|1〉〈1|⊗P1

Clearly:
Q∈Pos(X⊗W⊗Y )

Take:
X= |0〉〈0|⊗ρ0+|1〉〈1|⊗ρ1

The accepting probability is then:

〈Q|X〉= 1

2
〈P0|ρ0〉+

1

2
〈P1|ρ1〉

Constraining ρ0 and ρ1 such that:
TrY (ρ0)=TrY (ρ1)=σ

With this setup, we can take the semidefinite program to be:
Given: X∈Pos(X⊗W⊗Y ), (10)

σ∈D(W)

Maximize: 〈Q|X〉
Subject to: TrY (X)≤IX⊗σ

The dual of this semidefinite program is then:
Given: Y ∈Pos(X⊗W), (11)

Minimize: ||TrX(Y )||
Subject to: Y ⊗IY ≥Q

Defining the linear mapping:
ψ :L(X⊗W⊗Y )→L(X⊗W) (12)

ψ(X)=TrY (Q−
1
2XQ−

1
2 )

ψ†(Y )=Q−
1
2 (Y ⊗IY )Q−

1
2

We can then rewrite the semidefinite program while preserving the optimal values as:
Given: X∈Pos(X⊗W⊗Y ), (13)

σ∈D(W)

Maximize: Tr(X)

Subject to: ψ(X)≤IX⊗σ
And its dual:

Given: Y ∈Pos(X⊗W), (14)

Minimize: ||TrX(Y )||
Subject to: ψ†(Y )≥IX⊗W⊗Y
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The above revision is helpful in that it allows the application of the matrix multiplicative weight update method
to solve the SDP in the same vein as the solution which earlier demonstrated QIP(2)⊆PSPACE [JUW09].
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