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Multiprover interactive proofs (classical)

De�nition

MIP is the class of languages which admit an interactive protocol with
multiple provers with constant soundness and completeness.

Theorem (Babai-Fortnow-Lund (1991))

MIP = NEXP.

The inclusion MIP ⊆ NEXP is trivial.

Nondeterministically guess an (exponentially large) prover strategy,
and check that it works, using exponential time.
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Multiprover interactive proofs (quantum)

De�nition

MIP∗ is the class of languages which admit an interactive protocol with
multiple provers with constant soundness and completeness where the
provers may start with an entangled state.

Theorem (Ito-Vidick (2012))

MIP∗ ⊇ NEXP.
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Multiprover interactive proofs (quantum)

De�nition

MIP∗ is the class of languages which admit an interactive protocol with
multiple provers with constant soundness and completeness where the
provers may start with an entangled state.

Theorem (Ito-Vidick (2012))

MIP∗ ⊇ NEXP.
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An interactive protocol

To show NEXP ⊆ MIP, we need a NEXP-complete problem.

NEXP-complete problem (Papadimitriou-Yannakakis (1986))

Succinct 3-colorability. Consider an exponentially large graph G with
vertices {0, 1}n, represented by its adjacency matrix, which is given by a
polynomial-sized circuit C : {0, 1}n × {0, 1}n → {0, 1}. Is G 3-colorable?

NEXP-complete problem (Ito-Vidick (2012))

Succinct 3-colorability (arithmetized). Given a �eld F, an element
α ∈ F\{0, 1}, and an arithmetic circuit for a polynomial
f (α, z ,b1,b2, a1, a2) with z ∈ {0, 1}r and b1,b2 ∈ {0, 1}n, and
a1, a2 ∈ F. Does there exist a mapping A : {0, 1}n → {0, 1, α} such that

f (α, z ,b1,b2,A(b1),A(b2)) = 0

for all z ,b1,b2?
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An interactive protocol

There exist single-prover protocols for the AND problem for su�ciently
large �elds F.

Problem (Babai-Fortnow-Lund (1991))

AND Problem. Suppose you are given oracle access to h : Fk → F and
promised it is a polynomial of degree at most d in each variable. Does
h(x) = 0 for all x ∈ {0, 1}k?

Can be used to show coNP ⊆ IP.

Protocol has following form: V uniformly and randomly chooses an
x ∈ Fk . Then he interacts with P and reads h(x) from the oracle,
accepting based on the interaction and the value of h(x).
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An interactive protocol

Protocol for succinct 3-colorability:

Let h(z ,b1,b2) = f (α, z ,b1,b2,A(b1),A(b2)).

View A as multilinear function Fn → F.
Run the AND test with one prover, say V3, letting V1 and V2

provide A(b1) and A(b2) when you need to compute h(z ,b1,b2).

Problem: V1 or V2 might not use the same A, or they might use a
non-multilinear A. Instead of the above, we might instead randomly
choose to do either:

Consistency test. V randomly chooses b and requests that each
prover return A(b), and checks that all answers agree.
Linearity test. V randomly chooses i ∈ {1, . . . , n} and randomly
chooses b1, b2, b3, di�ering only in the i th coordinate. Then, V asks
prover Pi for yi := A(bi ), and checks that

y2 − y1

b2,i − b1,i
=

y3 − y2

b3,i − b2,i
=

y1 − y3

b1,i − b3,i

Travis Hance Multiprover interactive protocols with quantum entanglement



Showing soundness

Technical challenge: show that this protocol is sound.

Harder technical challenge: show that this protocol is sound when
the provers have entanglement.

Idea: Show that if the provers can succeed in the linearity and
consistency tests, then we can replace each prover by a prover that
always answers with a linear function without a�ecting the outcome
by much. Thus in the AND test, we can treat those provers as an
oracle for A.

Then the protocol is sound by validity of the test for the AND
problem.
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Quantum measurement

Suppose a prover is sent x = (x1, . . . , xn).

Each prover is suppose to respond with an element of F given
x ∈ Fn.

We assume that each prover makes his measurement depending on
the value x he received, where the measurement has outcomes in F,
which he sends to the veri�er.

De�ne a measurement of arity k be a measurement that depends
only on xk+1, . . . , xk , and which returns a multilinear function g in k

variables. When a prover makes an arity k measurement, he returns
g(x1, . . . , xk).

Show that we can replace an arity k measurement with an arity
k + 1 measurement.

Apply iteratively: show that we can replace the prover Vi by a
prover V ′i whose measurement is independent of x . However, the
linear function g which Vi applies might still depend on the outcome
of the measurement.
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Quantum measurement

Given two families quantum measurements {Aa
x} and {Ba

x } of arities
k and `, we measure their �closeness� by a measure called the
inconsistency.

Suppose V1 measures using A and V2 measures using B, and P

sends x to both of them. De�ne

INC(A,B) := Pr
x∈Fn

[
V1 and V2 measure linear functions

which are inconsistent with each other.

]
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Going from arity k to k + 1

Two steps, both analogous to but harder than corresponding results in
Babai-Fortnow-Lund. Suppose that {Aa

x}a is the measurement that the
prover uses. VERY informally:

Self-improvement lemma: If {Rg
x }g is a family of measurements with

low INC(A,R), we can �nd another family of measurements {T g
x }g

with even lower INC(A,T ).

But we have to use sub-measurements, which succeed with
probability less than 1.

Pasting lemma: given a measurement {T g
x }g of arity k with

su�ciently low INC(A,T ), we can �nd a family of
sub-measurements or arity k + 1 with low INC(V ,T ).
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