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1 Introduction

Interactive proof systems are one of the most important areas of study in modern complexity theory.
One of the first exciting results of this field is the celebrated equality IP = PSPACE due to Lund-
Fortnow-Karloff-Nisan [7] and Shamir [10], which first showed the potential of interactive proof
systems. Later, Babai, Fortnow, and Lund [1] show that MIP = NEXP, where MIP, introduced by
Ben-Or, Goldwasser, Kilian, and Wigderson [2], is the class of languages which admit an interactive
proof system with multiple provers which cannot communicate.

In this paper, we will study the class MIP∗, first defined by Cleve, Høyer, Toner, and Watrous
[3]. This is the class of languages which admit an interactive proof system where the provers cannot
directly communicate but have access to entangled quantum states; for example, two of the provers
can share an EPR pair. Initially, it is not obvious whether or not MIP∗ is more or less powerful
than MIP. The only obvious bound is IP ⊆ MIP, since we can simulate an IP protocol by only
talking to one prover, as the entanglement between the provers cannot possibly help in that case.

Besides MIP∗, we can also consider the class QMIP∗, introduced by Kobayashi and Matsumoto
[6], where in addition to giving the provers entanglement, we let the verifier by quantum as well.
Reichardt, Unger, and Vazirani [8] show that in fact QMIP∗ = MIP∗.

Finally, Ito and Vidick [5] showed that NEXP ⊆ MIP∗. Although the details of the proof are
quite technical, we will summarize the main ideas of the proof. The main idea is to give a multi-
prover interactive protocol for an NEXP-complete problem. The protocol will be very similar to
that used in [1] to show NEXP ⊆ MIP. The main contribution of Ito and Vidick [5] is that the
protocol is sound even against entangled provers.

In Section 2 we describe MIP∗ more formally. Then in Section 3 we give an interactive protocol
for a NEXP-complete language and show that it is complete. Finally, in Sections 4 and 5, we outline
the proof that the protocol is sound.

2 Description of MIP
∗

We define a multi-prover interactive proof system with k provers. There is a classical verifier V and
k provers P1, . . . , Pk with unbounded computation. There is also a shared “quantum tape” with k
registers, where each prover has access to one of the registers. The quantum tape starts in some
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state |Ψ〉 ∈ H⊗n, where H is a Hilbert space of arbitrarily large dimension ℓ.1 In each round, the
verifier does a polynomial amount of classical computation. Then, the verifier sends a message mi

of polynomial length to each prover Pi. Depending on mi, Pi may choose to make a measurement
on his register of the quantum tape. Then, the prover may send back a message depending on mi

and the outcome of the measurement.2

We say that a language L is in MIP∗(k,m, p, q) if there is an m-round, k-prover protocol such
that for any x:

• Completeness. If x ∈ L, there exists an ℓ, an initial quantum state |Ψ〉 and a strategy for
the provers such that V accepts with probability at least p.

• Soundness. If x 6∈ L, for all ℓ, initial quantum states |Ψ〉, and strategies for the provers, V
accepts with probability at most q.

We let MIP∗ = MIP∗(k,m, 2/3, 1/3). The constants 2/3 and 1/3 are arbitrary; there is no difficulty
in amplifying error probabilities in MIP∗. The prover simply runs the protocol multiple times in
succession, which works because the soundness condition guarantees soundness for any initial state.

Ito and Vidick [5] show that NEXP ⊆ MIP∗(3, poly, 1, c) and this is the result whose proof we
will summarize in later sections.

It will be convenient to introduce the idea of a symmetric strategy. We say that a protocol is
symmetric if the verifier treats all provers symmetrically. Likewise, we say that a prover strategy is
symmetric if the initial state |Ψ〉 is invariant with respect to permutation of the registers and each
prover employs the same strategy (with his own register).

Proposition 1. If the verifier uses a symmetric protocol, then the provers can do no better than
to use a symmetric strategy,

Proof. Consider any prover strategy, and let |Ψ〉 be the initial state in this strategy. Let A1, . . . ,Ak

be the registers of the k provers. Augment the registers with B1, . . . ,Bk, large enough to store
numbers in {1, . . . , k}. For a permutation σ ∈ Sk, let |Ψσ〉 be |Ψ〉 with the registers permuted
according to σ. Create a new strategy whose initial state is

1√
k!

∑

σ∈Sk

|σ(1)〉B1
⊗ · · · ⊗ |σ(k)〉Bk

⊗ |Ψσ〉A1···Ak

In this new strategy, prover Pi measures register Bi. If he measures |j〉, then he performs the
strategy of Pj in the original strategy.

Since V implements a symmetric protocol, this new strategy has the same success probability
as the original. But this new strategy is a symmetric strategy, proving the proposition.

1We could have instead allowed |Ψ〉 to start in a mixed state. This definition would be equivalent for the same
reason that shared randomness does not help in the classical MIP setting. It is always best to just use the pure state
which gives the highest probability of success for a given input.

2We do not need to explicitly account for the possibility that Pi may use a randomized strategy, since he can
obtain random bits from the measurement.
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3 An interactive protocol for NEXP

3.1 NEXP-complete problems and arithmetization

To prove that NEXP ⊆ MIP, Babai, Fortnow, and Lund [1] use the following NEXP-complete
problem:

Problem 2. Consise 3-SAT
Input: An exponentially large 3-SAT formula F in exponentially many variables, indexed

by {0, 1}n. The formula is given by a polynomial-sized circuit C which, given 3 variables, gives
constraints on those 3 variables (i.e., a set of clauses, each of which has those three variables).

Problem: Is F satisfiable?

One can show that this problem is NEXP-complete just as the standard Cook-Levin proof
shows that 3-SAT in NP-complete. Indeed, if one considers the tableau of an exponentially long
computation and converts it into a 3-SAT formula, it is easy to see that, given three variables, it is
easy to compute the constraints between them.

To give an interactive protocol for Consise 3-SAT, Babai, Fortnow, and Lund [1] use the tech-
nique of arithmetization, a trick which was also used to give an interactive protocol for PSPACE,
showing IP = PSPACE [7, 10]. The idea behind arithmetization is that we can convert a boolean
circuit into an arithmetic circuit over a field F. We will work with finite fields, and as a technical
condition, we will need |F| to be sufficiently large.

Problem 3. Consise 3-SAT (arithmetized)
Input: Integers n, r, and d (in unary), a field F, and an arithmetic circuit for a polynomial

f(z, b1, b2, b3, a1, a2, a3), where z reprents r variables, and b1, b2, and b3 represent n variables each.
You are promised that f has degree at most d in each variable.

Problem: Does there exist a map W : {0, 1}n → {0, 1} such that

f(z, b1, b2, b3,W(b1),W(b2),W(b3)) = 0 (1)

for all z ∈ {0, 1}r and b1, b2, b3 ∈ {0, 1}n?

In the arithmetized version, the map W corresponds to the map from variables to truth values,
and f is the arithmetized version of a circuit which checks if three variables are consistent. The
auxiliary variables in z appear in the reduction in order to “flatten out” the circuit, since we need
to keep the degree d low. (These variables appear for the same reason that extra variables appear
when reducing an arbitrary SAT instance to 3-SAT.)

Ito and Vidick [5] use a slightly different problem, but they use the same arithmetization idea:

Problem 4. Consise 3-coloring
Input: An exponentially large graph G with vertices indexed by {0, 1}n. The adjacency matrix

is given by a polynomial-sized circuit C : {0, 1}n × {0, 1}n → {0, 1}.
Problem: Is G 3-colorable?

Problem 5. Consise 3-coloring (arithmetized)
Input: Integers n, r, and d (in unary), a field F, α ∈ F\{0, 1}, and an arithmetic circuit for

a polynomial f(z, b1, b2, a1, a2), where z reprents r variables, and b1 and b2 represent n variables
each. You are promised that f has degree at most d in each variable.
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Problem: Does there exist a map W : {0, 1}n → {0, 1, α} such that

f(z, b1, b2,W(b1),W(b2)) = 0 (2)

for all z ∈ {0, 1}r and b1, b2 ∈ {0, 1}n?

This problem is the same in spirit as Consise 3-SAT, but it is more convenient because the
constraints in (2) depend only on two value of W, rather than three values as in (1). This lets us
use one less prover than we would need otherwise, since ultimately, we will need an extra prover
for each additional value of W we query. Babai, Fortnow, and Lund [1] do not worry about the
optimizing for the number of proves as we do, since it was already known that any language with
an MIP protocol also admits a protocol with only two provers (Ben-Or, Goldwasser, Kilian, and
Wigderson [2]).

3.2 The AND Test

Consider the following problem:

Problem 6. AND problem
Input: Given oracle access to a function h : Fm → F, promised that it is a polynomial of degree

at most d in each variable.
Problem: Does h(x) = 0 for all x ∈ {0, 1}m?

Babai, Fortnow, and Lund [1] give a single prover protocol for the AND problem which works
over finite fields to help solve Succinct 3-SAT. Based on this, Ito and Vidick [5] prove the slightly
more general statement:

Proposition 7. There is a single-prover protocol for the AND problem which has perfect complete-
ness and soundness error at most 5/8 + t(m, d)/|F|, where t is some polynomial. Furthermore, the
protocol has the following form: the verifier reads only one value from the oracle. Specifically, he
chooses a random vector x ∈ F

m, reads the value h(x) from the oracle, and then interacts with the
prover.

3.3 A protocol for Concise 3-coloring

How can we use the AND test to give a protocol for Consise 3-coloring? First, given an instance
of Consise 3-coloring, we reduce it to the arithmetized version, using a sufficiently large field F.
(Various things, such as Proposition 7, will require large F, but none will require it to be more
than polynomially large.) can be applied. Now, the provers want to convince the verifier that
there exists W such that (2) holds for all z, b1, and b2. To apply the AND problem protocol, we
want to view f(z, b1, b2,W(b1),W(b2)) as a polynomial in z, b1, and b2. To do this, we extend

W : {0, 1}n → {0, 1, α} to a multilinear function W̃ : Fn → F. Then if we let

h(z, b1, b2) := f(z, b1, b2, W̃(b1), W̃(b2)) (3)

we get that h is a polynomial in z, b1, and b2 of bounded degree.
Now, we can construct a proof system for arithmetized succinct 3-colorability as follows (infor-

mally): the provers want to prove that they know some W such that (2) holds for all z, b1, and
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b2. One prover will run the protocol for the AND problem on h, by Proposition 7. This involves
uniformly and randomly choosing z, b1, and b2. The verifier also has to compute h(z, b1, b2), which

involves finding W̃(b1) and W̃(b2). The provers will also provide these values of A. Of course, the

verifier also needs to verify that the provers are not cheating in giving the values of W̃.3 Thus, we
only do the AND test with some probability; otherwise, we do either the consistency test or the
linearity test. Intuitively, the consistency test is used to check that different provers are applying
the same function W̃, while the linearity test is used to check that the function provided is linear.

Finally, we now formally state the protocol:

Protocol 8. This protocol involves a verifier V and three provers P1, P2, and P3.
First, V randomly decides whether to do a consistency test, linearity test, or an AND test. In

any kind of test, each prover will act as either a lookup prover or an AND test prover. V tells each
prover which kind of prover they are, but not which kind of test he is doing.

• Consistency Test. V randomly chooses x ∈ F
n, and sends x to all three provers, treating

them as lookup provers. Then, he receives the responses, say y1, y2, y3 ∈ F, and accepts if
and only if y1 = y2 = y3.

• Linearity Test. V randomly chooses i ∈ {1, . . . , n} and x1,x2,x3 ∈ F
n such that for any

j 6= i, x1,j = x2,j = x3,j , but x1,i, x2,j , and x3,j are all distinct. (That is, x1, x2, and x3 are
all distinct points on a line in the direction of the ith direction.) V sends x1, x2, and x3 to
P1, P2, and P3 and receives their responses, say y1, y2, y3 ∈ F. Then, V accepts if and only if

y2 − y1
x1,i − x2,i

=
y3 − y2

x2,i − x3,i
=

y1 − y3
x3,i − x1,i

. (4)

That is, V accepts if and only if it is possible to have y1 = W̃(x1), y2 = W̃(x2), and

y3 = W̃(x3) for some multilinear function W̃.

• AND Test. V randomly chooses z ∈ F
r, and b1, b2 ∈ F

n. Also, V randomly chooses one of
the provers (here, we will say P3) to be the AND test prover. Then, V sends b1 and b2 to
V1 and V2, receiving back a1 and a2. Then V computes f(z, b1, b2, a1, a2). Then he runs the
AND test with prover P3, using x = (z, b1, b2) and h(x) = f(z, b1, b2, a1, a2) in Proposition
7.

Theorem 9. Protocol 8 has perfect completeness.

Proof. If W : {0, 1}n → {0, 1, α} exists such that (2) holds for all z, b1, and b2, then extend W to

a multilinear function W̃ : Fn → F. Each prover Pi acts as follows: if Pi is assigned to be a lookup
prover, then he responds with W̃(x) when given x. If Pi is assigned to be an AND test prover,
then Pi runs the AND test with the polynomial h as defined in (3).

The technical result of Ito and Vidick [5] is to show

Theorem 10. Protocol 8 has soundness 1 − 1/poly, even when the provers have shared entangle-
ment.

We will summarize the proof in their remaining sections.

3Babai, Fortnow, and Lund [1] discuss oracle protocols, where the verifier has access to an untrusted but fixed
oracle, and they show easily, citing Fortnow, Rompel, and Sipser [4], that this means we can find a pure interactive
protocol. It is more convenient for us to not to deal with this additional but thin layer of abstraction.
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4 Measurement Strategies

To prove soundness, we note that Protocol 8 is a symmetric protocol. Thus by Proposition 1, we
can assume that the provers’ strategy is symmetric. Suppose the initial state of the quantum tape
is |Ψ〉 with density matrix ρ = |Ψ〉〈Ψ|. To describe a measurement, we will use a class of positive
semidefinite matrices {Aa}a, where a ranges over the set of outcomes of the measurement. If P1

measures using measurement A, then the probability of measuring an outcome W is

〈Ψ|(Aa ⊗ I ⊗ I)|Ψ〉 = Tr((Aa ⊗ I ⊗ I)ρ)

We will often denote this simply by Trρ(A
a ⊗ I ⊗ I). Since the inital state is invariant under

permutation of the registers, we have

Trρ(A
a ⊗ I ⊗ I) = Trρ(I ⊗Aa ⊗ I)

= Trρ(I ⊗ I ⊗Aa).

Hence, we will often denote this value simply by Trρ(A
a).

We will also assume that the strategies used by the provers are projective, that is, (Aa)2 = Aa.
However, non-projective strategies will be introduced in the course of the proof.

Now, if
∑

aA
a = I, then we say that A is a full measurement. Otherwise, if

∑
aA

a ≺ I, then
we say that A is a sub-measurement. Such measurements have some probability of failing. That is,
with probability

1−
∑

a

Trρ(A
a)

the measurement returns some “fail” state. We imagine that a prover aborts the protocol whenever
he measures a “fail” outcome, and that the verifier rejects.

Now, let us consider various measurement strategies that a lookup prover could use. The most
natural choice is for the prover to have, for every possible x ∈ F

n, a measurement {Aa
x}a with

outcomes a ∈ F. Upon receiving the vector x, the prover perform the measurement {Aa
x}a and

returns the outcome. It is not hard to see that such a strategy is fully general. Any additional
non-quantum computation that the prover may wish to do can be encoded in the measurement.

However, there are other, more restricting, measurement strategies that a prover could imple-
ment. We define such strategies now:

Definition 11. A measurement strategy of arity k is a strategy for a lookup prover of the
following form. For a vector x ∈ F

n, we let x≤k = (x1, . . . , xk) ∈ F
k and x>k = (xk+1, . . . , xn) ∈

F
n−k. For any possible value of x>k, the prover has a measurement {Ag

x>k
}g, with outcomes g in

the set of multilinear functions F
k → F. Upon receiving x, the prover measures using {Ag

x>k
}g to

obtain a multilinear function g. The prover then sends g(x≤k) = g(x1, . . . , xk) to the verifier.

A measurement strategy of arity 0 is just the general measurement strategy described above.
However, measurement strategies of higher arity have significantly more structure. In particular,
a measurement strategy of arity n has the prover make a measurement completely independently
of the value of x and returns g(x), where g is some multilinear function. This is very similar to
what we would hope an “honest” prover would do, since we want an honest prover to apply some
multilinear W̃. Of course, the multilinear function g that the prover applies may still depend on
the outcome of the measurement. However, we can still show:
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Theorem 12. Protocol 8 is sound if we assume that all lookup provers use arity-n measurement
strategies.

The proof will rely on a famous result, known as the Schwartz-Zippel Lemma [9, 12]:

Lemma 13 (Schwartz-Zippel Lemma). If F is a finite field, then a nonzero polynomial function
g : Fn → F has at most d|F|n−1 zeroes, where d is the total degree of g.

In particular, this means that if g is multilinear, it has at most n|F|n−1 zeroes.

Proof of Theorem 12. Suppose that the provers pass Protocol 8 with probability at least 1 − ε,
where ε is a small constant. Since the lookup provers’ measurements do not depend at all on the
values they receive, we can imagine that they make the measurements before b1 and b2 are chosen.
Suppose we run the AND test with (say) P3 as the AND test prover. Then P1 and P2 each measure
some multilinear functions g1 and g2, and they respond with g1(b1) and g2(b2).

We claim that we must have g1 6= g2 with probability at most 6ε. Suppose otherwise. Then
since there is a 1/3 probability that V runs the consistency test, there would be at least a 2ε chance
that they play the consistency test with g1 6= g2. Furtheremore, by Schwartz-Zippel, if g1 6= g2
there is at least a 1/2 chance that g1(x) 6= g2(x) for randomly chosen x (recall our assumption
that |F| is large). Then the provers would fail with probability at least ε, a contradiction.

Hence, with probability at least 1 − 6ε, g1 = g2. Now, when running the AND test with P3,
there is at most a 6ε chance that the “oracle” to W̃ is corrupt. By the soundness of the AND test
(Proposition 7), the entire protocol is sound if the “oracle” is not corrupt. Hence the protocol is
sound is ε is small enough. (Since P1 and P2’s measurements are independent of b1 and b2, P3

gains no information about them, not even from the entanglement.)

4.1 Replacing measurements

Theorem 12 is nice, but general strategies can have much less well-behaved measurement strategies
than arity-n measurement strategies. The key idea is to show that we can replace a prover’s arity-0
strategy with an arity-n strategy which does not change the outcome by much. First, we need a
metric to determine if two measurements are “close”.

Definition 14. Given two multilinear functions f : Fk → F and g : Fℓ → F, with k ≤ ℓ, we say
that f and g are consistent for x if

f = g|xk+1,...,xℓ

where g|xk+1,...,xℓ
is the restriction of g and is a multilinear function F

k → F. Then given two
measurement strategies P and Q of arities k and ℓ, we define

CON(P,Q) := E
x∈Fn

∑

f,g : f=g|xk+1,...,xℓ

Trρ

(
P f
x>k

⊗Qg
x>ℓ

)

= E
x∈Fn

Pr

[
Two provers given x measuring with P

and Q measure consistent f and g

]
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and likewise

INC(P,Q) := E
x∈Fn

∑

f,g : f 6=g|xk+1,...,xℓ

Trρ

(
P f
x>k

⊗Qg
x>ℓ

)

= E
x∈Fn

Pr

[
Two provers given x measuring with P
and Q measure inconsistent f and g

]

In the summations, f and g are multilinear functions F
k → F and F

ℓ → F, respectively.

Note that if P and Q are full measurement strategies, then CON(P,Q)+ INC(P,Q) = 1, because
in that case, the provers will always successfully measure some f and g, and then f and g are either
consistent or inconsistent.

Also note that if A is an arity-0 measurement, then CON(A,A) is the probability of two provers
passing the consistency test, since for arity-0 measurements, for f and g to be consistent it just
means that f(x) = g(x).

One important fact is that if a measurement P is consistent with itself (i.e., INC(P, P ) is small)
then applying P to one register should be approximately the same as applying it to a separate
register. This is intuitively obvious: if P is consistent with itself and we measure one register using
P , then measuring other registers should give the same result most of the time. Thus each other
register should be close to the state it would be in if P was applied directly to it. Here is the formal
statement:

Lemma 15. Let {Za
x>k

}a be such that Ex∈Fn

∑
a∈F Z

a
x>k

(Za
x>k

)† � I, and let P be a (sub-)
measurement strategy of arity k. Let Px>k

=
∑

a∈Fn P a
x>k

(so Px>k
= I if P is a full measurement

strategy). Then

∣∣∣∣∣ E
x∈Fn

∑

a∈F

Trρ(Z
a
x>k

P a
x>k

⊗ Px>k
)− E

x∈Fn

∑

a∈F

Trρ(Z
a
x>k

Px>k
⊗ P a

x>k
)

∣∣∣∣∣ ≤
√
INC(P, P )

Proof. This follows from an application of Cauchy-Schwartz and the definition of INC(P, P ). For
full details, see Appendix B, Lemma 40 of [5].

Now, we come to the brilliant fact from Ito and Vidick [5].

Theorem 16. For sufficiently small ε,4 suppose the provers have an arity-0 measurement strategy
{Aa

x}a which is full and projective, and {Aa
x
}a passes the linearity and consistency tests with proba-

bility 1−ε. Then there exists an arity-n (sub-)measurement strategy {V g}g such that CON(V,A) ≥
1− εO(1).

This lets us show:

Proof of Theorem 10. Suppose the provers are using the 0-arity strategy A. Let V be as in the
statement of Theorem 16. We will prove that we can replace the lookup prover’s strategy by V
without affecting the outcome by much. After replacing all the strategies, we can apply Theorem
12 to complete the proof.

4By “sufficiently small” we mean 1/poly(n). The reader interested in the details of error terms should, of course,
consult Ito and Vidick [5].
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Define

V a
x
:=

∑

g : g(x)=a

V g. (5)

This is useful because if a prover is using strategy V , the probability that he responds with a when
given x is just Trρ(V

a
x
). Now, we will show that

E
x∈Fn

∑

a∈F

Trρ

((
Aa

x
−
√
V a
x

)2
)

= εO(1). (6)

To see this, first expand

E
x∈Fn

∑

a∈F

Trρ

((
Aa

x
−
√
V a
x

)2
)

= E
x∈Fn

∑

a∈F

Trρ

(
(Aa

x
)2 + V a

x
− 2Aa

x

√
V a
x

)

We have
∑

a∈FTrρ((A
a
x
)2) =

∑
a∈FTrρ(A

a
x
) ≤ 1 and

∑
a∈FTrρ(V

a
x
) ≤ 1, so

E
x∈Fn

∑

a∈F

Trρ

((
Aa

x
−
√
V a
x

)2
)

≤ 2− 2 E
x∈Fn

∑

a∈F

Trρ

(
Aa

x

√
V a
x

)
. (7)

By Lemma 15, and using that A passes the consistency test with probability ε, we get
∣∣∣∣∣ E
x∈Fn

∑

a∈F

Trρ

(
Aa

x

√
V a
x

)
− E

x∈Fn

∑

a∈F

Trρ

(
Aa

x
⊗
√
V a
x

)∣∣∣∣∣ ≤
√
INC(A,A)

≤ ε1/2. (8)

Now,
√
V a
x
� V a

x
since V a

x
� I. Then by the definition of CON, we get

E
x∈Fn

∑

a∈F

Trρ

(
Aa

x
⊗
√
V a
x

)
≥ E

x∈Fn

∑

a∈F

Trρ (A
a
x
⊗ V a

x
)

= CON(V,A)

≥ 1− εO(1). (9)

Combining (7), (8), and (9) proves (6). Now, we show that if a prover Pi uses strategy A, we can
replace Pi with a prover P̂i which uses V without changing the protocol’s acceptance probability
by much.

Suppose that Pi’s register in the quantum tape is Pi. Imagine two more registers A and B. We
think of them as “input” and “output” registers. A will hold the value x, and B will hold the value
a ∈ F that Pi returns. Let D denote everything else, that is, it represents the entire global state
except A, B, and Pi. Then we can imagine the global state, before measurement and even before
choice of x, for prover Pi:

σ := E
x∈Fn

|x〉〈x|A ⊗
∑

a∈F

(
|a〉〈a|B ⊗ (Aa

x
⊗ I)σx

Pi,D(A
a
x
⊗ I)†

)
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where σx

Pi,D
is the density matrix describing the state of Pi and D conditioned on x. Typically, we

imagine that V chooses x in some fashion, along with other parameters (e.g., type of test), sends it
to Pi; Pi makes a measurement, and then sends some value a back. However, this entire interaction
can be thought of as measuring A and B. The “other parameters” are encoded in D.

If we use the prover P̂i instead, we get the global state to be

σ′ := E
x∈Fn

|x〉〈x|A ⊗
∑

a∈F

(
|a〉〈a|B ⊗ (

√
V a
x
⊗ I)σx

Pi,D(
√
V a
x
⊗ I)†

)

Now, the difference in acceptance probabilities must be at most the 1-norm between the two states

‖σ − σ′‖

=

∥∥∥∥∥ E
x∈Fn

|x〉〈x|A ⊗
∑

a∈F

(
|a〉〈a|B ⊗

(
(Aa

x
⊗ I)σx

Pi,D(A
a
x
⊗ I)† − (

√
V a
x
⊗ I)σx

Pi,D(
√

V a
x
⊗ I)†

))∥∥∥∥∥

By some matrix inequalities (see Claim 36 in Appendix A and the proof of Claim 12 in [5]), this
gives

‖σ − σ′‖ ≤ 2

√√√√ E
x∈Fn

∑

a∈F

Tr

((
Aa

x
−
√
V a
x

)2
ρ

)

where ρ is the density matrix of just the Pi register. Finally, this value is εO(1) by (6).
Thus replacing A by V as Pi’s strategy changes the acceptance probability of the entire by only

a small amount. Thus we can assume that all provers are using arity-n measurement strategies,
and then Theorem 12, completes the proof.

5 From arity-0 to arity-n

As we saw, Theorem 16 is an excellent hammer which lets us fairly easily (modulo some matrix
computation) prove the soundness of Protocol 8 by reducing to Theorem 12. But how do we prove
Theorem 16? This turns out still to be quite a challenge.

Recall that we are given some arity-0 measurement strategy A, and we want to show that we can
find an arity-n measurement. Recall from Definition 11 that, in general, a measurement strategy
of arity k is a strategy whose measurement depends only on the last n − k coordinates of x, and
which applies a multilinear function of the first k coordinates of x.

The main idea for constructing V is to inductively construct a sequence of measurement strate-
gies A = V0, V1, V2, . . . , Vn = V , where Vi has arity i.

Again, suppose that A passes the consistency and linearity tests with probability at least 1− ε.
When constructing Vk+1 from Vk, we will obviously want INC(Vi+1, A) to be low. But this is not
enough: the inductive procedure creates sub-measurements, not full measurements, so we have to
keep track of how much of the measurement we lose. (It is trivial to get a low value of INC if we
make the measurement empty, but we want to have a high CON value as well.)

We have to prove quantum analogues of two lemmas from [1]: the Pasting Lemma and the Self-
improvement Lemma. The Pasting Lemma does the most visible work; it takes a sub-measurement
Vk and constructs the sub-measurement Vk+1. However, we cannot just apply the Pasting Lemma
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iteratively, because the constructed Vk+1 has INC(Vk+1, A) too large for us to apply the Pasting
Lemma again.5 This is where the Self-improvement Lemma comes in. Given Vk+1, the Self-
improvement Lemma constructs a measurement strategy Tk+1, also of arity k + 1, which has even
lower inconsistency, low enough that the Pasting Lemma can be applied.6 Then we can construct
the sequence

V0, T0, V1, T1, . . . , Vn−1, Tn−1, Vn

to prove Theorem 16. The cost of the Self-improvement Lemma is that the measurements Tk are
less full than their respective Vk measruements. This is the reason that sub-measurements are
introduced in the first place.

The proofs of both lemmas are quite technical, and we do not have the space to go into details.
However, the interested reader is encouraged to see the classical versions in [1] (Lemmas 5.10 and
5.11).

Also, the reader may have noticed that, in proving soundness, we have not yet applied the
fact that the provers’ strategy A passes the linearity test. This fact is used critically in the proofs
of the Self-improvement lemma and Pasting Lemma. Also relevant is Claim 15 from [5]. This is
essentially a simplified version of the Pasting Lemma. It only applies to full measurements but it
serves as useful motivation for the proof of the Pasting Lemma. Furthermore, Chapter 2 of [11] is a
good introduction to the subject although it deals only with linear (not multilinear) functions over
F
n
2 . It also makes nice use of the same intuition behind Lemma 15 (namely that a measurement

strategy with high self-consistency has nearly the same effect on the global state no matter which
register it is applied to).

6 Conclusion

In this survey, we gave a high level overview of the proof that NEXP ⊆ MIP∗ by Ito and Vidick [5].
The result is fascinating and is a large step towards our understanding of MIP∗. However, there is
still much work to be done. No reasonable upper bounds on MIP∗ are known, and in fact, it is not
even known if it is computable (since there is no upper bound on the amount of entanglement that
the provers can use).

Another question is: how many provers are needed? Since [2] showed that two provers always
suffices for MIP, we might ask the same for MIP∗. Do three provers suffice for MIP∗? Can we
improve the NEXP protocol to require only two provers?
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