
DECISION-TREE COMPLEXITY

SHALEV BEN-DAVID

Abstract. Two separate results related to decision-tree complex-
ity are presented. The first uses a topological approach to gener-
alize some theorems about the evasiveness of monotone boolean
functions to other classes of functions. The second bounds the
gap between the deterministic decision-tree complexity of func-
tions on the permutation group Sn and their zero-error randomized
decision-tree complexity.

1. Introduction

The problem of decision-tree complexity is the following. Given or-
acle access to input string, how many of its bits must be queried to
determine the value of some function of the string? For example, the
function may be OR, which takes in a boolean string and outputs 0 if
the string is all zeros and 1 otherwise. In that case, it is clear that any
deterministic algorithm must, in the worst case, query all bits of the
input.

The worst-case query complexity of the best possible deterministic
algorithm for computing a function f is called the decision-tree com-
plexity of f (the name comes from the fact that such an algorithm
can be represented as a rooted tree whose internal nodes indicate bits
to query and whose edges are labeled by 0 or 1). One can define the
randomized and quantum decision-tree complexities of f as the mini-
mum worst-case expected number of queries of randomized or quantum
algorithms computing f (for quantum algorithms, we allow queries in
superposition).

A function f is called evasive if its (deterministic) decision-tree com-
plexity is the number of input bits – that is, a function is evasive if any
deterministic algorithm must, in the worst case, query all bits of the
input. Early study of decision-tree complexity has focused on showing
that certain classes of boolean functions – notably monotone functions
with some symmetry – are evasive. In the first part of this project,
we prove these results and generalize them to non-boolean functions.

Date: December 21, 2012.
1

2 SHALEV BEN-DAVID

We also present a model in which queries to the input string may be
rejected, and show that our results transfer to this model.

The gaps between deterministic, randomized, and quantum decision-
tree complexities for different classes of functions have also been stud-
ied, often with the goal of understanding when randomized and quan-
tum algorithms provide a substantial increase in computational power.

In the second part of this project, we investigate these gaps for func-
tions defined on permutations. We show that the deterministic and
zero-error-randomized complexities are polynomially related for such
functions. We also show that the certificate complexity is polynomially
related to the quantum decision-tree complexity for these functions.

2. Basic Definitions

In this section, we provide the basic definitions that will be required
for the subsequent sections. Generally speaking, we will let M be a
fixed natural number which is at least 2, and denote by [M] the set
{0, 1, . . . ,M − 1}. We will also let n be a natural number, and S a
subset of [M]n.

Definition 2.1. For a fixed set S ⊆ [M]n, the deterministic decision-
tree complexity of a function f : S → {0, 1}, denoted D(f), is the
minimum number of adaptive queries to the characters of x that are
required to determine the value of f(x), in the worst case over possible
values of x ∈ S. If D(f) = n, we say that f is evasive.

One can also provide similar definitions for the decision-tree com-
plexity in a randomized or quantum context, as follows.

Definition 2.2. For a fixed set S ⊆ [M]n, the randomized decision-
tree complexity of a function f : S → {0, 1}, denoted R(f), is the
minimum number of adaptive random queries to the characters of x
that are required to determine the value of f(x) with probably of error at
most 1

3
, in the worst case over possible values of x ∈ {0, 1}n. Similarly,

Q(f) is the minimum number of quantum queries needed (where we
allow the characters of x to be queried in superposition), and R0(f) is
the randomized complexity when the probability of error must be 0.

For our analysis, we will be interested in special classes of functions,
including monotone functions and functions closed under a group ac-
tion.

Definition 2.3. For x, y ∈ [M]n and k ∈ [M] we write x ≤k y if y
can be obtained from x by replacing some of the characters of x with
the character k. A function f : S → {0, 1} with S ⊆ [M]n is called
monotone in k if whenever x ≤k y we have f(x) ≤ f(y).

DECISION-TREE COMPLEXITY 3

Definition 2.4. Let G be a group action on {1, 2, . . . , n} and let S ⊆
[M]n. For x ∈ [M]n, we denote the characters of x by x1, x2, . . . , xn.
We say that S is closed under G if for all x ∈ S and σ ∈ G we have
xσ(1)xσ(2) . . . xσ(n) ∈ S. We say that a function f : S → {0, 1} is
invariant under G if S is closed under G and for all x ∈ S, σ ∈ G we
have f(x) = f(xσ(1)xσ(2) . . . xσ(n)).

Finally, the notions of a partial assignment and a certificate will play
a major role in both parts of the project.

Definition 2.5. Let S ⊆ [M]n. For x ∈ S, a partial assignment of
x is a set of pairs D = {(i1, xi1), (i2, xi2), . . . }. The inputs of D are
i1, i2, . . . , and the outputs of D are xi1 , xi2 , . . . An extension of D is
any y ∈ S that agrees with x on the inputs of D. D is called a certificate
for a function f : S → {0, 1} if f(y) is fixed for all extensions y of D.
D is called a 1-certificate of the fixed value is 1, and a 0-certificate if
it is 0. The size of D refers to the number of pairs in D.

Definition 2.6. Let S ⊆ [M]n and x ∈ S. A subcertificate of x
with respect to f : S → {0, 1} is a partial assignment of x which is a
certificate. A subcertificate of x is minimum if it has the smallest size
out of all subcertificates of x. The size of the minimum subcertificate
of x is denoted by Cx(f). We define the certificate complexity of f ,
denoted by C(f), to be be the maximum of Cx(f) over all x ∈ S.

Part 1. Evasiveness Using Topology

3. Topological Background

In this section we introduce the basic topological concepts that will
be needed in our analysis. The basic building block for the topological
tools we will apply is the simplicial complex.

Definition 3.1. A simplicial complex is a set system which is closed
under subsets. A simplicial complex will have an associated ground set,
which contains the union of the sets in the system, but may be larger.

Given a simplicial complex Γ with ground set of size n, we identify the
ground set with n affinely independent points in Rm (with m ≥ n− 1).
Furthermore, for each set A ∈ Γ, we identify A with the simplex given
by the convex hall of the elements of A. We identify the simplicial
complex Γ with the union of the simplicies A for all A ∈ Γ.

Note that the topology of the above representation of a simplicial
complex is independent of the choices of m and of the points identi-
fied with the ground set. This topology is the only property of the
representation that we will use.

4 SHALEV BEN-DAVID

Next, we introduce some notation which will allow us to discuss
collapsible simplicial complexes.

Definition 3.2. For a given simplicial complex Γ, the sets in Γ are
called faces; a face is called maximal if it is not contained in any other
face; a face is free if it is not maximal and is contained in only one
maximal face.

Definition 3.3. An elementary collapse of a simplicial complex Γ is
a new simplicial complex given by deleting a free face and all faces
that contain it. A simplicial complex is called collapsible if, through a
sequence of elementary collapses, it is possible to reduce the simplicial
complex to the empty simplicial complex (in other words, if it is possible
to reduce the set system to one with no sets).

Collapsibility of a simplicial complex is still a fairly combinatorial
property, but it is intimately related to the topological notion of con-
tractibility.

Definition 3.4. A topological space T is contractible if there is a con-
tinuous map Φ : T × [0, 1]→ T such that some fixed p ∈ T and for all
x ∈ T , we have Φ(x, 0) = x and Φ(x, 1) = p.

Theorem 3.5. If a simplicial complex is collapsible then it is con-
tractible as a topological space.

The previous theorem is standard in topology, and we omit its proof.
Finally, we define the operations of link and delete in order to develop

tools for demonstrating that a simplicial complex is collapsible.

Definition 3.6. For a simplicial complex Γ and an element u of its
ground set, the link of u in Γ is the simplicial complex

Γ/u := {A\{x} : x ∈ A ∈ Γ}

and Γ delete u is

Γ\u := {A : x /∈ A ∈ Γ}.

Lemma 3.7. For a simplicial complex Γ, if Γ/u and Γ\u are collapsible
for all u, then Γ is collapsible.

The previous theorem is not difficult, and has an entirely combina-
torial proof. We omit the proof because we prove a generalization of it
in the next section.

DECISION-TREE COMPLEXITY 5

4. Topology and Decision Trees

The connection between decision trees and topology was first demon-
strated in [1], in which the following simplicial complex was defined.

Definition 4.1. The simplicial complex Γf of a monotone boolean
function f : {0, 1}n → {0, 1} is the collection of all sets of coordi-
nates such that if x ∈ {0, 1}n is zero exactly on these coordinates, then
f(x) = 1.

The following theorem was proved in that paper:

Theorem 4.2. If a monotone boolean function f is not evasive, then
Γf is collapsible.

We generalize the above definition both to functions that are not
monotone and to functions on a larger character set. We then prove a
generalized version of the previous theorem.

Definition 4.3. Given a function f : [M]n → {0, 1}, let

f r : [M] ∪ {∗} → {0, 1}
be given by f r(x) = 0 if and only if x is a certificate for f when treated
as a partial assignment for [M] (with ∗ representing an unassigned
coordinate).

Note that f r has a character set that is one larger than that of f .
Also note that f is monotone in ∗.
Definition 4.4. Let f : [M + 1]n → {0, 1} be monotone in M . We
define a simplicial complex Γf as follows. The ground set will be all
the pairs (i, k) for i = 1, 2, . . . , n and k ∈ [M]. Call a subset A of the
ground set valid if each i = 1, 2, . . . , n occurs as the first coordinate of
at most one pair in A. Note that each valid subset of the ground set
corresponds to a partial assignment for [M + 1]. Let xA be the exten-
sion of that partial assignment given by placing M in each unassigned
coordinate. We define the faces of the simplicial complex Γf to be the
sets A such that A is valid and f(xA) = 1.

Note that since f is monotone in M , Γf is closed under subsets,
so it is a simplicial complex. Now, for any (not necessarily monotone)
function f : [M]n → {0, 1}, we will consider the simplicial complex Γfr .
Note that the faces of Γfr correspond exactly to the partial assignments
of [M] that are not certificates for f .

We now obtain the following generalization of 4.2.

Theorem 4.5. Let f : [M + 1]n → {0, 1} be monotone in M . If f is
not evasive then Γf is collapsible.

6 SHALEV BEN-DAVID

To prove this, we first prove a generalization of 3.7.

Lemma 4.6. Let Γ be a simplicial complex with ground set C. Suppose
that C can be written as the disjoint union of sets A1, A2, . . . , An such
that two elements from the same set Ai never occur together in any
face of Γ. Suppose further that for some set Ak, it is the case that
Γ\Ak is collapsible and that Γ/x is collapsible for all x ∈ Ak. Then Γ
is collapsible.

proof (of lemma 4.6). Note that if x and y are both in Ak, then Γ/x
and Γ/y share no faces. Note further that B is a free face of Γ/x if and
only if B ∪ {x} is a free face of Γ. It follows that we may apply the
sequences of elementary collapses that collapse Γ/x to Γ/ai for each
ai ∈ Ak. Because these simplicial complexes don’t share faces, there
will be no conflicts when collapsing all of these faces. The result of this
will be the simplicial complex Γ\Ak. Since Γ\Ak is collapsible, so is Γ.

�
Note that the ground set of Γf splits into disjoint sets Ai := {(i, k) :

k ∈ [M]} such that no face of Γf contains two members of Ai. More-
over, note that the simplicial complex of the function f |xi=k is Γ/(i, k)
if k 6= M , and Γ\Ai if k = M .

proof (of theorem 4.5). By way of contradiction, consider the smallest
n for which the theorem does not hold, and let f be not evasive with Γf
not collapsible. It is easy to verify that n > 1. Consider an algorithm
that finds f(x) by querying less than n elements, for all x. Let i
be the index of the first character that this algorithm examines. Then
after examining this character, the function f becomes f |xi=k, so f |xi=k
is not evasive for all k ∈ [M]. Now, since f |xi=k is a function on
n−1 characters, it follows from the previous theorem that its simplicial
complex is collapsible. But this implies that Γ\Ak is collapsible and
that Γ/x is collapsible for all x ∈ Ak, so by the previous theorem, Γf
is collapsible, giving the desired contradiction. �

Next, we need the following definitions.

Definition 4.7. An automorphism of a topological space T is a map
φ : T → T which is continuous, invertible, and has continuous inverse.

Definition 4.8. Let Γ be a simplicial complex with ground set C. Let
σ be a permutation of C. We define an automorphism σΓ : Γ → Γ
of Γ as follows. The representation of c in Rm gets mapped to the
representation of σ(c) for all c ∈ C. Then, since every other point in
the topological space Γ can be written as a convex combination of points
in C, we linearly extend the definition of σΓ to the rest of Γ.

It is easy to see that σΓ is indeed an automorphism.

DECISION-TREE COMPLEXITY 7

Definition 4.9. Let f : [M + 1]n → {0, 1} be monotone in M . We
say f is proper if f(Mn) = 1 and f(x) = 0 whenever x contains no
instances of the character M .

Finally, we make the following observation.

Lemma 4.10. Let f : [M + 1]n → {0, 1} be monotone in M and
proper. Let G be a transitive group action on {1, 2, . . . , n} and let f be
invariant under G. We let G act on the ground set of Γf by letting it
act on the first coordinate of pairs (i, k). Then there is no point z in
the topological space Γf with the property that σΓf (z) = z for all σ ∈ G.

Proof. Let the points in the topological space Γf that represent
the ground set be denoted by c(i, k) for all pairs (i, k). If a fixed
point z with the desired properties existed, then it would lie on some
face of Γf . The verticies of that face would be some set of points
A = {c(i1, k1), c(i2, k2), . . . }. We would then have ia 6= ib whenever
a 6= b, since no two pairs with the same first coordinate lie in the same
face. It follows that each σΓf maps points in A to points in A (since
otherwise, it could not fix z). Now, since G is transitive, we conclude
that A contains a pair (i, ∗) for all values of i. This means the partial
assignment xA given by the face A is actually a full assignment. Now,
by the definition of Γf , xA contains no instances of the character M ,
and f(xA) = 1. This contradicts the assumption that f is proper. �

We can now use fixed-point theorems from topology to show evasive-
ness. One basic fixed-point theorem is the following.

Theorem 4.11. (Lefshet’s Fixed point theorem) Any automorphism
of a contractible space to itself has a fixed point.

Using this we get the following result.

Corollary 4.12. Let f : [M + 1]n → {0, 1} be monotone in M and
proper. If f is invariant under a cyclic group action then f is evasive.
In particular, if f : [M]n → {0, 1} is non-trivial and invariant under a
cyclic group action, then f r is evasive.

Another useful fixed-point theorem is the following.

Theorem 4.13. Let Ψ be a group of automorphisms on (the repre-
sentation of) a contractible simplicial complex Γ. Suppose there is a
normal subgroup Ψ1 of Ψ of prime power order. Suppose further that
Ψ/Ψ1 is cyclic. Then there is a point z on (the representation of) Γ
such that for all ψ ∈ Ψ, ψ(z) = z.

From this we get the following corollary.

8 SHALEV BEN-DAVID

Corollary 4.14. Let f : [M + 1]n → {0, 1} be monotone in M and
proper. Let G be a transitive group action with a normal subgroup
of prime power order such that the quotient group is cyclic. If f is
invariant under the G then f is evasive. In particular, if f : [M]n →
{0, 1} is non-trivial and invariant under such a group action, then f r

is evasive.

In [3] it is shown that such a group action occurs in the graph setting,
as a subgroup of the group action that relabels vertices of a graph, as
long as the number of vertices of the graph is a prime power. From
this construction, we conclude the following.

Corollary 4.15. Let f : [M+1]
n(n−1)

2 → {0, 1} be monotone in M and
proper, and let n be a prime power. Consider [M + 1] as labelling the
edges of a graph, and let f be invariant under relabelling of the vertices
of the graph. Then f is evasive.

Part 2. Decision-Tree Complexity on Permutations

In this part of the project we analyze the decision-tree complexity
of functions whose inputs are permutations. We prove that R0(f) and
D(f) are polynomially (indeed, cubically) related for such functions.
We also define sensitivity and block sensitivity for these functions, and
prove a quadratic relationship between the block sensitivity bs(f) and
the certificate complexity C(f). It follows from this that there is a
polynomial relationship between C(f) and Q(f) for functions on per-
mutations.
Sn ⊆ [M]n will denote the symmetric group on n elements. We

analyze functions f : Sn → {0, 1}. For permutations σ, τ ∈ Sn, we
will write σ(i) instead of σi to denote the permutation applied to i ∈
{1, 2, . . . , n}, and we will write στ to denote the product in Sn or
function composition (and not concatenation).

5. D(f) and R0(f) on Permutations

In this section we prove that the gap between R0(f) and D(f) is
at most cubic. The main work involved is in proving the following
lemma. The lemma says that if we fix some small number of values of
a permutation fixed, we can make it so that all small certificates have
an output belonging to some fixed small set.

Lemma 5.1. If k ≤ 1
2

√
D(f) then there are two sets A,B ⊆

{1, 2, . . . , n}, each of size at most 4k2, and a permutation σ ∈ Sn with
σ(A) ∩ B = ∅ such that for any τ ∈ Sn that agrees with σ on A, all
subcertificates of τ of size at most k have at least one output in B.

DECISION-TREE COMPLEXITY 9

Proof. Consider any 0-certificate C0 and any 1-certificate C1. These
certificates cannot be subcertificates of the same permutation; we say
that they conflict. In particular, either there is some input for which
C0 claims a different output than C1 or else there is some output for
which C0 gives a different input than C1. In the former case, we say
that these certificates disagree on an input ; in the latter case we say
they disagree on an output.

We now present an algorithm that, when run on input permutation
σ, will either output f(σ) or else will find A and B satisfying the
desired conditions. The algorithm will query σ on the inputs of different
certificates and keep track of D, the partial assignment given by these
queries. In addition, the algorithm will keep track of the set B of the
predicted outputs of the certificates. In the beginning, B = D = ∅.
The algorithm is given by the following loop.
loop

(1) Choose a certificate C of size at most k which is consistent with
the partial assignment D and which has no outputs in B. If no
such certificate exists, halt.

(2) Add the outputs of C to B.
(3) Query all the inputs of C, and add these queries to D.
(4) If any outputs of D are in B, remove them from B.
(5) If D is a certificate, output the corresponding value of f(τ) and

halt.

end loop
We first show that this loop repeats at most 4k times. To do this, we

define the hidden information of a certificate C with respect to B and
D, denoted hB,D(C). If C conflicts with D, we define hB,D(C) = 0.
Otherwise, we define hB,D(C) to be 2 times (the number of entries of
C that are not entries of D) minus (the number of outputs of C that
are in B). Note that when the algorithm starts, h∅,∅(C) is twice the
size of C.

We show that in each iteration of the loop, if the certificate cho-
sen in that iteration is a 0-certificate, then the hidden information of
all 1-certificates decreases. Similarly, if the chosen certificate is a 1-
certificate, then the hidden information of all 0-certificates decreases.

Indeed, consider any iteration of the loop, and suppose without loss if
generality that the chosen certificate in that iteration is a 0-certificate,
say C0. Then C0 agrees with D and has no outputs in B. Let C1

be any 1-certificate. Then C1 must conflict with C0. If they disagree
on an input, then this input gets queried, which decreases the hidden
information of C1 by at least 1. If they disagree on an output, then

10 SHALEV BEN-DAVID

this output gets added to B, which decreases the hidden information
of C1 by 1 (note that this output may be removed from B in the same
iteration, but this would mean that either a conflict with C1 was found
or else an entry of C1 was revealed - in either case, this decreases the
hidden information of C1 further).

It follows that each iteration decreases by 1 the hidden information
either of all 0-certificates or of all 1-certificates. It is easy to see that
the loop will stop if the hidden information of all 0-certificates of size
at most k is 0, and similarly for 1-certificates. Since the hidden infor-
mation of certificates of size at most k starts at 2k, we conclude that
the number of iterations before the loop halts is less than 4k.

Next, we observe that since the main loop breaks in 4k iterations
and queries at most k inputs of σ in each iteration, it uses less than
4k2 queries on each input permutation σ. Now, since k ≤ 1

2

√
D(f),

the algorithm uses less than D(f) queries, so there is some σ for which
it does not output f(σ). Hence, when run on σ, the algorithm outputs
B and D such that every certificate of size at most k either has an
output in B or else conflicts with D.

Let A be the set of all inputs of D; in other words, A is the set of all
inputs that were queried. Then |A| < 4k2 and |B| < 4k2. Moreover, if
τ agrees with σ on A, then it extends D, and thus all its subcertificates
of size at most k have an output in B.

�
We are now ready to prove the main result.

Theorem 5.2. R0(f) = Ω(min(
√
D(f), n

1
3)).

Proof. Apply lemma 5.1 with k = min(1
2

√
D(f), n

1
3) to find σ, A,

and B. Consider a uniform distribution over the permutations that
agree with σ on A. This distributes the elements of B uniformly over
all inputs that are not in A. Now, finding a certificate of size less than k
requires finding an element of B. There are at most 4k2 such elements,
and they are placed uniformly in at least n−4k2 spots, so it follows that
expected time Ω(n

k2
) is needed to find one. Thus finding a certificate of

size less than k takes Ω(n
k2

) queries. Finding a certificate of size at least

k takes at least k queries. It follows that R0(f) = Ω(min(
√
D(f), n

1
3)),

as desired.
�

6. Block Sensitivity

In this section, we define analogues of sensitivity and block sensitiv-
ity for functions of permutations. We prove a quadratic relationship

DECISION-TREE COMPLEXITY 11

between block sensitivity and certificate complexity for these functions,
and conclude that the quantum query complexity of such functions is
polynomially related to the certificate complexity.

Definition 6.1. We say that two permutations σ, τ ∈ Sn are disjoint
if for all i = 1, 2, . . . , n either σ(i) = i or τ(i) = i.

Definition 6.2. A sensitive block of an input σ ∈ Sn with respect to
f : Sn → {0, 1} is a permutation τ ∈ Sn such that f(στ) 6= f(σ). The
block sensitivity of σ is the maximum size of a set of disjoint sensitive
blocks of σ. The block sensitivity of σ is denoted by bsσ(f). The block
sensitivity of the function f is the maximum value of bsσ(f) over all
σ ∈ Sn.

Definition 6.3. The length of a permutation τ ∈ Sn, denoted by l(τ),
is the number of inputs which it does not fix. The sensitivity of σ ∈ Sn
with respect to f : Sn → {0, 1}, denoted by sσ(f), is the maximum
number of disjoint sensitive blocks of σ, all of which are of length 2.
The sensitivity of a function f is the maximum of sσ(f) over all values
of σ ∈ Sn.

Definition 6.4. A sensitive block τ for σ is minimal if no sensitive
block of σ fixes a strict subset of the inputs that τ fixes.

Lemma 6.5. Let τ ∈ Sn be a minimal sensitive block for σ ∈ Sn with
respect to f : Sn → {0, 1}. Then sστ (f) ≥ 1

3
l(τ), and in particular,

bs(f) ≥ s(f) ≥ 1
3
l(τ).

Proof. Let the cycle decomposition of τ be

τ = (a11a12 . . . a1k1)(a21a22 . . . a2k2) . . . (am1am2 . . . amkm).

For each consecutive pair (aij, ai(j+1)) in one of the cycles, consider the
permutation φij that flips it. Then τφij(ai(j+1)) = τ(aij) = ai(j+1), so
the fixed points of τφij are a superset of the fixed point of τ . By the
minimality of the sensitive block τ , we must have f(στφij) = f(σ),
whence f(στφij) 6= f(στ). It follows that each φij is sensitive for f on
στ . We now select a disjoint set of such flips. It’s possible to select
bk1

2
c + bk2

2
c + · · · + bkm

2
c ≥ k1

3
+ k2

3
+ · · · + km

3
= 1

3
l(τ) such flips, so it

follows that sστ ≥ 1
3
l(τ). �

Lemma 6.6. For all f : Sn → {0, 1}, C(f) ≤ 3bs(f)2.

Proof. Let σ ∈ Sn have minimum subcertificate of size C(f). Let
B ⊆ Sn be a set of sensitive blocks of size bsσ(f) whose sensitive blocks
are minimal. Let G ⊆ {1, 2, . . . , n} be the set of inputs that are not
fixed by B.

12 SHALEV BEN-DAVID

Claim: the set {(g, σ(g)) : g ∈ G} forms a subcertificate of σ. Indeed,
if not, then there would be some τ ∈ Sn that agrees with σ on G for
which f(τ) 6= f(σ). Let φ = σ−1τ . Then for each g ∈ G, we have
φ(g) = σ−1(τ(g)) = σ−1(σ(g)) = g, so φ is disjoint from all members of
B. In addition, f(σφ) = f(σσ−1τ) = f(τ) 6= f(σ). Thus B ∪ {φ} is a
larger sensitive block, contradicting the assumption that |B| = bsσ(f).

Hence, we conclude that |G| ≥ Cσ(f) = C(f). Each input in G is
not fixed by at least one member of B. By the pigeonhole principle,

there is some τ in B of length at least |G|
bsσ(f)

. Then by lemma 3.5,

bs(f) ≥ |G|
3bsσ(f)

, so C(f) ≤ |G| ≤ 3bsσ(f)bs(f) ≤ 3bs(f)2. �
We can relate these results to the quantum query complexity by

using the following lemma.

Lemma 6.7. For f : Sn → {0, 1}, Q(f) = Ω(
√
bs(f)).

Proof. Consider a permutation σ with bs(f) sensitive blocks
τ1, τ2, . . . , τbs(f). The value of f on each of the inputs
στ1, στ2, . . . , στbs(f) is the same, and is different from the value of f
on σ. Moreover, all of these inputs differ from σ in mutually exclusive
sets of coordinates. It then follows from the lower bound on the Grover
search problem that Q(f) = Ω(

√
bs(f)). �

Finally, we get the following corollary.

Corollary 6.8. For f : Sn → {0, 1}, we have Q(f) = Ω(C(f)
1
4).

We note, however, that for some functions, such as f defined by
f(σ) = 1 ⇐⇒ σ−1(1) < n

2
, we have C(f) = 1 while Q(f) grows

polynomially with n.

References

[1] J. Kahn, M. Saks, D. Sturtevant, A Topological Approach to
Evasiveness, Combinatorica 4(4) (1984), 297-306.

[2] L. Lovász, N. Young, Lecture Notes on Evasiveness of Graphs,
arXiv:cs/0205031

[3] D. Du, K. Ko Theory of Computational Complexity, Wiley-
Interscience, 2000.

