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Abstract

In this work we shall investigate quantum query complexity of weak PARITY prob-
lem. Weak Parity is the following natural query problem: What is the minimum num-
ber of queries necessary to compute PARITY(x1, x2, x3, . . . , xn) on at least 1

2 + ε frac-
tion of the inputs. For randomized classical or exact quantum machines this relaxed
PARITY problem remains as hard as original PARITY problem. Although Bounded
error quantum machines needed almost as many queries as classical machines for orig-
inal PARITY problem, they outperform classical algorithms in this relaxed problem.
We will show upper O( n√

log(1/ε)
) and lower bound of Ω(max{ n

log(1/ε) ,
√

log n}). After

this, we shall investigate the connection of this problem in the setting of ε = 2−n

with important extremal problems over boolean hypercube and we shall give some
improvements in that case.

1 Introduction

One of earliest examples in study of black-box quantum problems is the PARITY problem.
For computing the PARITY of X = (x1, x2, . . . , xn) a randomized machine must query
all the inputs because even a single unqueried input can change the value of output by
itself. A quantum machine, on the other hand, can get away with only n

2 queries using
Deutsch-Josza algorithm which is optimal by direct application of polynomial method.

Now consider the following scenario: We are given access to the query box to inputs
X = {xi}ni=1 and we still hope to compute the PAIRTY of the {xi}ni=1’s. But unfortunately,
for one reason or another, we are told that we can only query the box at most k number
of times.1 If k < n

2 , we cannot hope to compute PARITYn correctly on all inputs. So
the one natural thing we could try to do with our limited number of queries is to try to
maximize the number of inputs that we will answer correctly.

1Perhaps the box becomes faulty and unstable after k queries.
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Problem 1 (Weak Parity Problem- First Formulation) Given access to a black box
X = (x1, x2, . . . , xn) and a parameter k, what is the maximum size of the set A ⊆ {0, 1}n
where there exist a quantum algorithm U with at most k queries to X that satisfies U(x) =
PARITY (x) with probability 2/3 for all x ∈ A.

Remark Note that U does not have to satisfy any guarantee on the set Ac. So we can
interpret Weak Parity Problem as an attempt to identify low complexity partial functions
agreeing with PARITY on their domain A ⊆ Qn.

The first observation is that a classical machine limited to query the box k < n number
of times, might as well not query the box at all, and produce say 0 immediately because
no matter what the algorithm does, it would be successful at most on 1

2 of the inputs.

To turn above problem into the familiar form of query minimization, we could use the
following equivalent formulation:

Problem 2 (Weak Parity Problem- Second Formulation) What is the minimum num-
ber of queries for an algorithm that computes PARITYn with bounded error on a set of
fractional size at least (1

2 + ε)2n of boolean hypercube?

1.1 Outline

In this work, we shall present a general upper bound of O( n√
log(1/ε)

) for Weak Parity

problem. Then we apply polynomial method to derive a lower bounds of Ω( n
log(1/ε)).

Using adversary method then we show a different absolute lower bounds of Ω(
√

log n)
using only ε > 0. This final lower bound is interesting as our general lower bound does not
give us anything more than Ω(1) for computing PARITY on the regime where ε = O(2−n).
This lower bound shows that a superconstant number of queries is always necessary for
any nontrivial success for Weak Parity problem.

To prove the later lower bound we need a more combinatorial approach. We will use an
extremal result over the hypercube due to Chung et al [CFGS88] to prove this:

Theorem 1 Any quantum algorithm computing weakly PARITY on a subset of size as
small as 2n−1 + 1 of Qn = {0, 1}n must make at least Ω(

√
α(n)) queries where α(n) =

1
2 log n− 1

2 log log(n) + 1
2 .

On how many queries is really necessary we have the following conjecture:

Conjecture 1 No algorithm with query complexity k �
√
n can compute PARITYn on

more than half of the inputs.
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The motivation from this conjecture comes partly from the connections to sensitivity
conjecture.[KK04] It turns out that one of the most natural approaches to proving lower
bounds for Weak Parity in this regime go through very similar scenarios as in the case
of sensitivity conjecture. Hence we believe that proving a lower bound of Ω(nδ) for weak
Parity in this regime would be a major breakthrough.

We make a first step in improving above lower bound on logarithmic regime by showing
that

Theorem 2 Any quantum algorithm computing weakly PARITYn on a subset of size as
small as 2n−1 + 1 of Qn = {0, 1}n must make at least

√
α1(n)n queries where

α1(n) = (
2

3
− o(1)) log n

We hope that a straightforward but tedious generalization of our method for theorem 2
can go up to (1−δ) log n for any δ > 0.The above result has the following rather interesting
consequence :For any boolean function f : {0, 1}n → {0, 1} we have αs(f) > deg(f) for
any α > 2.

To best of our knowledge, this is the best upper bound on deg(f) in terms of s(f). In the
interest of space, we shall not present the proof of 2 nor its generalization for (1− δ) log n
in this work. However, in the appendix, we shall present the main corollary, and leave the
details of the of generalization to follow-up work. We shall prove,

Theorem 3 For any boolean function f , we have s(f) ≥ 2
3(1− o(1)) log(deg(f)) or more

precisely
deg(f) ≤

√
s(f)(2

√
2)s(f)

In the manuscript, we shall not prove the theorem 2. Instead, we directly argue for theorem
3. We hope that the proof of this theorem captures most of the important ideas for the
general improvement and can be used as a guide for the future work.
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3 Algorithms for Weak Parity

Theorem 4 There is an algorithm computing PARITYn on 1
2 + ε fraction of Qn using

O( n√
log(1/ε)

) queries.

Proof The idea of the proof is to first consider the case ε = 1
2n . In that caseOR(x1, x2, x3, . . . , xn)

agrees with PARITYn on all odd inputs, i.e. x ∈ {0, 1}n where x1 + x2 + . . . + xn = 1
and also on the input x = (0, 0, 0, . . . , 0). Since ORn can be computed by O(

√
n) queries

using Grover’s algorithm. We get our result for ε = 1
2n .

Now for general ε, We will use the above idea as follows: Let m = blog(1/ε)c and s =
⌈
n
m

⌉
.

Then we take y1 = x1 + x2 + . . . + xs and y2 = xs+1 + . . . + x2s and so on. Notice that
PARITY (x) = PARITY (y1, y2, . . . , ym). To weakly compute Parity on 1

2 + ε fraction of
inputs, we compute the function g(x) = OR(y1, y2, y3, . . . , ym). The above function would
agree with PARITY on 1

2 + 2−m and can be computed with O(
√
m.s) = O( n√

log(1/ε)
).

Remark An important observation is that above algorithms’ speedup was all due to
the case ε = 1

2n . Moreover, if we managed to improve the above upper bound for any ε > 0
we will get an improvement for all ε′ > ε. So in some sense, the bottleneck in improving
the above algorithm is improving the case ε = 1

2n . However as the conjecture 1 states we
believe that this is impossible.

4 Lower Bounds for Weak Parity

4.0.1 First Attempt: Adversary method

Let Qn = {0, 1}n be the boolean hypercube with the canonical graph structure connecting
two points when their Hamming distance is one. We first need the following two easy
lemmas:

Lemma 1 For any set A of size (1
2 + ε)2n subset of boolean hypercube Qn = {0, 1}n, the

induced subgraph on A has induced average degree at least εn.

Proof This is simply by counting edges. The vertices of A has total degree (1
2 + ε)n2n

degree out of which at most (1
2 − ε)n2n belong to the cut E(A,Ac). Hence, the average

degree is at least 2εn
2( 1

2
+ε)

> εn.
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Lemma 2 Any graph G = (V,E) with average degree d∗ = dave has a induced subgraph
where all the degrees are ≥ d∗

2

Proof Greedily delete any vertex with degree < d∗

2 . Continue this until either you
delete every vertex or you are left with an induced subgraph satisfying the above min-
degree condition. Now notice that the first event cannot occur, because if the graph gets
empty, this means that deleting < d∗

2 |V | = |E| edges has emptied the graph. But this is
impossible.

Theorem 5 The quantum query complexity of Weak Parity Problem over 1
2 + ε fraction

of hypercube is at least Ω(εn).

Proof Consider the set A where the quantum algorithm computes the Parity correctly(
with bounded error). Since |A| = (1/2 + ε)2n by above lemmas there exist a B ⊂ A such
that the induced degree over B are at least εn/2. Let X = B ∩ {x ∈ Qn||x| = odd} and
Y = B ∩ {x ∈ Qn||x| = even}. Consider the relation between R(X,Y ) that you put every
x in relation between all of its neighbors in y. By a direct application of adversary method
distinguishing X from Y requires Ω(εn) queries.

This lower bound will be superseded by the next lower bound using polynomial method.
But since it’s quite general and has potential application to other problems in Weak query
model it was presented.

4.1 Polynomial Method Lower Bound

Here we shall present the main query lower bound for Weak Parity problem of Ω( n
log(1/ε)).

This crucially uses the self-reducibility of Parity.

Theorem 6 Any quantum algorithm which on a set A subseteqQn of size (1
2 + ε)2n cor-

rectly outputs PARITY with probability ≥ 2/3 must make at least Ω( n
log(1/ε)) queries.

Proof Let T the query complexity of the algorithm C for weak Parity. We will use
the weak algorithm to produce an algorithm C ′ that decides PARITY on all inputs with
probability strictly greater than 1/2 and query complexity O(T log(1/ε)). The algorithm
is as follows: First it chooses Y = (y1, y2, . . . , yn) ∈ {0, 1}n uniformly at random. Let
b = y0 + y1 + . . . + yn be the parity of Y . Then C ′ runs algorithm C on the input
Z = X + Y for l = M log(1/ε) times computing the majority of the outputs. Let r be the
the majority of the outputs of l different tuns of C on Z. Then C ′ will outputs b + α as
PARITY (X). Now let’s see why this algorithm works:
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First of all, given access to the query box for actual input X, one can easily simulate the
queries Z = X + Y = (x0 + y0, x1 + y1, . . . , xn + yn). More formally, to simulate a single
query to Z, you use one query to the blackbox for querying X and then you run a single
query to Y which one can easily implemented with a simple (classical) circuit.

Now the important thing is that Z is uniformly at random from boolean hypercube. So
with probability 1

2 + ε this point is going to be in the set where weak algorithm correctly
computes PAIRITY with probability ≥ 2/3. Now the idea is that if we run the weak
algorithm for l = M log(1/ε) times on Z and take the majority of the answer, if Z ∈ A then
then the majority agrees with PARITY (Z) with probability > 1− ε

2 for M = 200 log(1/ε).

Now what’s the probability of success of this algorithm.

P[C ′(X) = PARITY (X)] ≥ P[Z ∈ A]P[r = PARITY (Z)]

≥ (
1

2
+ ε)(1− ε

2
) >

1

2

Since any algorithm computing PARITY on all inputs with > 1/2 probability of success
can be seen to require n

2 queries by polynomial method the result follows. [BBC+01]

4.1.1 Understanding the Gap Better

The main upper and lower bounds we have presented are formulated in terms of the second
formulation of weak PARITY problem. To understand the gap between this upper and
lower bounds, it’s more instructive to go back to the original formulation 1 of this problem.

Corollary 1 (theorem 4 and 6 recast) A quantum machine limited to make only k
queries to X = (x1, x2, . . . , xn) can output PARITY correctly with bounded error on a set
of fractional size at most 1

2 + 2−Ω(n
k

)

On the other hand, there exist an algorithm that makes k queries and outputs PARITY

correctly on a set of fractional size 1
2 + 2−O(n2

k2
).

In this language, It’s clear that if k = nc for some 0 < c < 1 the set A where one could
correctly outputs PARITY obeys

1

2
+ 2−O(n2(1−c)) ≤ |A|

2n
≤ 1

2
+ 2−Ω(n1−c)
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So we see that if k = nc for c < 1/2 the gap is very large. The lower bound on the size is
just a trivial 1

2 while the upper bound remains the non-trivial 1
2 + 2−Ω(n1−c). As stated in

conjecture 1 we believe that the answer that the lower bound here is closer to the truth.
In the next section, we shall present some evidence for this conjecture and presents the
combinatorial questions related to this question.

5 Weak Parity with k �
√
n queries?

Our lower bound in previous section has not ruled out an algorithm that queries X =
(x1, x2, . . . , xn) only a constant number of times and compute PARITY on a set larger
than half of the boolean hypercube. Indeed, in this section we shall rule out this possibility
using arguments about sensitivity. As indicated in the conjecture 1, we believe that the
true query complexity of any algorithm for Weak-Parity on a set larger than half is Ω(

√
n).

However, we believe it might be unlikely for us to prove a lower bound of Ω(nδ) for any
δ > 0 given the current techniques.

5.1 Some Extremal Problems over Hypercube

The following combinatorial problem investigated originally by [GL92, CFGS88] is the key
to our results.

Theorem 7 (Chung et al) Let A ⊆ Qn have size at least 2n−1+1. The induced subgraph
on A has a vertex of degree α(n). where

α(n) =
1

2
log(n)− 1

2
log logn+

1

2

Corollary 2 Let f : {−1, 1}n → {−1, 1} be a boolean function. Let s(f) denote the
sensitivity of f and deg(f) denote the degree of f as a polynomial over R. (The same as
the largest size of a Fourier coefficient) Then we have

s(f)4s(f) ≥ deg(f)

Proof Let f be our boolean function with m = deg(f). Wlog assume x1x2 . . . xm is a
maxonomial of f . Consider the function h(x1, x2, . . . , xm) = f(x1, x2, . . . , xm, 1, 1, 1, , . . . , 1).
So h is a degree m function over Qm which is restriction of f . Hence, s(h) ≤ s(f). So we
just need to prove the result for h.

Let g(x) = (
∏m
i=1 xi)h(x). We have

g(x) =

(
n∏
i=1

xi

) ∑
S⊆[m]

h̃(S)
∏
i∈S

xi =
∑
S⊆[m]

h̃(S)
∏
i/∈S

xi
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Since h was full degree h̃([n]) 6= 0 hence g̃(∅) = E[g] 6= 0. So it means taking A = {x ∈
Qn|g(x) = 1} either A or Ac have size larger than 2n−1 + 1. Wlog |A| ≥ 2n−1 + 1. Apply
the above theorem to A to conclude there exist x ∈ A such that x as α(m) neighbors in
A.2 Now notice that h(x) =6= h(y) for all those α(m) neighbors y. The result follows.

Remark In the appendix we shall present an improvement to this corollary.

To prove the theorem 7 We need following lemma:

Lemma 3 Let V ⊆ Qn and let d be the average degree of vertices in the induced subgraph
on V . Then

|V | ≥ 2d

Proof The statement is equivalent to proving |V | log(|V |) ≥ 2|E| where |E|is the number
of induces edges over V . Wlog assume V1 = V ∩ {x1 = 0} and V2 = V ∩ {x1 = 1} such
that Vi’s are both non-empty. Assume |V1| ≤ |V2| and notice that the number of edges in
direction 1 in E is at most |V1|. Now by induction on size of |V | we have

2|E| ≤ 2|E1|+2|E2|+|V1| ≤ |V1| log(|V1|)+|V2| log(|V2|)+|V1| ≤ (|V1|+|V2|) log(|V1|+|V2|)

The last inequality follows from the inequality H(p) ≥ 2p for 0 < p ≤ 1/2 for binary
entropy H(p).

Now we shall prove the theorem 7 bound using the lemma. We shall somewhat modify
the proof of Graham et al which makes the proof easier to generalize.

Proof of theorem 7: Wlog assume set A has size exactly 2n−1 + 1. Consider some
direction i. Consider the two to one mapping X = (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn) →
(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn). Since the map injects to a set of size 2n−1 < |A| there
are two elements mapped to the same point, i.e. we can find a pair p, pi ∈ S where pi

denote the point p with i-th bit flipped.

Consider the set H of the points on the xi = 0 subcube such that x, xi either both belong
to A or both do not belong to A,

H = H1 ∪H2 H1 = {x ∈ Qn |xi = 0 (x, xi) ∈ A} H2 = {y ∈ Qn | yi = 0 (y, yi) /∈ A}

Since p ∈ H1 this set is nonempty. We shall prove that H1 is large using the fact that H
is large. Let ∆ be the max-degree of A. It is easy to see that each element x ∈ H has
n− 2∆ + 1 neighbors in H2.( because at most ∆− 1 neighbors of x and at most the same
number of neighbors of xi will be in A)

2Recall that α(m) = 1
2
log(m)− 1

2
log logm+ 1

2
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For every pair (x, xi) such that x /∈ H exactly one of them belong to A. So |A| − |Ac| =
2 = |H1|−|H2|

2 . Hence, |H2| = |H1|−1. Since every element of H1 has n−2∆ + 1 neighbors
in H2 we see that elements of H2 have > n− 2∆ + 1 neighbors in H1 on average. Now it
follows that the average induced degree in H is at least n − 2∆ + 1. From the lemma it
follows that |H| ≥ 2n−2∆+1 Now it follows that |H1| ≥ 2n−2∆. This is exactly the number
of edges in A in direction i.

Now we know that the total number of edges in A are bounded by ∆(2n−1 + 1). Hence we
see that there is some direction such that the number of edges in that direction is bounded
by ∆

n (2n−1 + 1). Combining the bounds we get ∆
n (2n−1 + 1) ≥ 2n−2∆ that will give us the

desired result.

The consequences of this for weak PARITY problem is clear. Applying grover lower bound
to a point with degree α(n) we get that,

Corollary 3 Any quantum algorithm computing weakly PARITY on a subset of size as
small as 2n−1 + 1 of Qn = {0, 1}n must make at least

√
α(n) queries where α(n) =

1
2 log n− 1

2 log log(n) + 1
2 .

Remark In the appendix, we shall generalize the techniques of this proof slightly to
get an improvement to the corollary 2.In improving the relationship between s(f) and
deg(f) instead of improving the theorem 7, we shall directly apply our techniques of proof
of theorem 7 to the corollary. The reason we decide to present the improvement to the
corollary 2 but not to 7 is mostly for the sake of clarity.
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A Improving The Relationship Between deg(f) and s(f)

Now we shall sketch how to improve corollary 2 to deg(f) ≤
√
s(f)(2

√
2)s(f). I believe

that with some care the result of this section can be generalized to get deg(f) ≤ cs(f) for
any c > 2 and also get the improvement ∆(A) ≥ (1−δ) log n analogous to theorem 7. But
we shall leave this further generalization that require some care to future work and just
stick the simplest improvement that captures the idea. However, we mention that to best
of our knowledge even this simple generalization might be the best known upper bound
on deg(f) based on sensitivity.

The proof is a simple generalization of the proof for theorem 7. The idea is to instead of
counting sensitive pairs in one direction to consider and count higher order structures of
this kind instead.

Theorem 8 For any boolean function f , we have s(f) ≥ 2
3(1 − o(1)) deg(f). More pre-

cisely,
deg(f) ≤

√
s(f)(2

√
2)s(f)

Proof As shown in the proof of weaker version of this theorem, we can wlog assume that
f is full degree n. Given two directions (i, j) let Di,j(f) denote the DiDjf the derivative
of f with respect of i-th and then j-th direction. We have

Di,j(f)(x) =
∑

{i,j}∈S⊂[n]

f̃(S)xS\{i,j}

Since f is full degree Di,j(f) is also a non-zero polynomial. As a result since Di,j(f) has
non-zero Fourier coefficients it must be non-zero at some point x. Now we shall interpret
the fact that Di,j(f)(x) 6= 0 in terms of sensitivity at points (x, xi, xj , xij).

Consider the small subcube formed by the four points (x, xi, xj , xij). I claim we must
have that one of these 4 points has sensitivity 2 inside this square, i.e. wlog f(x) = 0
and f(xi) = f(xj) = 1. If there is no sensitivity inside this cube then f(x) = f(xi) =

f(xj) = f(xij) which is impossible because Dij(f)(x) = f(x)−f(xi)−f(xj)+f(xij)
4 6= 0. So

assume f(x) = 0 and f(xi) = 1. If both x and xi has only sensitivity one in the square
we must have f(xj) = 0 and f(xij) = 1 which is again in contrast with Dij(f)(x) 6= 0.

So assume wlog that f(x) = 0 and f(xi) = f(xj) = 1 and xi = xj = 0. Consider the set
H = {x ∈ Qn |xi = xj = 0 , f(xi) = f(xj) = 1 , f(x) = 0}. It is immediate that this set
H has n − 3s(f) + 2 minimum degree for its vertices. Hence, we get that size of this set
is at least 2n−3s(f)+2. For each x ∈ H we have a triple (x, xi, xj) where f(x) is sensitive
with respect to both i and j direction. On the other hand number of such triples is at

most
(
s(f)

2

)
2n. So there must be a pair of directions with less than

(s(f)2 )
(n2)

2n such triples.
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Hence it follows that 2n−3s(f)+2 ≤ (s(f)2 )
(n2)

2n. From this we get

deg(f) ≤
√
s(f)(2

√
2)s(f)

which is a significant improvement to previous bound of deg(f) ≤ s(f)4s(f). Using above
ideas with higher and higher derivatives we hope that we get more improvements. This
will require a more elaborate analysis of the condition Di1,i2,...,ik(f) 6= 0 in terms of the
sensitivity induced in that k-cube.

B Why Is Section 4.1 Called Polynomial Method?

We shall give a completely pure-mathematical version of the proof of theorem 6 here. Let
p(x1, x2, . . . , xn) be the polynomial of degree 2T that represent the acceptance probability
of our Weak-Parity algorithm. Consider the following mapping f(α) = 3α2 − 2α3. One
can easily check that the dynamic under f always remain between [0, 1] and f satisfies the
symmetry condition f(1− α) = 1− f(α). and has two attractive fixed points at 0 and 1
and an repulsive fixed point at 1/2. Moreover for α ≤ 1/3 we have f(α) ≤ α1.2 .

Using this, consider the following iteration. Weak p0(x) = p(x) and define pi(x) =
3pi−1(x)2 − 2pi(x)3. After m = O(log log(1/ε)) iteration pm(x) would be a polynomial
of degree O(T log(1/ε)). Furthermore for every x ∈ A we have |pm(x) − PARITY (x)| ≤
ε/2. This is because the error after m iteration is at most

(
1
3

)1.2m ≤ ε/2 for some
m = O(log log(1/ε)). Now if we consider the polynomial

q(y) =
1

2
E|z|=evenp(x+ z) +

1

2
(1− E|z|=oddp(x+ z))

This is a polynomial of degree O(T log(1/ε)) that satisfies |q(y)−PARITY (y)| < 1
2 . Using

the symmetrization of Minsky and Pappert[BBC+01] and direct application of polynomial
method to number of roots of symmetrized polynomial at 1/2 the lower bound of T =
Ω( n

log(1/ε)) follows.

C Relations to Sensitivity Conjecture

For the remainder of the section we shall denote boolean hypercube with its natural graph
structure as Qn = {0, 1}n.

In order to appreciate the connections between this problem and sensitivity conjecture.
we need the following definitions over the boolean hypercube.
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Definition 1 For any A ⊆ Qn define Λ(A) as the the maximum degree of the induced
subgraph on A. Similarly, define Γ(A) = max{Λ(A),Λ(Ac)}.

It turns out that sensitivity conjecture is equivalent to lower bounds on Γ(A) for |A| > 2n−1

while lower bounds on Weak PARITY problem follows from lower bounds on Λ(A). Of
course the most natural conjecture that proves both conjectures is the following

Conjecture 2 (Subsumes Sensitivity and WEAK PARITY Conjectures 1) There
exist δ > 0 such that for any set A ⊆ Qn with |A| > 2n−1 we have Λ(A) = Ω(nδ).

Remark From the examples so far constructed in the literature the upper bound shown
on the above δ is 1/2 that follows from the following example [CFGS88]: Assume n is a
square and consider the function

f(x) = AND(OR(x1, x2, . . . , x√n), OR(x√n+1, . . . , x2
√
n), . . . , OR(xn−

√
n+1, xn−

√
n+2, . . . , xn))

Now take the set B = {x ∈ Qn |PARITY (x) = f(x)}. Then we have the following:

• |B| = 2n−1 ± 1 and |Bc| = 2n−1 ∓ 1.

• Λ(B) = Λ(Bc) =
√
n hence Γ(B) =

√
n.

It’s author’s opinion that the conjecture 2 is one of the most approachable versions of
the statements that imply sensitivity conjecture. Indeed arguing about large subsets of
boolean hypercube and applying randomness vs structure, i.e. very careful inductions,
type ideas might be the way to go forward for proving such statements.

The relation between the conjecture 2 and weak PARITY conjecture is straightforward.
Because of lower bound for Grover problem, a Ω(nδ) lower bound on on Λ(A) implies a
Ω(nδ/2) lower bound for Weak PARITY query complexity on A. As to the relation to
sensitivity we have,

Theorem 9 If there exist δ > 0 such that Γ(A) = Ω(nδ) for any |A| > 2n then sensitivity
conjecture holds. More precisely s(f) = Ω(deg(f)δ).

Remark Since Γ(A) ≥ Λ(A) we see that sensitivity conjecture is implied by the con-
jecture 2

Proof First let’s see how sensitivity conjecture implies a lower bound on the Γ(A).
Wlog, take Qn = {−1, 1}n so Fourier analysis becomes more natural.

Define the function g : {−1, 1}n → {−1, 1} as g(x) = 1 iff x ∈ A. Since |A| > 2n − 1
we have E[g] > 0. Consider h(x) = g(x)

∏n
i=1 xi. Since E[g] > 0 we see that h satisfies
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deg(h) = n. Assuming sensitivity conjecture this means s(h) = Ω(nδ). So take a x ∈ Qn
such that s(h, x) = Ω(nδ). If x ∈ A this means all those Ω(nδ) neighbors of x are also in
A, hence Λ(A) = Ω(nδ). Similarly, if x ∈ Ac it would mean that Λ(Ac) = Ω(nδ). In any
case, Γ(A) = Ω(nδ) easily follows.

The trick to prove the other direction is also similar. Consider a function g(x) we want to
show s(g) = Ω(deg(g)δ). Wlog let x1x2 . . . xm be a maxonomial in Fourier expansion of g
so m = deg(g). Take the restriction of g to those m coordinates. The lower bound on the
sensitivity follows by applying Γ(A) = Ω(mδ) where A ⊆ Qm is defined by

A = {x ∈ Qm| g(x1, x2, . . . , xm, 1, 1, . . . , 1)

m∏
i=1

xi = 1}

In summary, we see that the connection between sensitivity and weak PARITY is that
a natural (stronger) conjecture than sensitivity implies both. This is the combinatorial
conjecture that Λ(A) = Ω(nδ) for any |A| > 2n−1. On the other hand, if one replaces Λ(A)
with Γ(A) = max{Λ(A),Λ(Ac)} this is indeed equivalent with sensitivity conjecture.
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