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This paper explores Quantum Search on the two dimensional spatial grid. Recent exploration into
the topic has devised a solution that runs in O(vnlInn). This paper explores a new algorithm that
gives promise for the O(y/n) result that is the lower bound off of the grid.

I. INTRODUCTION

Some classical solutions to problems achieve particu-
lar speed ups when we allow those algorithms to become
quantum based. The most obvious result is the ability to
search a group of n elements in sub linear time. Classi-
cally, it is required to look at all of the elements, one at a
time, to ensure that the marked item is or is not present.
In the quantum world, thanks to Lov Grover [4], we can
do this in O(y/n) steps and queries. In particular, this
subroutine has proved useful for a number of other al-
gorithms and achieving quantum lower bounds. In this
paper we explore the complexity of performing this algo-
rithm when reduced to movement on a two dimensional
spatial grid. We restrict our model to a quantum robot
walking along the two dimensional grid.

We begin by describing the model we adapt for out
algorithm in Section II. We then proceed to a discussion
of Grover’s Algorithm in Section IIT and follow up with
the latest results about search on a spatial grid in Section
IV. Finally, we give our new algorithm for search on the
spatial grid with results in Section V. We describe the
case when there are multiple marked items being search
for and how it differs from the non spatial version in
Section VI and comment on the implications this gives for
other problems in Section VII. We give some concluding
remarks in Section VIIT and discuss what needs to be
done.

II. THE MODEL

The majority of this paper refers to the ”two dimen-
sional grid”. This is used to describe a model in which
a quantum robot traverses a two dimensional array of
points through a quantum walk. That is, a quantum
robot is initially placed on the grid at an arbitrary loca-
tion. They can then move to adjacent nodes, and only
adjacent nodes in the grid during one time step. At each
node, the robot is allowed to read the information that
is located there. Our grid consists of all of the elements
in X that we are interested in looking at. The quan-
tum robot, upon reaching a particular node, can read the
value from the grid and perform a query on that element.
The robot’s movements through the grid are determined
by a quantum coin. Whenever the robot moves, it can
simultaneously move in all directions (or whichever are
described by the coin) in superposition. Thus, we can

achieve a superposition of all states in X" in \/n steps by
performing a walk along the base of the grid and then
performing a walk in the perpendicular direction from
each of those nodes in parallel.

It is useful to note that each location on the grid can
be classified as a two dimensional ket, |i, j), and that the
grid is cyclic in both directions. (i.e. |i,j) is connected

to |n, j)).

III. GROVER’S ALGORITHM

Grover’s Algorithm can be viewed as acting on a com-
pletey connected graph, G,, where every node in the
graph has an edge connecting it to every other node in
the graph. Thus, a quantum robot walking on the graph
is able to get to absolutely any node in a single time step.
The algorithm is dependent upon this because at every
iteration of the diffusion operator each node communi-
cates with every other node in parallel to determine how
much amplitude will be transferred between them.

Herein lies the problem when moving to the grid, nodes
can only talk to their direct neighbors. A lot of the edges
have been removed from the graph. We can no longer
calculate the mean (or invert about it) in a single time
step. In order to do this exactly as it is done in Grover’s
Algorithm, it would require O(y/n) steps simply to get
across the grid and find this information. Thus, we need
some other way of performing this calculation.

The search problem is described as finding a marked
item in a given set of values. In this case, we let a ket,
|x), represent an element x € X, our set of all items. We
let the state |s) represent the equal superposition of all
elements in X

1
|s) = %Zb:\@

Grover’s Algorithm is dependent on two subroutines
that are repeated O(+/n) times. The first is the negation
unitary. It negates the sole marked item in the set of
elements we are looking at. If the marked item is |w),
then out negation unitary U, can be written as:

Uy =1-2|w) (w|

where
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UlUsw = (I =2 |w) (w]) (I - 2|w) (w])
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U [w) = (I = 2|w) (w]) |w) = [w) =2|w) = — |w)

Uy |2) = (I = 2[w) (w]) |z) = |2)

The second subroutine is the diffusion operator: Us.

Us =2[s) (s| =1

where unitarity is easily confirmed and

Usls) = (21]s) (s| = I) |s) = 2[s) — |s) = |s)

and

Us [w) = (21s) (s| = I) |w) = % |s) = [w)

The algorithm consists of repeated applying U,Us
to the starting state and having the amplitude of the
marked state grow with each iteration.

While this is an optimal algorithm, running as asymp-
totically fast as it can, the algorithm cannot be translated
directly to the spatial grid, due the missing edges of the
graph.

IV. QUANTUM SEARCH ON THE GRID

It was shown by Benioff that Grover’s search algo-
rithm took a serious hit when applied to the two dimen-
sional spatial grid. The application still requires O(n'/?)
queries; however, in between each of those queries, the
quantum robot may have to move a distance equal to
the diameter of the graph, also O(n'/2). Thus, the total
running time was O(n) [3]. Aaronson and Ambainis fixed
this by giving an algorithm that searches a grid for a sin-
gle marked item in O(y/n log® n) total steps (queries and
walking) [1]. Their algorithm is the main breakthrough
in this area and uses Grover’s Algorithm recursively on
smaller and smaller subcases combined with amplitude
amplification.

Later, the search problem on the 2D grid was reduced
to a O(y/nlnn) solution by Ambainis et. al [2]. In 2008,
Avatar Tulsi devised a way of improving on the leading

algorithm for two-dimensional spatial search using an an-
cillary qubit. His results lead to an O(v/nlnn) solution
to find a marked item out of a list of n elements ar-
ranged on the vertices of a two-dimensional lattice [5].
It remains an open problem whether or not this can be
improved upon and the optimal non-lattice solution of
O(+y/n) reached.

V. SPATIAL QUANTUM SEARCH

Our algorithm for search on the grid consists of 4
pieces. The first is the building of the superposition on
the grid. A quantum robot starting at any location walks
along any horizontal in the grid, creates a superposition
of all states and then repeats that process along the ver-
tical to create the state |s), stated below for convenience:

1
)= 7= Ll

Once the superposition is created, our robot can act
on each node or state simultaneously however informa-
tion cannot be transferred from one node to another if
they are more than a constant number of edges apart.
That is, nodes that are O(y/n) apart cannot communi-
cate and thus we lose the ability to invert about the mean.
Our next piece of machinery is to use the negation op-
erator, as Grover did, U,. The next two final pieces of
the algorithm are the Local Diffusion operator, Ug, and
the Amplitude Dispersion operator, fo (d is not a power
but a paramter), which are described in the following sec-
tions. The algorithm consists of repeated applications of
U, UtULUS.

A. Local Diffusion Operator

Even though we cannot talk to all of the nodes on the
grid, we are still allowed to learn about our immediate
neighbors. We can travel to and communicate with any
nodes that live within a constant distance of the current
node. However, we cannot talk with a node that is fur-
ther in communication with a node that we cannot reach.
That is, the set of nodes that we are communicating with
during a particular time step plus all the nodes that are
transitively communicating with us via its communica-
tors must form a constant size set; this to preserve uni-
tarity. We are free to perform any unitary on this subset
of nodes. Thus, we can divide the grid into equally sized
pieces that tessellate and cover the grid and then per-
form Grover’s Diffusion on each of them. Our diffusion
operator must act locally, cover the grid, and preserve
unitarity. We constructed our operator in the following
form, which allows us to locally spread the amplitudes.
It is built up of a superposition of states making small
squares that tessellate the entire grid.
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It is useful to notice that each of the tessellation states
are orthogonal to each other and that the states are prop-
erly normalized, mainly:

(ur (i, ) ur(m,n)) = 6imdjn

Using this, we can build our unitary operator.

n/4

Up =2 |uc(i, ) (ur(i,j)| =1

4,5=0

Knowing this, it is fairly trivial to show that Up is
unitary.

vi'vg = <2é_ fur (5, 5)) (s (i, )| = 1)
<@ £ jusli.a) fuslion) - 1
= 4i= Jur, (i..9)) (ur (3, ) fur (m, n))
(ur (m, n)| - 4é_ fur (i, §)) (ur (i, 5)] + 1
ng
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U} is unitary and therefore we can use it as an op-
eration in our algorithm. The point of this operator is
to take local pieces of the grid and trade their ampli-
tudes. That is, if a particular piece of the grid contains
the marked item, it will act like Grover’s Algorithm on
that piece and start sending amplitude to the marked
item’s node. Otherwise, if there is no marked item in
the piece, this operator will actively try to level off the
amplitude in that region.

At this point we introduce the choice of region. We can
choose any region that we can tesselate the grid with.
For instance, the above unitary operator is based on a
region that is a local square. If we let d be the length
of the square, we can define a more general, still unitary,
operator that acts on the grid:

lur, (4, 7)) 0i,m0jn (ur(m,n)]

d—1
lud (i, j))y =% > |di+=z,dj +y)

z,y=0

where we state without proof that

3
and
n/d
Uf =2 [uf (i) (uf (i, )] — 1
i,j=0
with our operator being defined for d = 4 and

wivg -1

These are just very basic examples of regions that tes-
sellate, the grid. We measure the amount of work a robot
has to do for each particular iteration of this operator in
terms of d. That is, a square region of size d requires
the robot to visit d? nodes on the grid and it would take
O(d) steps for the robot to do this and perform the uni-
tary on this region. However, this parameter is chosen
ahead of time (even though it is left as a parameter of
the system) and is therefore a constant in the analysis of
the algorithm. In our version, we choose d = 4 for the
Local Diffusion Operator, which gives only a constant
O(4) = O(1), and negligible, slow down.

The Local Diffusion Operator acts to level out each
local region of the grid, unless it contains the marked
item. Together with the Negation Operator, U,, this
builds the amplitude of the marked item, locally.

B. Amplitude Dispersion Operator

Simply increasing the amplitude of the marked item
within a local region of the grid is not enough. As n
may be very large, increasing |w)’s amplitude over a fi-
nite region will place a very small upper bound on the
amplitude that this node can reach. Therefore, we need
some way of pulling the amplitude from other regions of
the grid. First we notice that by requiring amplitude to
move from everywhere on the grid towards our marked
item, this puts a lower bound of O(y/n) on the algo-
rithm, because the robot will need that many steps to
reach all other nodes. Our trick here is to perform an-
other diffusion. The second pass over the grid acts very
similarly to the previous diffusion operator, except that
instead of working on a strictly local region, the new re-
gions are spread out to cover multiple of previous regions.
For our algorithm, after trying many regions, we found
it extremely successful to make our Amplitude Disper-
sion Operator the same as the Local Diffusion Operator
with a slight shift. The region is a square of size 4 x 4
so we decided to move the starting location over 2 nodes
in each direction (right and down), in order to get the
maximal overlap. Our new states are:

[ub(i,5)) = § dil di+a+ 2], dj+y+ [4])

z,y=0
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with the operator defined the same way:

n/d

U =23 |ud(i,5)) (uh (i, )| — 1
i,j=0

again with (U4)TU4 = I, and d = 4 for our algorithm.

Already unitary by definition of our previous operator,
we now have two new tools at our disposal, U¢ and U4,
which provide a slowdown of d? and act to diffuse and
disperse the amplitude respectively.

C. Other Local Regions

Here we describe some of the other regions that we
explored. We measure each each with respect to d.

1. Four Corners

This region acts by looking at aset of corners of dis-
tance d apart. Similar to the square this takes O(d) steps.
These corners provide a smaller amount of computation
that needs to be done by the robot, but because it only
looks at 4 separate nodes, does not do as well as the 4 x 4
square region. However, in our experiments, it performed
the same as the 2 x 2 square. Our states for 4 corners
are:

ulli,g) =1li.g) > (i+x5+y|
z,y€{0,d}

2. Crosses

This is the region built up of a node’s nearest neighbors
in the four cardinal directions. For this region we get
d = 5, but it only incurs a slowdown proportional to 1
as it describes the total number of nodes hit, not the
diameter of the region and each node is one step away.
Our states for the crosses are:

ui (i, §) = i, 5) (Z i+ + > <i,j+y+<zpjl>

r=%+1 y==1

This covers yourself and your nearest neighbors. When
tessellation the centers of the next region occur (2,1)
away and this ensures that we don’t overlap any node
more than once on the same pass.

3. Restrictions

One can use any combination of the above regions or
define their own. Results will vary based on the tessel-
lation pattern and size of those regions that you choose.

4

We leave it as an open question to find and/or prove the
optimal region given a restriction on d.

There are many other regions you could choose. How-
ever, the larger you go the slower the algorithm performs.
It is useful to note that the best performing diffusers are
the ones that have the largest number of overlap between
the two diffusions. Our algorithm has an average overlap
of 4 regions allowing the probability to disperse through-
out the grid polynomially fast. We now introduce a re-
striction on the choice of d, or rather how that choice
restricts the rest of the algorithm. In order for the cho-
sen region to properly tessellate the grid, we need both
the length and width to be multiples of d, or mainly d?|n.

D. Algorithm

As mentioned previously, our algorithm is similar to
that of Grover’s; it relies on the repeated application of
the unitary.

1. Build the superposition over the grid by walking
along a horizontal and then a vertical. This takes
a one time cost of O(n'/?).

2. Apply the operator U, Uf Uy Uf‘ to the system
O(n'/?) times. Each iteration takes O(1 x4 x 1 x 4)
steps, as the negation operator is a single step and
the others are on the order of d.

3. Measure the state and obtain the marked item with
high probability.

E. Results

As we show next, experiments run with this operator
show that the marked item’s probability peaks around
n'/2 iterations; however, we do not get amplitudes arbi-
trarily close to 1. Most of our amplitudes are on the order
of .70 — .95 which corresponds to a % probability or bet-
ter of measuring the marked item. We are still working
on ways to increase this as well as to determine exactly
when this maximum amplitude is hit. Either one on its
own would prove effective, as once we know how many
iterations it takes, we can perform a Local Diffusion Op-
erator on the grid without dispersing. This will build up
the marked item as the amplitude that has not reached it
yet is stored in the neighboring nodes. This also means
that if we measure the node incorrectly, we have been
given information as to where the node is and can rerun
the algorithm on a smaller portion of the grid in order to
find the marked item with even better probability.

Our results are all based on the tessellation of shifted
squares of size 4 x 4. Below is a graph relating the size of
our data n to the number of iterations needed to reach
the maximum amplitude and below that the maximum
amplitude that is reached.
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In every case, the number of required iterations was
roughly equal to the square root of the number of items
being searched. Thus, we have concluded that the al-
gorithm hits its first peak somewhere within the first
O(n'/?) iterations; however, we have not proven this rig-
orously, perhaps it can be done through the use of a ge-
ometric display.

The amplitudes decrease as the input size gets larger
and larger, which is to be expected as the amplitude is
dispersed around a greater number of incorrect nodes. In
fact, this algorithm, as the reader can see below, works
so as to build up the amplitude around the correct item.
That is, it acts as a sink on the grid and pulls ampli-
tudes towards itself. Therefore, the nodes surrounding
the marked item will be the most likely options for in-
correct measurements.

2500

/;

2000

1500

1000

500

o T T T T 1
o 1000000 2000000 3000000 4000000 5000000

FIG. 1: This shows the number of iterations required for the
marked item to reach its maximum amplitude. Clearly visible

in this plot is the trend of the iterations needed to follow n'/2.

We suspect that there is a way to perform a final dif-
fusion step on the grid at this final location in order to
boost the amplitude of the marked node, but have not
found it yet due to the uncertainty in the max ampli-
tude’s iteration.

Figures 1 and 2 show the results of simulating on our
algorithm for increasing powers of 4. We present the ac-
tual values obtained from out simulations in the following
chart:
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FIG. 2: This shows the max value of the amplitude of the
marked item at the above iteration count.

n  Max Amplitude Iterations +/n

16 0.9531 2 4
64 0.9373 6 3
256 0.9023 12 16
1024 0.8626 30 32
4096 0.8338 64 64
16386 0.8073 128 128
65536 0.7812 264 256
262144 0.7581 556 512
1048576 0.7377 1144 1024
4194304 0.7178 2294 2048

It is clear that the number of iterations required to
hit the maximum aplitude is on the order of n'/2. The
graph shows that the number of iterations required to get
to the maximum aplitude closely follows, while slightly
overshooting, n'/2. As we can see the maximum ampli-
tude is approaching an asymptote at %, which corre-

sponds to a % probability of measurement, at the ideal
iteration. We suspect that this value can be improved
upon, but we will see in the next section the length of
time we have in order to try and measure this value.

F. Amplitude Propagation

While a large maximum probability is nice, it is ideal to
have relatively large amplitude for a long period of time
(over many consecutive iterations). That way, without
knowing exactly how many iterations are needed, one
is still likely to measure the actual marked item with
high probability. Below we show two different images.
They each depict, graphically, the amplitude values for
the nodes on a 400 element set. The first depicts Grover’s
Algorithm running on this set. The nodes start out in an
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equal superposition and on each iteration the amplitudes
of the wrong elements go down while the marked item’s
amplitude increases. The cycle is periodic and eventually
repeats. The marked element is clearly visible after the
very first iteration and stays dominant for most of the
progression. Unlike in our algorithm, all of the other
nodes decrease equally. Each row of data depicts three
separate iterations overlaid next to each other.

The second image depicts our algorithm working on the
same set of 400 elements once those elements have been
shifted to a 20 x 20 spatial grid. Again the nodes start
in an equal superposition but now the amplitude travels
towards the marked node in waves and also builds up on
those nodes that are closest to the marked node. We see
a few nodes (unmarked) that have relatively high ampli-
tudes when the marked item peaks, this is not completely
bad. If we do in fact measure the wrong item we know
that the actual marked item resides fairly close by on the
grid and we can repeat the algorithm on a much smaller
section of the grid to find the marked item. The marked
element is clearly visible after the very first iteration and
stays dominant for most of the progression. Unlike with
Grover, amplitude travels in waves to the marked node
and creates a sink or pyramid around the marked node.
First, however, we show some images and describe what
is being seen in each of these plots.

FIG. 3: This is a close up view of a single iteration of our
algorithm.

In Figure 3 we see a close up shot of a single iteration of
our algorithm being run on a 20 x 20 grid. The different
colors represent .15 histogram groupings. That is, every-
thing that is a particular color falls within a .15 range
of follows. As the graph is of amplitudes, the maximum
value is 1. Because none of our values dipped, negatively,
below —0.5, we decided to cut off the grid there in order
to have a closer view of the plot. As we will see on the
next page, we have laid out multiple of these images next
to each other for convenience, but do not want to confuse
what a single iteration looks like.

The iteration depicted is very close to the ideal itera-
tion. We can see that there is a very nice peak indicat-
ing the node of the marked item. Additionally, we see
a small region where some nodes have a higher ampli-
tude than the rest (the are colored lime green). Here is
where most of the amplitude, that is not already part

of the marked node, is forming. We have successfully
created a sink/pyramid of amplitude around the marked
item. Although we have not explored this in too much
depth, and thus do not have exact results, this means
that when measuring the state, there is an even higher
probability (than just that of the marked item) that if
we measure a state, it is either correct OR it is a node
that is extremely close the desired node. We do not have
the numbers corresponding to how close the marked item
is, but it is an interesting topic to research. We are very
interested in knowing how far away you need to travel
from the marked node in order to get a max amplitude
that matches Grover’s Algorithm off of the grid. While
we did not do the study, out intuition is that the dis-
tance is directly proportional to d, the parameter we use
to classify a tesselation’s size.

Below is another image of a different iteration show-
ing more clearly the build up of amplitude that clusters
around the marked item. Figure 4 depicts an earlier it-
eration than that of Figure 3, before that amplitude has
had enough time to travel all the way to the marked node.

FIG. 4: This is a close up view of a single iteration of our algo-
rithm, more clearly depicting the amplitude build up around
the marked node.

In the above figure we see the tall spike just as before.
However, in this plot in only goes up to =~ 0.6 as it is an
early stage iteration. What we do see here is that there
is a nice sink of light blue nodes surrounding the spike,
but only in the direction of its own local tessellation. We
also see the wave of amplitude moving horizontally and
vertically towards the marked node.

Now we show the actual plots from the simulation of
our’s and Grover’s algorithm side by side.
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FIG. 5: This shows the amplitude progression of Grover’s FIG. 6: This shows the amplitude progression of running our
Algorithm on a grid of 400 elements. algorithm on a grid of 20 x 20 elements.
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G. Comparison

As seen in Figures 5 and 6 above, both algorithms do
a great job of isolating the marked item and increasing
its amplitude. Our algorithm does it in fewer iterations,
which is largely due to our unitary operator which does
two rounds on each iteration (one for diffusion and one for
dispersal). Each shows the marked item staying preva-
lent for most of the iterations. While Grover’s gets the
amplitude to be almost completely singular, our simula-
tion shows that we get the marked item to a high enough
amplitude to be measured over a similar time period with
high constant probability.

VI. MULTIPLE MARKED ITEMS

Here we show the results from running the algorithm
when there are multiple marked items. Below we show
the results of running the algorithm when there are two
marked items. Other than that, the details are the same:
same diffusion and dispersion tessellations and still a 20 x
20 grid. As expected, the amplitudes don’t peak as high,
but they shoot up very quickly, much more quickly than
when there was a single marked item.

This type of search could be affected differently then
the regular search because the marked items’ proximity
to each other actually matters in the running of out al-
gorithm. Our simulation results show that the closer the
marked items are to each other the worse the algorithm
does. It still finds and isolates the marked items, but the
amplitudes interfere with each other building a larger
pyramid of amplitude in the surrounding nodes. When
the items are very far apart they each quickly act as if
they are the only marked item on their half of the grid.
The amplitude differences in these cases were relatively
small compared to the rest of the nodes (i.e. 0.62 vs.
0.58).

We have seen that the total combined probabilities of
marked nodes does not stay constant as you increase the
number of marked items. In fact, in our above case, it
actually decreases. The two nodes had a combined prob-
ability of measurement of roughly 72%, while in the single
marked item case, at the peak of the algorithm the item
had a probability of 79%. We have not explored using
different tesselations to boost the multiple marked items
avenue, but conjecture that there might be a better tes-
sellation that is independent of the locality of the marked
items. This is a great area to explore. We also conjec-
ture that as the number of marked elements (percentage
of total elements) increases the algorithm runs in fewer
iterations but the combined probability remains roughly
equivalent.

FIG. 7: This shows the amplitude progression of running our
algorithm on a grid of 20 x 20 elements when there are two
marked elements.

VII. OTHER PROBLEMS

If this pans out and proves to be a O(n'/?) solution for
Search on the Spatil Grid that has many implications for
other problems that can be moved to the grid. Mainly,
any quantum that relies on searching as its lower bound
(with some exceptions) would now be able to be solved
on the grid, as well, in the same running time.

For instance, Collision, which has a O(n'/3) solution
off of the grid would not be affected by moving to the
grid. We can still perform the same algorithm: look up
n'/3 elements and perform a search over a set of n2/3
elements. Both on and off the grid would then yield the
same complexity, O(n'/?).

VIII. CONCLUSION

This paper provides the initial outline for what we be-
lieve to be the possibility of an optimal Quantum Search
algorithm on the Spatial Grid. An interesting question
is whether this diffuse and disperse algorithm works in
higher dimensions. As we are limited in the above sce-
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nario by the diameter of the grid, perhaps in higher di-
mensions we can improve upon this result. This algo-
rithm would also benefit from Amplitude Amplification,
an idea that has not been explored in this paper and de-
termining exactly what the number of iterations needed
is. Lastly, we admit that our tessellation pattern is not
proved to be optimal, that is, there may be a better dis-
persion tessellation that couples more nicely with our Lo-
cal Diffusion Operator.

We have presented the first application of search on
a spatial grid that does not rely on Grover’s Diffusion
Operator in its entirity. We have introduced many new
areas for exploration. Mainly:

1. Amplitude amplification from the pyramid of am-
plitude surround the marked item

2. Tessellation patterns that increase dispersion

3. The application into higher dimensions

4. Tessellation patters that work equally regardless of
multiple item locality

These are just some of the new directions that can be
explored and should prove some pretty nice results.
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