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1 Introduction

God does not play dice.
–Albert Einstein

Einstein, stop telling God what to do.
–Niels Bohr

One of the defining features of quantum mechanics is that quantum systems can exhibit non-local
behavior that cannot be reproduced by any classical theory obeying locality (i.e. special relativity).
Recently, non-locality has been a subject of special interest in quantum computing and in theoretical
computer science; the attempt to pin down the power and limitations of non-local behavior has led
to advances in the understanding of quantum cryptography, the complexity of quantum interactive
proof systems, and the properties of quantum entanglement.

A beautiful new development in quantum information theory has been the concept of certified
randomness, pioneered by Roger Colbeck in his Ph.D. thesis. The motivating question is this: is it
possible to test that the output of a physical device is random? For example, there are companies
that purportedly sell devices that generate random bits via quantum mechanical means – one would
like to check that their purchased device is behaving as advertised! However, for most definitions
of “test” and “random”, this seems to be a hopeless task.

Surprisingly, with the help of non-locality, and two devices, we can meaningfully and rigorously
test that the devices produce random bits! The idea is to separate the devices so that they cannot
communicate with one another, and then test the devices for non-local behavior according to some
protocol. If the devices pass the test, then they must be producing random bits by necessity. These
random bits are then certified.

The protocols constructed in Colbeck’s Ph.D. thesis [1], as well as [3], [4], are based on testing
that the two devices win certain quantum games. One famous quantum game, which [3] and [4]
use, is the CHSH game: two non-communicating players, Alice and Bob, are given random inputs
x, y ∈ {0, 1} respectively. Their task is to produce outputs a, b ∈ {0, 1} such that a⊕ b = x ∧ y. It
is easy to see that if Alice and Bob play according to a classical strategy, their maximum success
probability is 75%. On the other hand, there is a quantum strategy strategy involving a shared
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entangled state between Alice and Bob that allows them to win this game with probability ≈ 85%.
The key insight is that if Alice and Bob are winning CHSH games with superclassical winning
probability (i.e. greater than 75%), they must be randomized!

These protocols can do more than just certify randomness – they can expand it. The protocol
presented in [3] uses n bits of randomness, and the devices produce Ω(n2) bits of certified ran-
domness (ostensibly generated via quantum means). In a breakthrough paper, Vazirani and Vidick
[4] give a protocol that takes n bits of seed randomness and stretches it to exp(n) random bits. A
striking property of the Vazirani-Vidick (VV) protocol is that its correctness does not depend on
correctness of quantum mechanics! That is, as the referee operating the VV protocol, you do not
need to believe in the validity of quantum mechanics in order to believe that the device outputs
are random – you only need to trust that it is possible to prevent the devices from communicating,
for example by spatially separating the boxes.

The natural next question is: how much randomness expansion can we get? Doubly exponential?
An unbounded amount? We address the question of upper bounds on randomness expansion
protocols in this work.

1.1 Our results

We obtain partial answers to the upper bound question, and also present a variant of the Vazirani-
Vidick protocol that achieves better parameters. We refer to the two devices as Alice and Bob.

Upper bounds. We show that in restricted setting where the protocol is nonadaptive, performs
its tests in a special “product” fashion, and can be passed by Alice and Bob with probability 1, the
amount of certifiable randomness is at most doubly exponential in the seed length. This is proved
by exhibiting a strategy for Alice and Bob to cheat and pass the tests without expanding the seed
randomness by more than a doubly exponential amount.

We then consider a specialized protocol that is again nonadaptive, performs “product” tests, and
the tests specifically are for the CHSH game. We prove that in the setting where Alice and Bob are
not restricted to quantum strategies, but can use more general non-signaling strategies, they can
employ a cheating strategy so that the protocol can only guarantee singly exponential randomness
expansion!

This latter result shows that natural generalizations of the Vazirani-Vidick protocol, along with
its analysis, are essentially optimal. This is because the VV analysis only use the fact that Alice
and Bob are employing non-signaling strategies. Any asymptotic improvement to the randomness
expansion of a VV-like protocol would necessarily require that quantum arguments be used!

Lower bounds. We present a partial converse to the first upper bound, by exhibiting a random-
ness expansion protocol that is nonadaptive, performs “product” tests, and can be passed by Alice
and Bob with probability 1. In particular, we modify the VV protocol so that it uses another
quantum game, called the Magic Square game, instead of the CHSH game. This protocol also
guarantees singly exponential randomness expansion, but achieves better parameters. In partic-
ular, this protocol achieves constant rate (defined in Section 2), while the VV protocol has rate
Ω(1/polylog(n)), which tends to 0 as the seed length grows. The protocol and analysis also benefit
by being cleaner.
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1.2 Organization

We begin by giving some definitions in Section 2. Then, we present our upper bounds on spe-
cializations of non-adaptive protocols in Section 3. We then give our simplified variant of the
Vazirani-Vidick protocol in Section 4. Finally, we conclude with some open problems.

2 Definitions

Definition 2.1. A nonadaptive protocol with m rounds is a game with two non-signaling players
A and B and a referee R. At the beginning of the game, the referee has a random seed s ∈ {0, 1}n.
He uses a pair of question functions (QA, QB) to generate the input sequences ~X = QA(s), ~Y =
QB(s). For each round i ∈ [m] in the game, the referee will give inputs ~Xi and ~Yi to A and B
respectively, and collect their respective outputs Ai, Bi ∈ Σ. At the end of the protocol, the referee
will apply a test R( ~X, ~Y , ~A, ~B) to decide whether to accept or reject. The output of the protocol is
the pair of sequences ( ~A, ~B).

Definition 2.2. Let N = 2n. For a pair of question functions Q = (QA, QB), define the input
matrix M(Q) ∈ (Σ× Σ)m×N to be such that M(Q)i,s = (QA(s)i, QB(s)i).

Without loss of generality, we can imagine that the referee selects the input sequences ~X and ~Y by
choosing a column of M(Q) uniformly at random.

Definition 2.3 (Min Entropy). Let X be a discrete random variable. The min-entropy of X,
denoted H∞(X), is defined as minx log(1/Pr[X = x]).

Definition 2.4 (Non-signaling distribution). A joint probability distribution p(A,B,X, Y ) over
random variables A,B,X, Y is non-signaling with respect to (A,X), (B, Y ) iff the following prop-
erties hold:

1. For all a ∈ Supp(A), x ∈ Supp(X), y ∈ Supp(Y ), p(a | x, y) = p(a | x).

2. For all b ∈ Supp(B), x ∈ Supp(X), y ∈ Supp(Y ), p(b | x, y) = p(b | y).

Definition 2.5 (Quantum distribution). A non-signaling distribution p(A,B,X, Y ) with respect
to (A,X), (B, Y ) is a quantum distribution iff there exists an d ∈ N such that a 2d-qubit shared

entangled state |ψ〉 ∈ C2d ⊗ C2d, and a set of measurement operators {Mx
a } on the first d qubits,

and {My
b } on the second d qubits, with the property that p(a, b | x, y) = 〈ψ|Mx

a ⊗M
y
b |ψ〉.

Let S be a strategy for A and B in a nonadaptive protocol. Let WIN(S) denotes the event that
R( ~X, ~Y , ~A, ~B) = 1, if A and B play according to strategy S.

Definition 2.6. A (c, s,m, f(n), ε)-non-signaling randomness expansion protocol is a non-
adaptive protocol with m rounds and n bits of seed randomness such that the following holds:

• (Completeness) There exists a non-signaling strategy S (not necessarily quantum) such that
if A and B play according to S, then

Pr[WIN(S)] ≥ c,
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• (Soundness) For every non-signaling strategy S, if Pr[WIN(S)] ≥ s, then H∞( ~A, ~B | ~X, ~Y ,WIN(S)) ≥
f(n).

Definition 2.7. A (c, s,m, f(n))-quantum randomness expansion protocol is a nonadaptive
protocol with m rounds and n bits of seed randomness such that the following holds:

• (Completeness) There exists a quantum strategy S such that if A and B play according to S,
then

Pr[WIN(S)] ≥ c,

• (Soundness) For every quantum strategy S, if Pr[WIN(S)] ≥ s, then H∞( ~A, ~B | ~X, ~Y ,WIN) ≥
f(n).

Definition 2.8 (Randomness expansion rate). Let P be a (c, s,m, f(n))-randomness expansion
protocol (either quantum or non-signaling). The rate of P is defined to be (f(n)− n)/m.

Informally, the rate of a randomness expansion protocol is a measure of how much “bit per buck”
you get out of the protocol. The higher the rate, the more randomness is produced on average per
round. This is an important quantity to consider, especially for those who are renting randomness
expansion boxes by the hour.

Definition 2.9. Consider a nonadaptive protocol where the referee’s test R is of a special form:
there exists a subtest T : Σ4 → {0, 1} and a function g : {0, 1}m → {0, 1} such that R( ~X, ~Y , ~A, ~B) =

g
(
T ( ~X1, ~Y1, ~A1, ~B1), ..., T ( ~Xi, ~Yi, ~Ai, ~Bi), ..., T ( ~Xm, ~Ym, ~Am, ~Bm)

)
. Call this a product protocol.

Definition 2.10. We now define a simplified product protocol in which g(~v) ≡ AND ~v =
∏
i vi,

so that R( ~X, ~Y , ~A, ~B) =
∏
i T ( ~Xi, ~Yi, ~Ai, ~Bi). Call this an “AND” protocol.

Definition 2.11 (CHSH game). The CHSH game is a two-player game with two non-communicating
players, Alice and Bob, who are given random inputs x, y ∈ {0, 1} respectively. Their task is to
produce outputs a, b ∈ {0, 1} such that a⊕ b = x ∧ y.

Definition 2.12. Consider a product protocol in which ~X, ~Y , ~A, ~B ∈ {0, 1}m, and T (X,Y,A,B) =
1⊕X ∧ Y ⊕A⊕B. Note that T (X,Y,A,B) = 1 if and only inputs X,Y and outputs A,B satisfy
the success criterion for the CHSH game. We will refer to such a protocol as a CHSH product
protocol.

3 Nonadaptive Upper Bounds

The following theorem gives a sense in which doubly exponential randomness expansion is a natural
upper bound on certain randomness expansion protocols.

Theorem 3.1. Let P be a (1, s,m, f(n))-quantum randomness expansion “AND” protocol. Then
f(n) ≤ |Σ|2n+1 · (2 log |Σ|).
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Proof. If m ≤ |Σ|2n+1
, then the theorem statement is trivially true. Suppose m > |Σ|2n+1

. Now
we present a cheating quantum strategy S′ that passes the referee’s test with probability 1, but
the output Shannon entropy is at most |Σ|2n+1 · (2 log |Σ|) (and hence the output min-entropy is
bounded by the same amount).

Since P has completeness 1, there exists a strategy S such that Pr[WIN(S) = 1]. In the background,
A and B will maintain a concurrent simulation of strategy S, where at each round i, A and B relay
the referee’s inputs Xi and Yi to strategy S, and secretly record the outputs Âi and B̂i determined
by S.

At each round i, A and B examine the input matrix M(Q). If M(Q)i,∗ = M(Q)j,∗ for some j < i
(i.e. the ith row of the input matrix is identical to a previous row), A and B will simply repeat the
outputs Aj and Bj , respectively – call these rounds the repeat rounds. Otherwise, A and B will
produce outputs Âi and B̂i according to strategy S – call these the honest rounds.

We claim that if A and B play according to this strategy, they will win with probability 1. It is
clear that for the honest rounds i, Pr[T (Xi, Yi, Ai, Bi) = 1] = 1. But this is also true in the repeat
rounds. Let i be such a round. Let j < i be the smallest such that M(Q)i,∗ = M(Q)j,∗. Note that
at round j, A and B played according to S, so Pr[T (Xj , Yj , Aj , Bj) = 1] = 1.

It follows that regardless of the value of the referee’s random seed, Xi = Xj and Yi = Yj . S′

mandates that Ai = Aj and Bi = Bj in this case. Thus, T (Xi, Yi, Ai, Bi) = T (Xj , Yj , Aj , Bj), so

Pr[T (Xi, Yi, Ai, Bi) = 1] = Pr[T (Xj , Yj , Aj , Bj) = 1] = 1. Thus Pr[
∏
i T ( ~Xi, ~Yi, ~Ai, ~Bi) = 1] = 1.

Finally, we show that the output Shannon entropy is at most |Σ|2n+1
. Let i be a repeat round. It

is clear that H(Ai, Bi | A<i, B<i, X, Y ) = 0, because Ai = Aj and Bi = Bj as random variables for
some j < i. For a honest round i, H(Ai, Bi | A<i, B<i, X, Y ) ≤ H(Ai, Bi) ≤ 2 log |Σ|.

Noting the dimensions of M(Q), we see that there can be at most |Σ|2n+1
distinct rows in M(Q),

and hence there at most |Σ|2n+1
honest rounds. By using the chain rule for Shannon entropy,

H(A,B | X,Y ) =
∑
i

H(Ai, Bi | A<i, B<i, X, Y )

=
∑

i honest

H(Ai, Bi | A<i, B<i, X, Y ) +
∑

i repeat

H(Ai, Bi | A<i, B<i, X, Y )

≤ |Σ|2n+1 · (2 log |Σ|).

We now note that the Shannon entropy of a random variable is an upper bound for the min-entropy
of a random variable, and the theorem statement follows.

Lemma 3.2. There exists a non-signaling strategy that wins a single CHSH game with probability
1.

Proof. Labeling the inputs to the game as X and Y respectively, imagine that the players A and
B select their outputs (A and B, resp.) according to the following distribution (which we will show
is non-signaling):

5



If X ∧ Y = 1 they select outputs (A,B) = (1, 0), or (A,B) = (0, 1) each with probability 1
2 . If

X ∧ Y = 0 they select ouputs (A,B) = (0, 0), or (A,B) = (1, 1), again each with probability 1
2 . It

now follows easily that, regardless of the values of A,B, X, and Y we have

p(A | X,Y ) = p(A | X) =
1

2

and

p(B | X,Y ) = p(B | Y ) =
1

2

Thus, the above strategy is non-signaling by definition.

Theorem 3.3. Let P be a (c, s,m, f(n))-non-signaling randomness expansion CHSH “AND” pro-
tocol. Then f(n) ≤ 22n+2.

Proof. By assumption R( ~X, ~Y , ~A, ~B) =
∏
i T ( ~Xi, ~Yi, ~Ai, ~Bi) =

∏
i

(
1⊕ ~Xi ∧ ~Yi ⊕ ~Ai ⊕ ~Bi

)
. We

will now give a strategy that can be used by the non-signaling players A and B to ensure that
R( ~X, ~Y , ~A, ~B) = 1 with probability 1. The strategy will have the additional property that all
of the output pairs ( ~Ai, ~Bi), except for at most 2n values of i, are deterministic functions of the
outputs (as random variables) of a particular set of 22n previous games. We will see that this proves
the desired result.

Let us consider the rows of the input matrix M(Q) ∈ ({0, 1}2)m×2n as vectors M(Q)i,∗ ∈ F2·2n
2 =

F2n+1

2 . Note that the input matrix M(Q), and all of its columns, are deterministic objects known
to A, B, and R before the protocol begins. Of course, R’s random seed determines which column
of M(Q) is chosen as input, and is known only to R at the beginning of the protocol. During the
course of the protocol non-signaling players A and B will keep track of dependencies among the
rows of M(Q) by updating a set I. At the beginning of the protocol I = φ. When A and B receive
the ith input, they first check to see if row M(Q)i,∗ is linearly indepedent (as a vector in F2n+1

2 )
from {M(Q)j,∗ : j < i}. If so, they will update I by adding the number i to it (note that A and B
can do this indepedently and without communicating; in this sense there are actually two sets I,
owned by A and B respectively, but these sets will always be identical since they are updated by
A and B in an identical manner).

Additionally, if M(Q)i,∗ is linearly indepedent from {M(Q)j,∗ : j < i}, A and B will use the

non-signaling strategy described in Lemma 3.2 to play the CHSH game with inputs ~Xi, and ~Yi
respectively (note that, while the rows of M do not depend on R’s random seed, the specific inputs
do; see Definition2.1, and Definition 2.2). This strategy produces outputs A and B and we know
that T ( ~Xi, ~Yi, A,B) = 1 ⊕ ~Xi ∧ ~Yi ⊕ A ⊕ B = 1 with probability 1. A and B then report A and
B respectively as their outputs to R for the ith round (so ~Ai = A and ~Bi = B). Before moving
on to the next round A and B now play a series of private games and store the outcomes without
reporting them to R. For every j ∈ I with j < i (starting from the smallest such j and proceeding
to the highest), and A and B will play the CHSH game using the non-signaling strategy defined in
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Lemma 3.2 with inputs ~Xi, ~Yj and store the outputs. We will denote A’s output for this game by

Aij and B’s by Bij . We know that, with probability 1, T ( ~Xi, ~Yj , A,B) = 1⊕ ~Xi∧ ~Yj⊕Aij⊕Bij = 1.

A and B perform the same process with inputs ~Xj and ~Yi as well, and denote their outputs Aji
and Bji respectively. After all of this is done, they move on to next input pair given by R.

Suppose A and B encounter a row M(Q)i,∗ of M(Q) that is linearly dependent on the rows
{M(Q)j,∗ : j < i}. It is easy to prove by induction that (with the current set I) the set

{M(Q)j,∗ : j ∈ I} forms an indepedent basis (over F2n+1

2 ) for {M(Q)j,∗ : j ≤ i}. Thus, there
exists a subset J ⊂ I such that M(Q)i,∗ =

∑
j∈JM(Q)j,∗, and it follows that, regardless of the

value of random seed chosen by R, ( ~Xi, ~Yi) =
∑

j∈J( ~Xj , ~Yj) = (
∑

j∈J
~Xj ,
∑

j∈J
~Yj). Knowing this,

A and B now wish to produce output values A and B respectively (without communicating), such
that

T ( ~Xi, ~Yi, A,B) = 1⊕ ~Xi ∧ ~Yi ⊕A⊕B = 1 (1)

⇐⇒ A⊕B = ~Xi ∧ ~Yi =
∑
j∈J

~Xj ∧
∑
j∈J

~Yj =
∑

(k,j)∈J2

~Xk ∧ ~Yj

To accomplish this, A outputs A =
∑

(k,j)∈J2 Akj and B outputs B =
∑

(k,j)∈J2 Bkj , where the
values of the summands have been previously stored as described above. We thus know that, for
each (k, j) ∈ J2 ⊂ I2

T ( ~Xk, ~Yj , Akj , Bkj) = 1⊕ ~Xk ∧ ~Yj ⊕Akj ⊕Bkj = 1 ⇐⇒ Akj ⊕Bkj = ~Xk ∧ ~Yj (2)

It follows that

A⊕B =
∑

(k,j)∈J2

Akj ⊕
∑

(k,j)∈J2

Bkj =
∑

(k,j)∈J2

Akj ⊕Bkj (3)

=
∑

(k,j)∈J2

~Xk ∧ ~Yj =
∑
j∈J

~Xj ∧
∑
j∈J

~Yj = ~Xi ∧ ~Yi

⇐⇒ T ( ~Xi, ~Yi, A,B) = 1⊕ ~Xi ∧ ~Yi ⊕A⊕B = 1

as desired.

Thus, by following this strategy for every rowM(Q)i,∗ ofM(Q) we have shown that T ( ~Xi, ~Yi, ~Ai, ~Bi) =

1 ⊕ ~Xi ∧ ~Yi ⊕ ~Ai ⊕ ~Bi = 1 for all i ∈ [m] with probability 1. It follows that R( ~X, ~Y , ~A, ~B) = 1
with probability 1. Furthermore, every output in the entire protocol is a deterministic function of
the set of outputs {Ai,j , Bi,j : (i, j) ∈ I2} (Here I denotes the value of the set I at the end of the
protocol after all the relevant indices have been added). Since this set contains exactly |I2| = |I|2
random variables, each of which has the range {0, 1}, the entire set can have entropy at most |I|2.
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It follows easily that H∞( ~A, ~B | ~X, ~Y ,WIN(S)) ≤ H( ~A, ~B | ~X, ~Y ,WIN(S)) ≤ H( ~A, ~B) ≤ |I|2.
Thus, we must have f(n) ≤ |I|2.

We now note that, since all of the rows of M(Q) lie in F2n+1

2 , which is a 2n+1-dimensional vector
space, any set of 2n+1 + 1 or more rows of M(Q) must be linearly dependent. It follows easily that
if, during the course of the protocol, I ever grows to contain 2n+1 indices, then it will never grow
further for the rest of the protocol. Thus, at the end of the protocol we have |I| ≤ 2n+1. It follows
that f(n) ≤ |I|2 ≤ 22n+2 and we are done.

Corollary 3.4. Let P be a (c, s,m, f(n))-non-signaling randomness expansion CHSH product pro-
tocol with c > 0. Then f(n) ≤ 2n+1.

Proof. In the proof of Theorem 3.3 we saw that A and B a have non-signaling strategy that allows
them to pass each inidividual CHSH test with probability 1, and produce at most 2n+1 bits of
entropy in their outputs. We now want a similar proof which allows A and B to win against any
CHSH product test (rather than just the AND) test. Suppose that the test is given by

R( ~X, ~Y , ~A, ~B) = g
(
T ( ~X1, ~Y1, ~A1, ~B1), ..., T ( ~Xi, ~Yi, ~Ai, ~Bi), ..., T ( ~Xm, ~Ym, ~Am, ~Bm)

)
for some function g : {0, 1}m → {0, 1}. Since c > 0 we know that R cannot reject every vector of
wins and losses, so there must exist some v ∈ {0, 1}m such that g(v) = 1.

Since g is known to everyone before the beginning of the protocol, B can find such a v determin-
istically before the start of the protocol (for example, choose the smallest v, comparing binary
strings as integers, such that g(v) = 1). With this v, we will now have A and B pursue exactly the
same strategy that they did in Thoerem 3.3 except that, just before reporting the answer to the ith

round, B will look at vi. If vi = 1 then B will report the answer he has measured using the strategy
from Theorem 3.3 (and we will thus know that T ( ~Xi, ~Yi, ~Ai, ~Bi) = 1). If vi = 0 then B will report
the opposite of the answer he would have if he had used the strategy from Theorem 3.3, and we
will know that T ( ~Xi, ~Yi, ~Ai, ~Bi) = 1 + 1 = 0.

Playing this way, it is clear that at the end of the protocol, we will have

R( ~X, ~Y , ~A, ~B) = g
(
T ( ~X1, ~Y1, ~A1, ~B1), ..., T ( ~Xi, ~Yi, ~Ai, ~Bi), ..., T ( ~Xm, ~Ym, ~Am, ~Bm)

)
= g(v) = 1

and thus A and B will pass R’s test with probability 1. Furthermore, since A and B have only
applied determinisitc functions (depending only v which was known to all before the algorithm) to
the outputs that they would have produced using the strategy from Theorem 3.3, we see that their
outputs in this strategy can still only have 2n+1 bits of entropy. It follows that f(n) ≤ 2n+1.
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4 A Randomness Expansion Scheme based on the Magic Square
Game

4.1 Introduction

In the preceding section, we saw an argument for why randomness expansion protocols that 1) have
perfect completeness, 2) use nonadaptive inputs, and 3) check that the boxes A and B win all of
the rounds – which we formally defined to be quantum randomness “AND” protocols – are subject
to a doubly-exponential upper bound on the randomness expansion. In other words, if the protocol
is of the form described, and only uses n bits of seed, there is a strategy for the boxes to pass the
protocol and produce no more than exp(exp(O(n))) bits of min-entropy.

We now show a partial converse, that there exist randomness expansion schemes of this form.
While our scheme does not match the upper bound, it still produces an exponential amount of
randomness. We modify the Vazirani-Vidick (VV) protocol to perform tests based on the Magic
Square Game, and stretches n seed bits to produce exp(O(n)) bits of min-entropy. The VV
protocol tests are based on the CHSH game, which cannot be won perfectly, even by quantum
players. Consequently, the VV protocol has to break up the rounds into blocks, and test that the
CHSH correlations are satisfied within each block, that is, the players won ≈ 85% of the rounds in
each block. Ultimately, they have a protocol with O(` log2 `) rounds, using Θ(log `) bits of seed,
that is guaranteed to produce Ω(`) bits of min-entropy, so the rate is Ω(1/polylog(`)).

The Magic Square-variant of the VV protocol achieves much better rate: it runs in O(`) rounds
using Θ(log `) bits of seed, producing Ω(`) bits of entropy, so we achieve Ω(1) rate for the protocol
– much more “bit for our buck”! Furthermore, the analysis of the Magic Square variant is slightly
cleaner than the CHSH variant.

4.2 The Magic Square Game

We describe the Magic Square game, also known as the Mermin-Peres magic square game.

Consider a 3 × 3 matrix, and suppose that one is asked to fill in each entry with 1 or 0, with the
constraint that each row must have even parity and each column must have odd parity. Clearly,
there is no such assignment that satisfies all the constraints, because while the row constraints
imply that the sum of the entries has even parity, while the column constraints imply that the sum
has odd parity, a contradiction.

Now consider the following 2 player game: the referee chooses an x ∈ [6] uniformly at random,
interpreted as choosing a row or column of a 3× 3 matrix at random. Then, the referee chooses a
y ∈ [3]× [3] that corresponds to a random entry in the row/colum x. For example, conditioned on
x = 1, then y is uniform over the set {(1, 1), (1, 2), (1, 3)}, the entries in the first row. We will call
this the Magic Square input distribution.

The referee sends x to Alice, and solicits Alice for an assignment a ∈ {0, 1}3 to the entries in
that row/column. Simultaneously, the referee sends y to Bob and solicits Bob for an assignment
b ∈ {0, 1} to entry y. The referee checks that Alice’s answer satisfies the parity constraint, and
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Alice’s answer is consistent with Bob’s.

From the foregoing discussion, it is easy to see that there is no classical strategy for Alice and Bob
to successfully pass the referee’s test with probability 1; in fact, the best classical strategy wins
with probability at most 17/18. However, there is a quantum strategy for Alice and Bob to win
with probability 1. We refer the reader to [2] for details on this quantum strategy.

4.3 Simplifying the VV protocol

We now describe a randomness expansion scheme based on the Magic Square game. The Magic
Square input distribution over [6] × ([3] × [3]) is the one described in the foregoing section. For
Alice’s answer a ∈ {0, 1}3 and Bob’s answer b ∈ {0, 1}, the Magic Square win condition R(x, y, a, b)
is satisfied iff a satisfies the parity condition (depending on whether x corresponded to a row or a
column) and a is consistent with b.

Magic Square Randomness Expansion Protocol

1: Let `,∆ be given as input, and let m = ∆`.
2: Choose T ⊆ [m] uniformly at random by selecting each position independently with probability

1/`.
3: for i = 1 . . .m do
4: if i ∈ T then
5: Choose x, y from the Magic Square input distribution.
6: Distribute x to A and y to B.
7: Collect outputs a ∈ {0, 1}3, b ∈ {0, 1} from A and B, respectively.
8: else
9: Set x = y = 1 and distribute to A and B.

10: Collect outputs a ∈ {0, 1}3, b ∈ {0, 1} from A and B, respectively.
11: end if
12: If the Magic Square win condition is not satisfied, abort.
13: end for
14: If the protocol has not aborted, accept.

Call the rounds in T as “Bell rounds”, ones where the inputs to the boxes are randomized. This
protocol uses O(∆ log `) bits of randomness. We will prove that this protocol generates Ω(`) bits of
min-entropy. The improvement in the randomness rate over the original VV protocol comes from
the fact that the input sequences consist of blocks of size Ω(log2 `) (and their test checks that the
players won ≈ 85% of the rounds within each block), but they still prove that the output has Ω(`)
bits of entropy, so their randomness rate goes to 0 with `.

Theorem 4.1. There exists a constant C > 1 such that the following holds. Let ε > 0. Set
∆ = 103dlog(1/ε)e and ` = Cn. Suppose A and B are two non-signaling players that execute Magic
Square Randomness Expansion protocol. Then,

• Either Hε
∞(B |WIN) ≥ n,
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• Or Pr[WIN] ≤ ε,

where B denotes the output of B in the protocol, and WIN denotes the event that the Magic Square
win condition is satisfied for all rounds.

The proof of this theorem closely mirrors the analysis in the VV paper. We briefly sketch the
argument. It proceeds by contradiction: suppose that the boxes A and B were able to pass the
protocol with probability greater than ε but the output min-entropy is small. Then, it must be
that there is a Bell round i0 where the output of B in round i0 is nearly deterministic, conditioned
on some past values. This follows from Claim 6 in the VV paper:

Claim 4.2 (Claim 6 in VV). There exists a constant C > 1 such that the following holds. Let n
be such that m = C∆n. Let 2−Cn < ε < 1/5. Suppose that the boxes utilize a strategy S to play
the Magic Square protocol, and that 1) Hε

∞(B |WIN) ≤ n and 2) Pr[WIN] ≥ ε. Then for all large
enough n there exists a round i0 that is a Bell round and an output sequence b ∈ {0, 1}∗ of B such
that the following holds:

• b is a possible winning output sequence of B:

Pr[B = b,WIN] > 0,

• B’s output in the i0th Bell round is essentially deterministic:

Pr[Bi0 |WIN<i0 , B<i0 = b<i0 ] ≥ 0.99,

• The WIN condition is satisfied with high probability in the i0th Bell round:

Pr[WINi0 |WIN<i0 , B<i0 = b<i0 ] ≥ 0.9,

where Bj denotes the output of B at round j, B<j denotes the output of B up to round j, WINj

denotes the event that the Magic Square win condition is satisfied for round j, and WIN<j denotes
the event that the Magic Square win condition is satisfied up to and including round j − 1.

We now reduce to a particular guessing game, in which two non-signaling players Clara and David
receive random inputs, and Clara has to guess David’s input. Given that there is a “nearly deter-
ministic” round i0 (conditioned on some past values) in the Magic Square protocol, we devise a
strategy for Clara to guess David’s input with probability better than chance, which violates the
non-signaling assumption on Clara and David. This will establish Theorem 4.1.

Before describing the reduction itself, we describe the guessing game in more detail.

4.4 The Guessing Game

The guessing game is as follows: Clara and David are non-signaling players, and are given inputs
x and y from the Magic Square input distribution. They both win if Clara outputs David’s input.

11



Clearly, the maximum winning probability is 1/3: Clara’s best strategy is to randomly guess an
entry in her given row.

The following is an adaptation of Lemma 5 in the VV paper to the Magic Square game, showing
that the conditions provided by Claim 4.2 are enough to allow Clara and David to beat the guessing
game.

Claim 4.3. Let β, γ > 0 be such that β + γ < 1/5. Suppose a given pair of boxes A and B taking
inputs x, y from the Magic Square input distribution produce outputs a ∈ {0, 1}3, b ∈ {0, 1}. Suppose
the following conditions hold:

1. B’s output is nearly deterministic: there exists a b∗ ∈ {0, 1} such that Pr[B = b∗] ≥ 1 − γ;
and

2. The boxes output satisfy the Magic Square win condition with high probability: Pr[WIN] ≥
1− β.

Then there is a strategy for two non-signaling players Clara and David, using boxes A and B, to
win the guessing game with probability strictly greater than 1/3.

Proof. Consider the following strategy: On input x, Clara runs A on x and records its output as
a = (a1, a2, a3). On input y, David runs B on y (and doesn’t need to record any output). Clara
then uniformly selects an index i such that ai = b∗, and outputs the coordinate of the ith entry in
the row/column denoted by x (i.e. outputs an element of [3]× [3]). If there is no such index, Clara
then aborts the protocol.

Without loss of generality, assume that the Magic Square win condition is the following: the parity
of a row must be 1⊕ b∗ and the parity of a column must be b∗. Condition on B = b∗ and WIN. If
x corresponds to a row, it must be the case that two of the three ai’s equal b∗. If x is a column,
it must be the case that either one or three ai’s equal b∗. In that case, with probability at least
(1/2)(1/2 + 1/3) = 5/12 Clara will guess y correctly. Taking into account the conditioning,

Pr[Clara guesses y] ≥ Pr[Clara guesses y | B = b∗,WIN] · Pr[B = b∗,WIN]

≥ 5

12
· (1− β − γ)

> 1/3,

where the last inequality follows from our condition on β and γ.

We finish by showing the reduction to the guessing game.

4.5 Reduction to the guessing game

Suppose that there is a strategy S for the Magic Square protocol where the output entropy is
low but A and B win with non-negligible probability. Take an output sequence b∗ ∈ {0, 1}∗ with
the properties promised by Claim 4.2. The players Clara and David can take the boxes A and B
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respectively, and repeatedly simulate the Magic Square randomness expansion protocol up to and
including round i0 − 1, until the conditions WIN<i0 and B<i0 = b<i0 are met. This is possible
because Pr[B = b∗,WIN] > 0.

Once they have achieved this state, the boxes A and B are now primed for use in the guessing game.
Clara and David will abscond with the primed boxes A and B and separate themselves. They then
play the guessing game above. Observe that the conditions of Claim 4.3 are met: since i0 is a Bell
round, A and B will receive inputs from the Magic Square input distribution. Furthermore, b∗ is a
nearly deterministic output sequence, the boxes win with high probability, and β+γ < 0.11 < 1/5.

Then, by Claim 4.3, Clara and Bob will win the guessing game with impossible probability. Thus,
Theorem 4.1 holds.

5 Open Questions

The most obvious open problem is to prove upper bounds for more general protocols, say, all non-
adaptive ones, without assuming anything about the nature of the referee tests. An even more
ambitious goal would be to prove upper bounds for adaptive protocols, where the inputs to the
devices might depend on the players’ outputs. It seems completely plausible that this might be a
means of attaining infinite expansion!

However, tackling these problems seem to require techniques beyond those presented here, which
crucially use the fact that the tests are structured. It appears that more general methods, such as
information theoretic arguments, will be needed.
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