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1. Introduction and Background

While Quantum Computation is easily motivated by the interesting computational problems that
can be solved (both cryptographically and otherwise) that currently cannot be solved with a classical
computer, other advantages can be obtained by leveraging quantum effects. For example, Quantum
Key Distribution (QKD) offers a cryptographically secure method of distributing keys that does not
rely on computational assumptions for security.[BB84] This recognition opened the door to many
other quantum protocols that provide unconditional security based on the laws of physics rather
than conjectures on computational hardness. One exciting example of such an application is the
idea of Universal Blind Quantum Computation.[ABE08][BFK09]

2. Blind Quantum Computation as a Quantum Interactive Proof Model

One initial discussion of Blind Quantum Computation is due to Aharonov, Ben-Or, Eban.[ABE08]
In analyzing quantum authentication schemes, they also recognized that if Alice has n qubits in
state ρ, applies random Pauli operators Pn to each qubit, and then sends the qubits to Bob, Bob
can only observe a maximally mixed state, since he has no knowledge of which Pauli operators have
been applied.

If Bob subsequently applies some operation U (such as X⊗n or Z⊗n), then there is a known
commutation relation with the Pauli operators. Therefore, when Bob returns the modified state
back to Alice, Alice can use these relations to determine a new set of Pauli operators P ′n that decrypt
the state UρU †.

Unfortunately, in general, the commutation relations between arbitrary U and random Pauli
matrix is not easy to calculate. The blind algorithm is described in general having Alice retrieve
the encrypted data, decrypt it, run the computation herself, re-encrypt the data, and return it
to Bob. Effectively, she only uses Bob as a quantum memory. As a result, for more complicated
algorithms, the algorithm becomes less satisfying.

3. Measurement-Based Quantum Computation (MBQC)

Although the Quantum Interactive Proof model demonstrated the capabilities of universal blind
quantum computation, there wasn’t a clear transition between that model and an actual physical
system. This perspective arose from an implementation using Measurement-Based Quantum Com-
putation (MBQC).[BFK09] Before discussing how this implementation works, it is useful to briefly
review MBQC.

MBQC is an alternative model of quantum computation initializes a lattice of qubits (typically a
“Cluster State”), and then uses only measurements to enact a universal quantum computation.[RB01]
The initial state preparation does not depend on the computation, and therefore there all of the
entanglement is performed at the beginning of the computation.

3.1. MBQC and Quantum Teleportation. MBQC is based on the principles of quantum tele-
portation. Gottesman and Chuang recognized that, with the correct measurement basis, quantum
teleportation could realize any primitive, and was therefore universal.[GC99] This work was ex-
tended by Raussendorf and Briegel in 2001 who recognized that all of the entangling operations
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could be performed prior to the beginning of a computation (creating cluster states), and then using
only measurements to enact arbitrary circuits based on the principles of teleportation.[RB01]

Prior to studying the actual Universal Blind Quantum Computation protocols with MBQC,
it is important to understand how local Pauli operators interact with the MBQC computational
model. This will give rise to intuition regarding why MBQC was the initial, natural choice for
blind computation, and it will also help separate and identify which of the properties of MBQC are
critical for blind quantum computation.

In the standard description of quantum teleportation, one always measures in the computational
basis. By changing the basis of measurement, one effectively applies a single-qubit rotation about
the Z-axis (Zθ). This basis change is represented as several gates and a measurement grouped in the
dashed box below. Note that an X rotation is easily obtained by a similar construction. It can be
shown that, once X and Z rotations can be achieved, any single-qubit gate can be obtained.[CLN05]

|ψ〉 • Zθ H c

|0〉 ZcZθ|ψ〉
The teleported qubit also has a residual Pauli operator that depends on the result of the classical

measurement. Instead of directly applying a classically controlled Pauli operator (the Z gate in the
above example), MBQC adapts the subsequent measurements to incorporate and correct for these
Pauli operators without explicitly applying the correcting operator. This is shown below.

In MBQC, one knows the result of the previous measurement which give rise to a and b below.
By adapting the rotation to compensate for these operators, one can “commute” the local Pauli
operator so that the resulting qubit is the rotated qubit multiplied by some new set of Pauli operators
that depend both on the previous qubit and the classical measurement.

XaZb|ψ〉 • Z(−1)aθ H c

|0〉 XaZb+cZθ|ψ〉
This is one of the primary reasons why MBQC is a natural choice for blind computation. There

is a natural way of dealing with random Pauli operators applied to each qubit, because the random
Pauli operators were already a part of the original computational protocol.

With some circuit identities, both the Z and X can be converted into circuits with the initial
state being |+〉 and only Controlled-Z’s between qubits. It can then be shown that a sequence of
qubits initialized in this manner can perform arbitrary single-qubit rotations. Given that a qubit is
consumed at each step, the circuit model becomes rather unwieldy quickly, so MBQC computations
are typically represented as follows:

α1 β2 γ1

α2 β2 γ2

In the above representation, αx and γx are rotations about the Z axis, and βx is a rotation about
the X axis. The lines between qubits represent the controlled-Z applied before the computation
begins. A computation starts with the input data in the two far left qubits. It then measures α1 and
α2, and the data for each qubit propagates to the right. In general, each horizontal line represents
a single qubit propagation, and each vertical connection represents qubit interaction.
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We already demonstrated that single qubit gates could be assembled. Now, to demonstrate
universality, we only need to demonstrate how to construct a CNOT gate using the above method.
This can be recognized as the following sequence:

I Zπ/2 I I

Xπ/2 I Xπ/2 I

Using CNOT and the arbitrary X and Z rotations, we can exactly compute any quantum func-
tion. However, it will be more useful to consider restricting X and Z rotations to nπ/4, (n ∈ Z)
increments. In this case, we will show that MBQC is approximately universal.

4. Universal Blind Quantum Computation with MBQC

In the previous section, we demonstrated that MBQC is universal. We also showed several
interesting properties about how MBQC deals with local Pauli operators that arise from the nature
of quantum teleportation.

Now, let us consider how MBQC can be adapted for a blind quantum computation. The model of
such a computation is again where the “client” has limited quantum resources and sends instructions
to a “server” encoding the gates to be executed for the desired quantum algorithm. The server then
executes the algorithm and returns the result to the client.

For a computation to be fully blind, the quantum server must not know:

• The input data
• The operations being performed
• The output data
• Any intermediate data

This means that any information that the quantum server receives must be decorrelated with the
all of the actual computational data. Therefore, the above list corresponds to:

• The input quantum state sent by the client must be hidden
• The operation instructions sent by the client must be hidden
• The output quantum state sent back to the client must be hidden
• Any classical data collected by measurements during an intermediate step must have zero

correlation to any data or operation being performed.

However, there is some form of data that is always leaked. These are the bounds of the com-
putation. Any computation requires some physical resources from the server. In this case, those
resources are physical quantum memory and number of operations. This information upper-bounds
the complexity of the computation that the client wanted to execute. In the case of blind MBQC,
this will has a numerical representation in terms of the size of the initial state on which the com-
putation is performed. In fact, the number of operations is the x-dimension of the state, and the
quantum memory is the y-dimension.

Now, consider the MBQC operation. The initial step of preparing states as |+〉⊗N does not
depend on the computation and therefore gives the server no information on the computational
structure or any data. Next, applying controlled-Z operations between states also does not depend
on the computation or data.

However, in an MBQC based on a cluster state, the computer must “delete” unwanted states.
For example, the above CNOT operation could not be implemented on a cluster state without
having ancillary qubits that were deleted before the computation ran. This is described in the
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original paper by Raussendorf and Briegel.[RB01] This initialization step reveals the structure of
the computation, and is therefore not blind.

4.1. The Brickwork States. To resolve this issue, Broadbent, Fitzsimons, and Kashefi used a
“brickwork” state.[BFK09] This state is similar to a cluster state, but having the following pattern:

The above pattern has a “universal unit cell.” The problem with the cluster state was that
different operations had different “shapes” on the computational surface. In the brickwork state,
a universal set of qubit gates can be created that all have the same “shape” on the surface. This
“universal unit cell” is shown below:

The brickwork state then becomes:

U U U

U U

U U U

U U

Where U is a the universal unit cell. The universality of U is shown by demonstrating that U
can generate CNOT,H,Zπ/4.
H is given by:

Zπ/2 Xπ/2 Zπ/2 I I

I I I I I

Zπ/4 is given by

Zπ/4 I I I I

I I I I I

CNOT is given by

I I Zπ/2 I I

I Xπ/2 I Xπ/2 I

Thus, U is universal. Note that by symmetry, one can change the CNOT orientation and change
H or Zπ/4 to act on the second qubit trivially.

We have now demonstrated that by using the brickwork state, one can perform an arbitrary
computation without running into the issue seen with the cluster state where one had to delete
qubits based on the structure of the computation.
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4.2. Randomized Initial Phase for Qubit Operation Decorrelation. Now, consider the sec-
ond requirement for blindness: that that all operations being performed must be decorrelated with
instructions given by the client. We have demonstrated how to initialize the state in a blind manner,
but now we must consider how to decorrelate the adaptive measurements required for MBQC from
the operations that they perform.

In the example of the Z rotation above, the angle of the measurement basis determined the
amount of rotation of the operator. This measurement basis must be transmitted to the server by
the client. (The basis is some nπ/4 for n ∈ Z). Therefore, the server can determine the operation
that is being performed.

The second major innovation of Broadbent, Fitzsimons, and Kashefi was to recognize that an
arbitrary Z rotation would commute through the teleportation process, adding to the rotation
resulting from the server’s measurement basis. This is demonstrated below. Note that |+α〉 =
(|0〉+ eiα|1〉)/

√
2.

XaZb|ψ〉 • Z(−1)aθ H c

|+α〉 • XaZb+cZθ+α|ψ〉
The result is similar for X rotations. Now, the |+α〉 initialized qubit is a part of the initial

brickwork state. If this state is supplied to the server by the client with a random α ∈ nπ/4 for
n ∈ Z, the server cannot measure the value of α. The client then knows the offset that this phase
will give to the rotation induced by the measurement basis. If the client sends a measurement
basis rotation θ to the server that results in the overall qubit rotation being θ′, then θ + α = θ′.
For universal quantum computation, θ′ will be in nπ/4 for n ∈ Z. Therefore, θ is completely
decorrelated from θ′, since α is uniformly randomized over this set. If a different randomized α is
chosen for each step of the MBQC, then each operation is completely decorrelated from the client’s
instructions to the server about measurement basis.

Since the server cannot know whether or not a given MBQC step applied a rotation to the qubit
or not, it also cannot know what action a single universal cell has taken. Therefore, both single and
multi-qubit gates are decorrellated.

4.3. Local Paulis for Qubit State Decorrelation. Finally, the server must be blind to the
actual qubit registers. The input, intermediate, and output registers all must be considered. We
discussed earlier that the MBQC method automatically compensates for arbitrary Pauli operators
acting on each of the qubits, and these operators depend on the result of a random measurement.

Since the client is deciding how to measure the qubit based on the classical measurement, the
client can choose a random r ∈ 0, 1, and use this to decide to rotate the measurement basis by
π, which would result in a bit flip of the classical measurement. The client would incorporate this
choice into the knowledge of the final qubit state, but there is no way for the server to determine
what choice was made. This is demonstrated below:

XaZb|ψ〉 • Z(−1)aθ + rπ H c

|+α〉 • XaZb+c+rZθ+α|ψ〉
The construction is similar for the X rotation. In this case, the result of the classical measurement

is now completely decorrelated from the effect on the local Pauli operator acting on the final qubit.

4.4. Universal Blind MBQC Protocols. Using the above principles, Broadbent, Fitzsimons,
and Kashefi constructed a protocol for Universal Blind Quantum Computation using MBQC.[BFK09]

(1) Client’s preparation
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(a) For each qubit that will be in brickwork state, prepare |ψ〉 = |+α〉 = (|0〉+ eiα|1〉)/
√

2
for α = nπ/4. Send to the Server.

(b) For each input qubit |ψ〉, apply XaZθ|ψ〉 for random θ = nπ/4 and a = 0, 1. Send to
the Server.

(c) For each output qubit, prepare |+〉 = (|0〉+ |1〉)/
√

2. Send to the Server
(2) Server’s preparation.

(a) Create entangled state according to the brickwork state.
(3) Interaction and measurement

For each qubit in the brickwork state: (indexed by (x,y)).
(a) Client computes a, b, (where the final state at (x,y) is XaY b|ψ〉(x,y)), with the special

case of XaZθ|ψ〉(0,y) for input qubits.

(b) Client computes θ = (−1)aθ′−α+rπ for desired rotation θ′ and random r ∈ 0, 1. Sends
to Server.

(c) Server measures in basis (
∣∣+θ(x,y)

〉
,
∣∣−θ(x,y)〉). Sends result to Client.

(d) If r chosen above is 1, then Client flips resulting classical bit.
(4) Output Correction

(a) Server sends all qubits in last layer to Client
(b) Client performs Pauli corrections for each based on each qubit’s associated a and b

values.
BFK09 use the following definition for blindness.

Definition. Let P be a quantum delegated computation on input |ψ〉 implementing function U |ψ〉.
BFK09 defines P as blind while leaking at most L(|ψ〉) if, on the client’s input |ψ〉 and function U ,
the following two properties hold:

(1) The distribution of the classical information obtained by the server in P is independent of
|ψ〉.

(2) Given the distribution of classical information obtained above, the state of the quantum
system obtained by the server in P is fixed and independent of |ψ〉.

They then proved the blindness of the protocol using the definition as follows:

Proof. First, recognize that due to the use of the brickwork state, no information is leaked by the
shape of the computation or the initial state.

To show the independence of the server’s classical information, consider the value of θ sent to the
server by the client. In the protocol, θ = (−1)aθ′ − α + rπ. However, α is uniformly random, so θ
must be decorrelated from θ′.

Next, consider the server’s knowledge of the quantum state given the outcome of the measurement
of each qubit. Because r ∈ 0, 1 is chosen randomly, for a given θ and measurement result, one of
the following has occurred with 50% probability.

(1) r = 0: Resulting |ψ〉 = 1/
√

2(|0〉+ ei(θ+α)|1〉)
(2) r = 1: Resulting |ψ〉 = 1/

√
2(|0〉 − ei(θ+α)|1〉)

Since each of these have 50% probability, summing these terms results in the maximally mixed
state. This holds regardless of the qubit being measured, so the system remains in a completely
mixed state, which is fixed and independent of θ′.

�

4.5. Protocol Variations. Although the protocol above has been proven to be blind, there are
no implications yet for either fault-tolerance or authentication. BFK09 describes a variation of
the above protocol to incorporate both of the above concepts. At a high level, this is done by
using traditional fault-tolerant codes and computation schemes on top of the blind protocol. Not
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surprisingly, because we have shown that the blind model above is universal, it can also simulate
fault-tolerant circuits.

Authentication is achieved by adding trap quantum wires to the computation. For each logical
qubit, a certain number of trap wires are added that are not involved with the primary computation.
However, given that the server is blind to the operations being performed, it cannot tell which wires
are trap wires and which aren’t. This way, if the server interferes with the computation in any way,
the client can detect the interference with some probability.

Do note that the client cannot tell the difference between a server’s malicious interference and
errors due to other non-malicious reasons. However, with enough trap wires, the client can measure
the approximate error rate. The client then establishes some threshold above which he/she will
reject the computation regardless of the nature of the errors.

5. Ancilla-Driven Blind Quantum Computation

In the previous section, we described how Universal Blind Quantum Computation could be per-
formed with MBQC. We analyzed what were the critical aspects of the Blind Quantum Computation
protocol that allowed for the blindness property to hold.

We are now interested in investigating how Universal Blind Quantum Computation would work in
a standard circuit model. Although these two models are equivalent, and indeed one can write out
a circuit interpretation of any MBQC computation, we are interested in less trivial transformations
of the blindness properties to the circuit model.

With the above analysis, we recognize that one crucial component of blindness is breaking all
operations down into X and Z rotations. This way, local Pauli operators commute in a known fash-
ion. In addition, using an ancillary qubit to add a random rotation allows the client to decorrelate
the measurement basis instructions from the actual rotation.

The key thing to recognize is that these features are not unique to quantum teleportation. Instead,
consider a phase kickback circuit of the form below.

The Z rotation circuit is given:

XaZb|ψ〉 • Z(−1)aθ+(−1)(a+c)α/2+rπ XaZ(b+r)Zθ+α|ψ〉

|+α〉 c

The secondary qubit has a randomized phase exactly as in the form describe for MBQC. In this
case, however, instead of teleporting the qubit data onto the new qubit, we simply kick the phase
back onto the original qubit. Since we are performing a Z rotation, the local X and Z Paulis affect
the circuit in a similar fashion with one notable change. Now the classical measurement affects how
the phase is added to the state, rather than changing the locally applied Pauli operator.

The circuit for X rotation is similar:

XaZb|ψ〉 H • Z(−1)bθ+(−1)(b+c)α/2+rπ H X(a+r)ZbXθ+α|ψ〉

|+α〉 c

When we switch from a teleportation-based rotation mechanism to a phase kickback, a number
of results manifest. First, since there is no teleportation, the information remains on the original
qubit. Therefore, a sequential computation is now better represented by the circuit model, rather
than MBQC. Each operation consumes a qubit from some external reservoir, and the universal
operator on 2 qubits would now be:
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Zα1 Xβ1 Zγ1 • •

Xβ2 • Xγ2 •
The proof is similar to the proof of universality for the universal operator for the brickwork

MBQC case. A complete circuit has a similar format to the brickwork state described in MBQC,
except now the horizontal lines are indeed qubit lines, and each operator is a gate performed on
that qubit.

A more subtle result of switching to a phase-kickback mechanism arises from the meaning of the
classical measurements. As mentioned above, the classical measurement no longer indicates if a
Pauli operator has been modified. It indicates whether the phase of the second qubit was added or
subtracted from the phase of the first.

We can now describe a complete protocol using these new mechanisms:
(1) Client’s preparation

(a) For each input qubit |ψ〉, apply XaZθ|ψ〉 for random θ = nπ/4 and a = 0, 1. Send to
the Server.

(2) Interaction and measurement
For each rotation in each universal gate sequence in the circuit.

(a) For qubit y at step x, Client computes a, b, such that the qubit is in XaZb|ψ〉, with the
special case of XaZθ|ψ〉(0,y) for input qubits.

(b) Client prepares |ψ〉 = |+α〉 = (|0〉+ eiα|1〉)/
√

2 for α = nπ/4. Send to the Server as the
ancilla qubit.

(c) Server performs CNOT as shown in the circuits below, measures ancilla qubit, and
reports result c to the Client.

(d) Client computes θ = (−1)aθ′+ (−1)cα+ rπ for desired rotation θ′ and random r ∈ 0, 1.
Sends to Server.

(e) Server completes rotation and remaining circuit operations as shown above.
(f) If r chosen above is 1, then for Z rotation, client flips qubit’s b value, for X rotation,

client flips qubit’s a value.
(3) Output Correction

(a) Server sends all qubits in last layer to Client
(b) Client performs Pauli corrections for each based on each qubit’s associated a and b

values.
We can prove blindness in a similar way to MBQC. Consider the same definition for blindness as

incorporated by BFK09. Using this definition, we can prove that our protocol is blind.

Proof. First, remember that we are using a circuit similar to the “brickwork” state defined by
BFK09. Therefore, we have shown that the shape of the circuit itself does not reveal any information
about the underlying computation.

Next, consider the classical information received after measuring each ancilla qubit. This bit in-
dicates whether or not the phase of the qubit (unknown to the server) was added or subtracted from
the phase of the computational qubit. However, the phase of the ancillary qubit was randomized
in both sign and magnitude, so this bit gives zero information.

Finally, given the classical data received by the server, let us consider the quantum state at any
given step of the computation. Trivially, at the beginning of the computation, each qubit has a
randomized Pauli operator applied (X iZj for random i, j ∈ 0, 1). In this case, it is easy to show
that for any input state, the server would probabilistically expect the maximally mixed state.

Now, consider the effect of the X or Z rotations described above. Regardless of the ancilla
measurement or the rotation amount designated by the client, the server has equal probability of
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all rotations. For Z, the server has equal probability of applying Znπ/4 for 0 ≤ n < 8. Similarly for
X, the server has equal probability of applying Xnπ/4 for 0 ≤ n < 8.

Given an arbitrary input state ρ, the resulting state is either a classical distribution of 1/2(ZρZ+
ρ) and 1/2(XρX + ρ) respectively. This is the equivalent of an unknown Pauli operator applied to
the initial state.

Since our initial state had unknown Pauli operators applied, and we proved that this corresponded
to the maximally mixed state, additional random Pauli operators will not give the server any more
knowledge. Indeed, it actually would make it more difficult for the server. Even if the server
somehow exactly knew the input qubit’s state ρ, after a single X and Z rotation, the server has
lost that knowledge, and the state returns to the maximally mixed state to the best of the server’s
knowledge.

Note that although the application of the unknown rotation looks to the server like a randomized
Pauli operation, the client controls the rotation. Therefore, the originally chosen Pauli operators
for each qubit would not change if each rotation were executed exactly. This is why we have added
the additional rπ rotation on each operation (random r ∈ 0, 1). For an input state Za|ψ〉 to a
Z operation, this corresponds to changing the resulting state to Z(a+r)Zθ|ψ〉. The result for X is
similar. This randomizes the Pauli operations at each step, rather than relying on the same Pauli
operators for each qubit during the entire computation. �

5.1. Completely Ancilla-Driven Computation. The above model has also been explored by
Sueki, Koshiba, and Morimae.[SKM12] They use the model of Ancilla-Driven Quantum Compu-
tation to build a Blind Quantum Computation protocol.[AOKBA10] This uses the phase-kickback
mechanism described above with the main difference being in the controlled rotation that occurs
afterward.

The construction is similar to the above, except the X and Z rotation circuits are given below.

|ψ〉 H • • H Xc2Xφ+(−1)c1α|ψ〉

|+α〉 H • H c1 |+〉 • H Zφ H c2

Similarly, the Z rotation is:

|ψ〉 • H H • Zc2Zφ+(−1)c1α|ψ〉

|+α〉 H • H c1 |0〉 H • H Xφ H c2

Note that each of these circuits contains two ancillary qubits that are measured. The first qubit
kicks a random amount of phase onto the computational qubit in the exact same way as in the
previous section. The second qubit executes a controlled X or Z rotation on the qubit, with the
rotation angle φ known to the server. The main difference is in that in this protocol, the controlled
rotation is performed with an ancillary qubit instead of directly.

Other than this small deviation, the protocol is identical and therefore has the same blindness
and universality properties.

6. Conclusion

We have investigated several forms of blind quantum computation. First, ABE08 gave a high-level
discussion of how random local Pauli operators could hide a computation from the server.
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This observation was turned into a complete protocol by BFK09 using Measurement-Based Quan-
tum Computation. However, we have now discussed what properties of MBQC allow for blind
computing to be achieved. We discovered that these properties are separable from the MBQC
construction.

Specifically, we identified the following properties:
(1) Hide computational structure with organized “universal cells” such as in the “Brickwork

State”.
(2) Break all operations down into X and Z rotations. These rotations have known commutation

relations with the Pauli X and Z operators. Use these commutation relations to correctly
apply the X and Z rotations to qubits that have randomized Pauli operators applied to
them.

(3) Break each X and Z rotation into two steps: One randomized that only the client knows
(but may not necessarily be able to choose), and one that adds to the random value to give
the desired overal rotation amount. Only the latter angle is known to the server.

We observed that none of these properties are unique to MBQC. There is an equivalent “Brickwork
State” for circuit computation. In addition, while X and Z rotations are the natural fundamental
operations for MBQC, it is easy to implement rotations in other models as well. Finally, randomizing
qubit phase addition can be done with a phase-kickback circuit instead of quantum teleportation.

This led us to a new model of blind quantum computation. This model turns out to be similar
to blind “Ancilla-driven” quantum computation just recently explored in SKM12.

The three criteria above unify these two seemingly different mechanisms for blind quantum com-
putation and provide direction for the development of new blind protocols using other quantum
phenomena.
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