
Adiabatic Quantum Computing: An Overview

Charles Epstein

Quantum Complexity Theory 6.845

December 12, 2012

1 Introduction

Quantum computations can be implemented not only by the action of quantum circuits, but by

the adiabatic evolution of a system’s Hamiltonian. This can be done by initializing the system into

the ground state of a simple Hamiltonian, and then adiabatically evolving the Hamiltonian to one

whose ground state encodes the solution to the problem. The time complexity of the problem, or

more basically, the speed at which the Hamiltonian can be evolved adiabatically, is related to the

separation between the energy eigenvalues. In some cases, such as Grover Search, the standard

computation complexity can be recovered. Importantly, any quantum circuit can be simulated

adiabatically.

2 The Adiabatic Theorem

The adiabatic theorem in quantum mechanics holds that a system with a time-changing Hamilto-

nian will remain in the same energy level over time as long as the evolution time is slow enough.

Typically, we speak of the system remaining in the ground state. Intuitively we expect this to

be true, as forcing a system to evolve too quickly can transfer energy to it, causing it to become

excited to a higher state. To quantify the speed at which a system can be evolved, we examine the

Schrodinger equation:

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉.

In most cases, [H(t0), H(t)] = 0, and thus we can see that unitary time evolution, |ψ(t)〉 =

U(t, t0)|ψ(t0)〉, is given by

U(t, t0) = e
−i

∫ t
t0

H(t) dt
. (1)

1

Computationally, we are concerned with changing the Hamiltonian over a total time T . We can

generalize the Schrodinger equation by introducing a dimensionless parameter s ∈ [0, 1] that maps

to the elapsed time t ∈ [0, T], following [1]. We can thus re-express the Schrodinger equation in

terms of s:

i
ds

dt

d

ds
|ψ(s)〉 = H(s)|ψ(s)〉

and therefore
d

ds
|ψ(s)〉 = −i dt

ds
H(s)|ψ(s)〉.

Introducing a “delay factor” τ(s) = dt
ds , we then see that [1]

d

ds
|ψ(s)〉 = −iτ(s)H(s)|ψ(s)〉. (2)

The delay factor τ(s) can be thought of as a “speed knob” on the device that changes the Hamil-

tonian. In order for the evolution of the system to be adiabatic, it must be that

τ(s)�
‖ d
dsH(s)‖2
g(s)2

(3)

where g(s) is the gap between the energy levels - particularly, between the ground state and the

first excited state. The numerator is proportional to the maximum gap and is polynomial in the

input size, thus it is often ignored [1]. The gap between the levels is most typically the subject

of study. In cases where g(s) is not explicitly known, the minimum gap gmin is found instead,

providing a bound on the necessary evolution time [1]. Generally, it must hold that the evolution

time T � 1/g2min. Finding gmin is of fundamental importance to assessing the capabilities of

adiabatic quantum computing.

3 The Adiabatic Algorithm

Adiabatic quantum computing can be used to solve instances of the satisfiability problem. Typ-

ically, 3-SAT has been studied. The basic concept of the adiabatic algorithm is that the system

is initialized into the ground state of a simple Hamiltonian, which is then adiabatically evolved to

a more complex Hamiltonian whose ground state encodes the solution to the problem. Provided

the evolution has been adiabatic, the system will be in the solution-encoding ground state. We

can define this solution Hamiltonian, HS , as the sum of local Hamiltonians Hi on each of the C

satisfiability clauses [2], such that

HS =
C∑
i=0

I⊗iHiI
⊗C−i (4)

2

Each local Hamiltonian Hi acts only on clause i and encodes the correct assignment of variables

by assigning an “energy penalty” to all of the incorrect configurations - these assignments typically

have eigenvalue 1. The correct configuration typically has eigenvalue 0, making it the lowest-energy

state. Since the energy levels of HS are determined by the sum of the energies contributed by each

clause, it follows that the ground state HS is the one in which all clauses are satisfied.

Since the solution Hamiltonian is often taken to encode the solution in the computational (|0〉,
|1〉) basis, the initial Hamiltonian HI is often taken to have the Hadamard |+〉⊗n as its ground state.

This ensures that HI and HS do not commute. If [HI , HS] = 0, then simultaneous eigenstates can

be found, meaning that the levels manifestly cross, sending gmin → 0 and T → ∞. We introduce

the hat notation in which |+〉 = H|0〉 = |0̂〉 [1]. Thus, an example HI with |0̂〉⊗n as its ground

state is [1]:

HI =
∑

x∈{0,1}n\{0n}

|x̂〉〈x̂| (5)

We time-evolve the system from this HI to HS as s goes from 0 to 1:

H(s) = (1− s)HI + sHS . (6)

At time s = 1, the Hamiltonian is H(1) = HS , and if the evolution time has been slow enough, the

system will be in its ground state.

4 Adiabatic Time Complexity

In general, the time complexity for the adiabatic algorithm’s action on a satisfiability instance is not

known. It can be shown that the adiabatic model does not provide any extra computing power over

“standard” quantum computation [1]. In some cases it fares far worse, such as for the Perturbed

Hamming Weight Problem [1], an otherwise easy problem that takes exponentially long for an

adiabatic quantum computer to solve. This is due to a strong local energy minimum that differs

from the global one. For some examples, notably Grover Search, the standard quantum complexity

can be recovered. We can show that the O(
√
N) query complexity of the “conventional” Grover

algorithm is the same as the time complexity of the adiabatically-implemented version [1]. We can

further show that this is optimal [3].

4.1 Grover Search Complexity

To perform Grover Search adiabatically, we first definite the initial and solution Hamiltonians. We

take the HI to be as defined in Eq. (5), with |0̂〉⊗n as the ground state. The solution Hamiltonian

HS is defined like the Oracle in the standard Grover implementation, such that [1]

3

HS =
∑

z∈{0,1}n\{A}

|z〉〈z| (7)

where A is the target string. Note that this Hamiltonian assigns an energy penalty of 1 to all

strings aside from the target, which has eigenvalue 0. The gap between the ground state and first

excited state of this Hamiltonian can be found analytically, yielding [1]

g(s) =

√
N + 4(N − 1)(s2 − s)

N
. (8)

At first glance, it would appear that gmin ∝ 1/
√
N , indicating an O(N) time complexity. However,

we can make use of the fact that the energy levels are far apart for most of the transition, and we

can speed up the system in these regions. We revisit τ(s) = dt
ds of Eq. (2) and can find the total

necessary time by integrating:

T =

∫ 1

s=0

(
dt

ds

)
ds =

∫ 1

0
τ(s) ds ∝ N · arctan(

√
N − 1)√

N − 1
= O(

√
N) (9)

This recovers the typical O(
√
N) complexity for the Grover Search algorithm.

4.2 Grover Optimality in the Adiabatic Model

In the adiabatic model, Grover Search is still optimal and retains Ω(
√
N) complexity. This is

proven by Farhi and Gutmann in [3]. Following their reasoning, we start by recasting the problem

as one in which we are given a Hamiltonian Hz with one eigenvalue E and all others zero, i.e.,

Hz = E|z〉〈z| (10)

with |z〉 both normalized and unspecified. We can write the Grover search as one in which we will

find the specific choice of |z〉. Suppose we add a “driving” Hamiltonian HD(t) to the system, such

that [3]

H(t) = Hz +HD(t). (11)

The addition of HD(t) will drive the system to a state in which |z〉 can be determined [3]. This

can be done by starting with two copies of a |z〉-independent state |ψz, t = 0〉 and |ψ, t = 0〉, with

|ψz, t = 0〉 = |ψ, t = 0〉. On the former, we act with Hz and HD(t):

i
d

dt
|ψz, t〉 = [Hz +HD(t)]|ψz, t〉 (12)

and on the latter only HD(t),

i
d

dt
|ψ, t〉 = HD(t)|ψ, t〉. (13)

4

We hold that if |z〉 can be distinguished from some other state |z′〉, then |ψz, t〉 must be significantly

different from |ψ, t〉. Mathematically, it must be that

‖|ψz, t〉 − |ψ, t〉‖2 ≥ ε

and thus [3] ∑
z

‖|ψz, t〉 − |ψ, t〉‖2 ≥ Nε. (14)

It can be shown that [3]
d

dt

∑
z

‖|ψz, t〉 − |ψ, t〉‖2 ≤ 2EN1/2, (15)

and therefore since |ψz, t = 0〉 = |ψ, t = 0〉,∑
z

‖|ψz, t〉 − |ψ, t〉‖2 ≤ 2EN1/2t. (16)

We can substitute the left-hand side using Eq. (14) and see that in order for the difference between

the states to be bounded, it must hold that

t ≥
(ε

2E

)√
N. (17)

This shows that |z〉 can be determined in Ω(
√
N) time, and not faster [3].

5 Notes on Universality

Adiabatic quantum computing is polynomially equivalent to the standard quantum-circuit imple-

mentation. Foremost, any quantum circuit can be simulated by an adiabatic quantum computer

with polynomial overhead. To show this, we will follow the reasoning of Aharonov, et al. [4]. First

we will reconsider our definition of HS . In the standard model of quantum computation, let us

apply a quantum circuit of L gates, with the state after gate ` being |α(`)〉. In our earlier adiabatic

algorithm, the ground state of HS is |α(L)〉. However, it is not always possible to construct HS

without explicitly knowing its ground state (earlier we were effectively given oracle access). We

consider Kitaev’s history state

|η〉 =
1√
L+ 1

L∑
`=0

|α(`)〉 ⊗ |1l0L−`〉 (18)

as a possible replacement for |α(L)〉 [4]. This state consists of each step of the calculation tensored

with a “clock state” encoding the step number in unary. The benefit of using |η〉 as the ground state

of HS is that HS can now be constructed with no knowledge of |α(L)〉. Under this construction,

we would like |α(0)〉 ⊗ |0〉⊗L = |0〉⊗n⊗ |0〉⊗L to be the ground state of HI . Following [4], we define

5

HI = Hclockinit +Hclock +Hinit (19)

HS =
1

2

L∑
`=1

H` +Hclock +Hinit. (20)

We time-evolve the state according to Eq. (6). The terms of the Hamiltonians can be explained

as follows. We adopt the notation in which |x〉〈x|i refers to to an operation on qubit i, with a

superscript c indicating clock cubit indices. First, Hinit ensures that at the start of the computation,

the computation qubits are all zero. It takes the form [4]

Hinit =
n∑

i=1

|1〉〈1|i ⊗ |0〉〈0|c1 (21)

which enforces an energy penalty on all states in which the computation qubits do not start out as

|0〉⊗n. Hclock ensures that the clock register has a legal value consisting of a string of ones followed

by a string of zeros. It takes the form [4]

Hclock =

L−1∑
`=1

|01〉〈01|c`,`+1 (22)

which gives an energy penalty to illegal states containing a zero followed by a one. Continuing,

we examine Hclockinit = |1〉〈1|c1, which ensures that the initial clock state is |0〉⊗L [4]. Finally, we

examine the first term in Eq. (20). Each term H` in the sum checks the movement of the clock

state; if it is unchanged it applies the identity, otherwise it imposes a factor of −1 and applies a

unitary time-evolution operator to advance the computation [4]:

H` = I⊗|100〉〈100|c`−1,`,`+1−U
†
`⊗|100〉〈110|c`−1,`,`+1−U`⊗|110〉〈100|c`−1,`,`+1+I⊗|110〉〈110|c`−1,`,`+1.

(23)

For the boundary terms where ` = 1 or ` = L, the unnecessary clock qubits are omitted. The

ground state of this Hamiltonian is |η〉 with HS |η〉 = 0.

Through this method, any general quantum circuit can be implemented adiabatically using

5-local Hamiltonians acting on two computation and three clock qubits. Aharonov, et al., are able

to show that this results in a polynomial overhead of O(L5) [4]. They are able to reduce this to

a 3-local Hamiltonian case with O(L14) overhead, and finally a system with 2-local Hamiltonians

acting on a two-dimensional grid of six-state particles. The six states are necessary to store both

the computational and clock registers.

6 Conclusions

Adiabatic quantum computing is a clever, generalized, universal method of implementing quantum

computations. Its simplicity may provide a pathway to experimental implementation. The time

6

complexity of the algorithm is related to the separation between the energy eigenvalues of the time-

changing Hamiltonian that evolves the system into a solution-encoding ground state [2]. Some

quantum computations can be easily implemented, while in general all quantum circuits can be

simulated with (unfortunately large) polynomial overhead [4]. It can be shown that Grover Search

retains its O(
√
N) complexity and optimality [1, 3].

References

[1] W. van Dam, M. Mosca, and U. Vazirani. How powerful is adiabatic quantum computation?

In Proceedings, 42nd IEEE Symposium on Foundations of Computer Science, pages 279–287,

2001, arXiv:quant-ph/0206003v1.

[2] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum computation by adiabatic evo-

lution. 2000, arXiv:quant-ph/0001106v1.

[3] E. Farhi and S. Gutmann. An analog analogue of a digital quantum computation. Phys. Rev.

A, 57(4):2403–2406, 1998, arXiv:quant-ph/9612026v1.

[4] D. Aharonov, W. van Dam, J. Kempe, et al. Adiabatic quantum computing is equivalent to stan-

dard quantum computation. SIAM Review, 50(4):755–787, 2008, arXiv:quant-ph/0405098v2.

7

