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1 Introduction

The quantum query complexity of the parity function onn variables is known to be exactlyn/2, for any
error probabilityǫ < 1/2. The upper bound follows from a modification of Deutsch’s quantum algorithm
that computes the parity usingn/2 queries and with zero probability of error [CEMM98]. Also, the lower
bound ofn/2 can be obtained by a simple application of the polynomial method, and the proof holds for
any error probability strictly less than1/2 [MNR11]. In particular, it holds forǫ = 1/2− q(n) whereq(n)
is exponentially small. The question that initially motivated this project is: Can we recover this result using
adversary-based arguments ?

The general additive adversary boundAdv±(f) was shown to asymptotically characterize the bounded-
error quantum query complexity [Rei10]. However, this bound is very loose for the regime whereǫ =
1/2− q(n) andq(n) = o(1). In fact, the resulting lower bound is:

Qǫ(Parityn) ≥ (
1

2
−
√

ǫ(1− ǫ))Q2(Parityn)

Settingǫ = 1/2− q(n) and noting thatQ2(Parityn) = θ(n), we get that:

Q1/2−q(n)(Parityn) = Ω((q(n))2n)

Thus, even forq(n) as large as1/
√
n, this approach yields a trivial constant lower bound.

In this report, we will prove a lower bound ofΩ(n) on the quantum query complexity of the parity func-
tion, that holds for any error probabilityǫ = 1/2 − Ω(e−d·n) (whered > 0 is a fixed constant) and that is
proven using adversary-based arguments. The proof further usesa “quantum reduction” to thet-fold search
problem, which was itself studied by [Amb05] and [Spa08] using the earliestversion of the multiplicative
adversary method. This lower bound also holds for weaker parity algorithms, where a set of averages (over
inputs) of error probabilities is required to be at most1/2 − q(n), as opposed to the error probability on
every input being at most1/2− q(n).

Shortly before the deadline, Robert Spalek pointed out to me a very recent result of Lee and Roland
[LR12], where they prove a XOR lemma for quantum query complexity. This result, whose proof builds on
recent work on quantum state generation and conversion algorithms, impliesa lower bound on the quantum
query complexity of the parity function even for error probabilities exponentially close to1/2. In the last
section of this report, we show some consequences of this XOR lemma, relatedto parity algorithms which
are required to succeed only on a subset of the Boolean hypercube and with error probability very close to
1/2.
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1.1 Outline

In Section 2, we briefly present the result of Ambainis and Spalek concerning thet-fold search problem
that we will use. In Section 3, we prove the adversary-based lower bound for the parity function when the
probability bias is exponentially small. In Section 4, we show some consequences of the XOR lemma that
was proven in [LR12].

1.2 Notation

For everyn ∈ N, letQn = {0, 1}n be the Boolean hypercube of dimensionn and letParn : Qn → {0, 1}
denote the parity function onn variables. For anyx ∈ Qn, letwh(x) be the Hamming weight ofx, i.e. the
number of non-zero coordinates ofx. We let[n] denote the set{1, 2, .., n} and for anyb ∈ {0, 1}, b′ denotes
the complement ofb. For anyx ∈ Qn and any subsetS ⊂ [n], we letx|S be the restriction ofx to the subset
S of indices, i.e.(x|S)i = xi for all i ∈ S and(x|S)i = 0 otherwise.

2 Lower bound for the t-fold search problem

First, we recall thet-fold search problem.

Definition 2.1. (Searcht,n)
Let t ∈ N and letBt = {x ∈ Qn | wh(x) = t}. For everyx ∈ Bt, Searcht,n(x) is the unique subsetJ of
[n] of cardinalityt s.t.xi = 1 if and only ifi ∈ J .

Ambainis [Amb05] showed that the quantum query complexity of theSearcht,n is Ω(
√
tn) even if the

error probability is allowed to be as large as1 − Ω(e−t/8). Ambainis’s method, which was based on the
analysis of the eigenspaces of the density matrix, was later generalized by Spalek [Spa08], into what he
coined, the “multiplicative quantum adversary”.

Theorem 2.2. ([Amb05], [Spa08], [ǍSDW09])
For everyt ≤ n

4e and everyǫ = 1− Ω(e−t/8),Qǫ(Searcht,n) = Ω(
√
tn).

3 Lower bounds on the quantum query complexity of the parity function
with small probability bias

In this section, we prove a lower bound ofΩ(n) on the quantum query complexity of the parity function.
The proof uses a “quantum reduction” to thet-fold search problem. The proof of the reduction is an adap-
tation to our setup of the proof, given by [CVDNT99], of the lower boundon the bounded-error quantum
communication complexity of the inner product function. The lower bound thatwe obtain applies to a fam-
ily of “weak” parity algorithms, where a set of averages (over inputs) oferror probabilities is required to be
at most1/2− q(n), as opposed to the error probability on every input being at most1/2− q(n).

Notation 3.1. (Characteristic vector)
Letn ∈ N andS ⊂ [n]. Then, the characteristic vectorχS ∈ Qn of S is given by:

(χS)i =

{

1 if i ∈ S.

0 otherwise.
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for all i ∈ [n].

The following lemma states an observation (due to Professor Scott Aaronson) which is central to the
reduction. Note that this relation was used in the Bernstein-Vazirani problem [BV97] and in the lower bound
on the bounded-error quantum communication complexity of the inner product function [CVDNT99].

Lemma 3.2. For everyn ∈ N, letHn denote the2n × 2n Hadamard matrix. Then, for allx ∈ Qn, we have

1√
2n

∑

S⊂[n]

(−1)Parn(x|S)Hn|χS〉 = |x〉 (1)

Proof.

1√
2n

∑

S⊂[n]

(−1)Parn(x|S)Hn|χS〉 =
1√
2n

∑

S⊂[n]

(−1)Parn(x|S) 1√
2n

∑

y∈{0,1}n
(−1)Parn(y|S)|y〉

=
1

2n

∑

y∈{0,1}n

∑

S⊂[n]

(−1)Parn(x|S+y|S)|y〉

=
∑

y∈{0,1}n

( 1

2n

∑

S⊂[n]

(−1)Parn((x+y)|S )
)

|y〉

But,
1

2n

∑

S⊂[n]

(−1)Parn((x+y)|S) =

{

1 if x+ y = 0 mod 2, i.e. if x = y.

0 if x+ y 6= 0 mod 2, i.e. if x 6= y.

Thus, we conclude that
1√
2n

∑

S⊂[n]

(−1)Parn(x|S)Hn|χS〉 = |x〉

The following definition is similar to the notion of “clean computation” used by [CVDNT99].

Definition 3.3. (Coherent computation of the parity function)
A quantum query algorithmA computingParn is said to be coherent if, on inputsx ∈ Qn andS ⊂ [n], A
takes the state|x〉|χS〉|z〉 to the state|x〉|χS〉|z + Parn(x|S)〉.

Loosely, a coherent computation of the parity function determines the parity of the restriction of the
input string to the input subset and stores it without leaving any “garbage”.

Lemma 3.4. If there is a coherent algorithmA that computesParn usingr(n) queries, then there is a
quantum query algorithmB that, on inputx ∈ Qn, takes the state|x〉|0〉⊗n|1〉 to the state|x〉|x〉|1〉 using
r(n) queries.

Proof. First,B Hadamards the lastn+ 1 qubits of the start state|x〉|0〉⊗n|1〉, which gives the state

|ψ1〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z|x〉|χS〉|z〉
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Then,B runs the coherent algorithmA on |ψ1〉 which performsr(n) queries and gives the state

|ψ2〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z|x〉|χS〉|z + Parn(x|S)〉

Changing variables, we get

|ψ2〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z+Parn(x|S)|x〉|χS〉|z〉

Then,B Hadamards the lastn+ 1 qubits of|ψ2〉 which gives the state:

|ψ3〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z+Parn(x|S)|x〉Hn|χS〉H1|z〉

=
1√
2n

∑

χS∈{0,1}n
(−1)Parn(x|S)|x〉Hn|χS〉

1√
2

∑

z∈{0,1}
(−1)zH1|z〉

= |x〉|x〉|1〉 (by Lemma 3.2)

Note that if we follow the algorithmB in Lemma 3.4 by a measurement of the middlen qubits in the
standard basis, we get the original inputx with probability1.

The following lemma shows how to deal with the general case and its proof is based on the treatment by
[CVDNT99] of the bounded-error quantum communication complexity of the inner product function.

Lemma 3.5. Let f : D → ΣO whereD ⊂ Qn andΣO is a finite set. If there exists a quantum query
algorithmA that computesParn usingr(n) queries and with error probabilitypx(n) on inputx ∈ Qn and
s.t.

1

2n

∑

S⊂{0,1}n
px|S (n) ≤ 1/2− q(n) (2)

(for some functionq : N → R), then there exists a quantum query algorithmC that computesf using2r(n)
queries and with success probability at least4q2(n).

Proof. Let A be an algorithm that computesParn usingr(n) queries and that satisfies Equation 2. Then,
A can be transformed into an algorithmB that takes as inputsx ∈ Qn (to which it has oracle access) and
S ⊂ [n] and outputs the parity ofx|S with error probability equal topx|S (n). Moreover,A can be assumed
to measure one qubit and output the obtained value as the (Boolean) answer. Those two assumptions are
due to the fact thatB can use additional qubits (not used byA) to store any new garbage. Thus, on inputs
x ∈ Qn andS ⊂ [n], B takes the state|x〉|χS〉|z〉|0〉|0〉⊗w to the state

|ψ1〉 = ax,S |x〉|χS〉|z〉|Parn(x|S)〉|Jx,S〉+ bx,S |x〉|χS〉|z〉|Par′n(x|S)〉|Kx,S〉

where|bx,S |2 = px|S (n), |ax,S |2 + |bx,S |2 = 1 and|Jx,S〉 and|Kx,S〉 are arbitrary unit vectors. Applying a
CNOT operation (controlled by the answer register) on|ψ1〉 gives:

|ψ2〉 =ax,S |x〉|χS〉|z + Parn(x|S)〉|Parn(x|S)〉|Jx,S〉+ bx,S |x〉|χS〉|z + Par′n(x|S)〉|Par′n(x|S)〉|Kx,S〉
= ax,S |x〉|χS〉|z + Parn(x|S)〉|Parn(x|S)〉|Jx,S〉+ bx,S |x〉|χS〉|z + Parn(x|S)〉|Par′n(x|S)〉|Kx,S〉
− bx,S |x〉|χS〉|z + Parn(x|S)〉|Par′n(x|S)〉|Kx,S〉+ bx,S |x〉|χS〉|z + Par′n(x|S)〉|Par′n(x|S)〉|Kx,S〉
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Running the algorithmB in reverse on|ψ2〉 yields the state

|ψ3〉 = |x〉|χS〉|z + Parn(x|S)〉|0〉⊗(w+1) +
√
2bx,S |Mx,S,z〉

where|Mx,S,z〉 = B−1|x〉|χS〉( 1√
2
|z + Par′n(x|S)〉 − 1√

2
|z + Parn(x|S)〉)|Par′n(x|S)〉|Kx,S〉.

Moreover, the set{|Mx,S,z〉}x,S,z satisfies the following2 properties:

1. For everyx ∈ Qn and everyS ⊂ [n], |Mx,S,z〉 is odd inz i.e. |Mx,S,0〉 = −|Mx,S,1〉.

2. The set{|Mx,S,0〉}x,S is an orthonormal set because the algorithmB does not modify the contents of the
registers|x〉 and|χS〉 (and thus the same is true forB−1).

By Lemma 3.4, we can see that|ψ3〉 is the sum of the output of a coherent parity algorithm (when run onx
andS) and a residual “garbage” term (namely,

√
2bx,S |Mx,S,z〉) and which is not necessarily orthogonal to

the first term. Having transformed any parity algorithm to the form above with only a factor of2 increase in
the number of queries, we now show how the reduction works for general parity algorithms. More precisely,
given an inputx ∈ Qn, we will show how we can, using1 call to the algorithmB above, recover the inputx
with probabilty at least4q2(n). The algorithmC starts with the state|x〉|0〉⊗n|1〉|0〉⊗w and first Hadamards
the middlen+ 1 qubits, which gives the state

|ϕ1〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z|x〉|χS〉|z〉|0〉⊗w

Then,C runs the algorithmB described above on|ϕ1〉 which gives the state:

|ϕ2〉 =
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)zB|x〉|χS〉|z〉|0〉⊗w

=
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z(|x〉|χS〉|z + Parn(x|S)〉|0〉⊗(w+1) +
√
2bx,S |Mx,S,z〉)

=
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z|x〉|χS〉|z + Parn(x|S)〉|0〉⊗(w+1) +
1√
2n+1

∑

(z,χS)∈{0,1}n+1

(−1)z
√
2bx,S |Mx,S,z〉

Applying a Hadamard operation to the middlen+ 1 qubits of|ϕ2〉, we get the state

|ϕ3〉 = |x〉|x〉|1〉|0〉⊗(w+1) + U
1√
2n

∑

(z,χS)∈{0,1}n+1

(−1)zbx,S |Mx,S,z〉 (By Lemma 3.4)

= |x〉|x〉|1〉|0〉⊗(w+1) + U |Λ〉

where |Λ〉 = 1√
2n

∑

(z,χS)∈{0,1}n+1

(−1)zbx,S |Mx,S,z〉 and whereU = I⊗n ⊗ Hn+1 ⊗ I⊗(w+1) is a uni-

tary operation. The next step ofC is to measure the second set ofn qubits in the standard basis. Since
|x〉|x〉|1〉|0〉⊗(w+1) andU |Λ〉 are not necessarily orthogonal, the outcome of the measurement might be dif-
ferent fromx with some non-zero probability. In order to find the cosine of the angleθ between|ϕ3〉 and
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|x〉|x〉|1〉|0〉⊗(w+1), we first upper bound the squared magnitude ofU |Λ〉:

‖U |Λ〉‖22 = ‖|Λ〉‖22 (sinceU is a unitary matrix)

= ‖ 1√
2n

∑

(z,χS)∈{0,1}n+1

(−1)zbx,S |Mx,S,z〉‖22

= ‖ 2√
2n

∑

χS∈{0,1}n
bx,S |Mx,S,0〉‖22 (since|Mx,S,0〉 = −|Mx,S,1〉 for all S ⊂ [n] and allx ∈ Qn)

=
4

2n

∑

χS∈{0,1}n
|bx,S |2 (since{|Mx,S,0〉}x,S is an orthonormal set)

=
4

2n

∑

χS∈{0,1}n
px|S (n) ≤ 4(

1

2
− q(n))

But, ‖|ϕ3〉‖22 + ‖|x〉|x〉|1〉|0〉⊗(w+1)‖22 − 2 cos θ = ‖U |Λ〉‖22 which implies thatcos θ ≥ 2q(n). Therefore,
Pr[Obtainingx] = (cos θ)2 ≥ 4q2(n). Thus, with probability at least4q2(n) and using at most2r(n)
queries, we can compute the valuef(x) of any functionf : D → ΣO whereD ⊂ Qn andΣO is a finite
set.

Theorem 3.6. Let t = c · n for some constant0 < c ≤ 1/(4e) and letq(n) = Ω(e−t/16). If A is a quantum
query algorithm that computesParn with error probabilitypx(n) on inputx ∈ Qn and s.t.

1

2n

∑

S⊂{0,1}n
px|S (n) ≤ 1/2− q(n) (3)

for all x of Hamming weightt, thenA should makeΩ(n) queries.

Proof. We apply Lemma 3.5 with the functionf set to thet-fold search functionSearcht,n and we get that,
givenx ∈ Bt (whereBt is the set of all strings inQn of Hamming weightt), we can computeSearcht,n(x)
with probability at least4q2(n) and by making twice as many queries asA does. Sinceq(n) = Ω(e−t/16),
Theorem 2.2 gives a lower bound ofΩ(n) on the(1 − Ω(q2(n)))-error quantum query complexity of the
t-fold search problem. Thus, the parity algorithmA cannot have query complexityo(n).

Note that the reason why the required conditions on the error probabilities inEquation 3 treat strings of
low weights differently than those of large weights, is that our reduction in Lemma 3.5 is not “symmetric”.
However, knowing that the parity function is symmetric, one can “symmetrize” the conditions in Theorem
3.6.

As a special case of Theorem 3.6, the next corollary shows a lower bound on the quantum query com-
plexity of the parity function.

Corollary 3.7. For any constantd ≤ 1/(64e),Q 1
2
−e−d·n(Parn) = Ω(n).

Proof. First, note that if for allx ∈ Qn, px(n) ≤ 1/2− q(n), then for everyx ∈ Qn:

1

2n

∑

S⊂{0,1}n
px|S (n) ≤ 1/2− q(n)

Applying Theorem 3.6 withc = 1/(4e), we get the desired claim as long asd ≤ c/16 = 1/(64e).
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4 Some consequences of the XOR lemma

Recently, [LR12] proved a XOR lemma for the quantum query complexity. Loosely, the XOR lemma says
that if one is to compute the parity ofk values of a Boolean-valued functionf , then at leastk times the
number of queries required to computef on1 instance are needed, even if the error probability is allowed to
be exponentially close to1/2. The proof of [LR12] uses the recent result of [AMRR11] who proved that the
multiplicative adversary is stronger than the general additive adversary, as well as recent work on quantum
state generation and conversion by [AMRR11] and [LMR+11].

Lemma 4.1. (The XOR lemma [LR12])
Letf be a Boolean-valued function,0 ≤ δ ≤ 1 andk ∈ N. ThenQ(1−δk/2)/2(⊕ ◦ f (k)) ≥ kδ

8 Adv
±(f).

Note that in the statement of the XOR lemma,f is a general partial function and need not be total. Given
the XOR lemma, we can deduce the following corollary:

Corollary 4.2. Letδ > 0. Any algorithm computing the parity function onn variables with error probability
at most(1− δk/2)/2 should makeΩ(n) queries to the oracle.

Proof. Follows from Lemma 4.1 by lettingk = n and the “base function”f be the identity function on1
bit, which gives thatAdv±(f) ≥ 1.

Lemma 4.3. LetA ⊂ Qn. If A contains a subcube of dimensiond(n), then the query complexity of any
algorithm that computes the parity of every string inA with error probability at most(1−δd(n)/2)/2 (where
0 < δ ≤ 1 is any constant) must performΩ(d(n)) queries.

Proof. Assume thatA ⊂ Qn contains a subcube of dimensiond(n). Then, there exist indicesi1, i2, .., id(n) ∈
[n] s.t. if y ∈ Qn satisfiesyj = xij for all j ∈ [d(n)], theny ∈ A. Letting the “base function” in Lemma
4.1 be the parity function on1 bit (i.e. the identity) and lettingk = d(n), we see that every algorithm that
computes the parity of every string inA with error probability at most(1−δd(n)/2)/2 can compute the value
of the function⊕ ◦ f (k) : {0, 1}d(n) → {0, 1} on every input with error probability at most(1− δd(n)/2)/2.
By Lemma 4.1, such an algorithm should makeΩ(d(n)) queries.

The previous lemma raises the following combinatorial question, which does not seem to have been
addressed:

Question 4.4.Letn ∈ N and let1 ≤ d(n) ≤ n. What is the number of subsets ofQn that contain at least
one subcube of dimensiond(n) ?

One would be tempted to try to prove that if the cardinality ofA is sufficiently large, thenA should con-
tain a subcube of non-negligible dimension. However, such an approachwould be limited by the following
result of Alon et. al.

Theorem 4.5. [AKS07] For every constantd ∈ N, there exists a subsetA ofQn of size≥ 2n − 2n/d and
that does not contain a subcube of dimensiond.

For instance, ford = 2, Theorem 4.5 says that there exists a subset ofQn of cardinality at least232
n and

that does not contain any hypercube of dimension2!
We now further use the XOR lemma to prove a lower bound on the(1/2−q(n))- quantum query complexity
of algorithms computingParn on certain types of subsets ofQn and withq(n) exponentially small.
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Definition 4.6. (Product subsets ofQn)
Let t ∈ N. A subsetA ofQn is said to be a product subset of ordert if A = Dt for someD ⊂ Qn

t
s.t. there

existx0, x1 ∈ D with Parn
t
(x0) = 0 andParn

t
(x1) = 1.

Loosely, product subsets are cartesian products of “partial non-trivial subsets”, where “partial” means
that they are not necessarily subcubes and “non-trivial” means that not all their elements have the same
parity.
We now use the XOR lemma to show a lower bound on the quantum query complexityof algorithms that are
only required to succeed on a product subset ofQn and with error probability at most(1/2− q(n)), where
q(n) is exponentially small. Note that this implies a lower bound for algorithms that are only required to
succeed on a set that contains such a product subset.

Lemma 4.7. Let g : N → N s.t. 1 ≤ g(n) ≤ n for all n ∈ N. For everyA ⊂ Qn containing a product
subset of orderg(n), any algorithm succeeding on all the binary strings inA with error probability at most
(1− δg(n)/2)/2 (where0 < δ ≤ 1 is any constant) must performΩ(g(n)) queries.

Proof. Any such algorithmB should succeed on the product subsetDg(n) of orderg(n). Thus, if we let
the “base function” in Lemma 4.1 be the functionf : D → {0, 1} given byf(x) = Par n

g(n)
(x) for all

x ∈ D, thenAdv±(f) ≥ 1 sincePar n
g(n)

is not constant onD. Letting k = g(n), we see that every

algorithm that computes the parity of every string inD with error probability at most(1 − δg(n)/2)/2 must
be computing the value of the function⊕ ◦ f (k) : {0, 1}n → {0, 1} on every input with error probability at
most(1− δg(n)/2)/2. By Lemma 4.1, such an algorithm should makeΩ(g(n)) queries.

As a sidenote, we note the following lemma:

Lemma 4.8. (Number of product subsets)
For everyn, t ∈ N with 1 ≤ t ≤ n, the number of product subsets ofQn of ordert is exactly22

t−2
√
22t+1.

Proof. First, note that the number of strings inQt of even parity is exactly2
t

2 . Thus, the number of subsets

ofQt consisting only of strings having even parity (or only of strings having oddparity) is exactly22
t−1 −1,

where the “−1” is to exclude the empty set. Thus, the claim follows.

Finally, we conclude with the following question:

Question 4.9.If for some subsetA ⊂ [n], the bounded error quantum query complexity isQ2(Parity|A) =
Ω(r(n)) for some functionr. Is it true that the quantum query complexity will still beΩ(r(n)), even if the
error probability is allowed to be as large as1/2− q(n) for someq(n) = o(1) ?
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