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1 Introduction

The quantum query complexity of the parity function evariables is known to be exactly/2, for any
error probabilitye < 1/2. The upper bound follows from a modification of Deutsch’s quantum akgor
that computes the parity using/2 queries and with zero probability of error [CEMM98]. Also, the lower
bound ofn /2 can be obtained by a simple application of the polynomial method, and the priusf for
any error probability strictly less thary2 [MNR11]. In particular, it holds foe = 1/2 — ¢(n) whereg(n)
is exponentially small. The question that initially motivated this project is: Can w@se this result using
adversary-based arguments ?

The general additive adversary bousdv™ ( f) was shown to asymptotically characterize the bounded-
error quantum query complexity [Reil0]. However, this bound is vergdofor the regime where =
1/2 — q(n) andq(n) = o(1). In fact, the resulting lower bound is:

Qc(Parity,) > (% —Ve(l —€))Qa(Parityy)
Settinge = 1/2 — ¢(n) and noting that)s( Parity,) = 6(n), we get that:

Q1/2—q(n) (Parity,) = Q((g(n))*n)
Thus, even fog(n) as large ad//n, this approach yields a trivial constant lower bound.

In this report, we will prove a lower bound ©(n) on the quantum query complexity of the parity func-
tion, that holds for any error probability= 1/2 — Q(e~%") (whered > 0 is a fixed constant) and that is
proven using adversary-based arguments. The proof furtheadgesntum reduction” to thefold search
problem, which was itself studied by [Amb05] and [Spa08] using the eaxéersion of the multiplicative
adversary method. This lower bound also holds for weaker parity algwijttvhere a set of averages (over
inputs) of error probabilities is required to be at mbg2 — ¢(n), as opposed to the error probability on
every input being at most/2 — ¢(n).

Shortly before the deadline, Robert Spalek pointed out to me a verytrezsiit of Lee and Roland
[LR12], where they prove a XOR lemma for quantum query complexity. Tdsslt, whose proof builds on
recent work on quantum state generation and conversion algorithms, irmpdeer bound on the quantum
query complexity of the parity function even for error probabilities expbiadly close tol/2. In the last
section of this report, we show some consequences of this XOR lemma, relggadty algorithms which
are required to succeed only on a subset of the Boolean hypercdhveitarerror probability very close to
1/2.



1.1 Outline

In Section 2, we briefly present the result of Ambainis and Spalek comgethet-fold search problem
that we will use. In Section 3, we prove the adversary-based lowerdofmn the parity function when the
probability bias is exponentially small. In Section 4, we show some conseggiehthe XOR lemma that
was proven in [LR12].

1.2 Notation

For everyn € N, let@,, = {0, 1}" be the Boolean hypercube of dimensieand letPar, : Q, — {0, 1}
denote the parity function om variables. For any € Q,,, letwh(z) be the Hamming weight of, i.e. the
number of non-zero coordinates:afWe let[n| denote the seftl, 2, .., n} and for any € {0, 1}, ¥’ denotes
the complement df. For anyx € @),, and any subsef C [n], we letz|g be the restriction of: to the subset
S of indices, i.e.(z|s); = z; forall i € S and(x|s); = 0 otherwise.

2 Lower bound for the t-fold search problem

First, we recall the-fold search problem.

Definition 2.1. (Searchyy)
Lett € Nand letB; = {z € Q,, | wh(z) = t}. For everyz € B;, Search,(x) is the unique subset of
[n] of cardinalityt s.t.z; = 1 if and only ifi € J.

Ambainis [Amb05] showed that the quantum query complexity of$herch; ,, is Q(v/tn) even if the
error probability is allowed to be as large hs- Q(e‘t/s). Ambainis’s method, which was based on the
analysis of the eigenspaces of the density matrix, was later generalizepblak $Spa08], into what he
coined, the “multiplicative quantum adversary”.

Theorem 2.2. ([AMb05], [Spa08], [ASDWO09))
For everyt < I and every = 1 — Q(e™/8), Q(Search,,,) = Q).

3 Lower bounds on the quantum query complexity of the parity function
with small probability bias

In this section, we prove a lower bound @fn) on the quantum query complexity of the parity function.
The proof uses a “quantum reduction” to théold search problem. The proof of the reduction is an adap-
tation to our setup of the proof, given by [CVDNT99], of the lower bowmdthe bounded-error quantum
communication complexity of the inner product function. The lower boundwieatbtain applies to a fam-
ily of “weak” parity algorithms, where a set of averages (over input®radr probabilities is required to be
at mostl/2 — ¢(n), as opposed to the error probability on every input being at st ¢(n).

Notation 3.1. (Characteristic vector)
Letn € NandS C [n]. Then, the characteristic vectals € @Q,, of S is given by:

(xs)i = 1 if¢1eb.
XS/i= N0 otherwise.



forall i € [n].

The following lemma states an observation (due to Professor Scott Aawowsich is central to the
reduction. Note that this relation was used in the Bernstein-Vazirani prdl@®97] and in the lower bound
on the bounded-error quantum communication complexity of the inner préguction [CVDNT99].

Lemma 3.2. For everyn € N, let H,, denote th™ x 2" Hadamard matrix. Then, for alf € @Q,,, we have

Parn
ﬁn Z ) H | xs) = o) 0
Proof.
1 P z|s) P ) P .
Z arn (z H, ‘XS Z arn(z|s Z arn(yls ’y>
\/27 SC[n] f SCn] \/7 ye{01}n
Z P‘”"n (z|s+yls) ‘y>
ye{0,1}" SCln]
=Y & 3 (e
ye{0,1}" Scn
But,
L (—1)Parn(@+ylls) — 1 ifz+y=0 mod?2ie.ifz=y.
* s 0 ifet+y#0 mod2ie. ifz#y.

Thus, we conclude that

@Z )Pt xs) = la)

The following definition is similar to the notion of “clean computation” used by [QVID9].

Definition 3.3. (Coherent computation of the parity function)
A quantum query algorithml computingPar,, is said to be coherent if, on inpuise @,, andS C [n], A
takes the stater)|xs)|z) to the statdx)|xs)|z + Par,(z|s)).

Loosely, a coherent computation of the parity function determines the pdriheaestriction of the
input string to the input subset and stores it without leaving any “gatbage

Lemma 3.4. If there is a coherent algorithn¥ that computesPar,, usingr(n) queries, then there is a
quantum query algorithn8 that, on inputz € Q,,, takes the statér)|0)®"|1) to the statdz)|x)|1) using
r(n) queries.

Proof. First, B Hadamards the last+ 1 qubits of the start state’)|0)®"|1), which gives the state

1
)= > (W l)s)le)
2t (z.x5)€{0, 1} +1
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Then,B runs the coherent algorithm on |1 ) which performs-(n) queries and gives the state

Y. (FVf@)lxs)|z + Parg(]s))

(2:xs)e{0, 1}t

|1h2) =

1
A /2n+1

Changing variables, we get

1
[2) = Yoo (mEtPemEls)z) x| z)
n+1
V2L s)elo

Then,B Hadamards the last+ 1 qubits of|2) which gives the state:

1
|1h3) = > (—pF el gy By ) Hy2)
Vo
(z,xs)E{O,l}"+1

1 ary (x
XSE{071}n

= |z)|z)|1) (by Lemma 3.2)

> (=1)Hi|2)
z€{0,1}

1
V2

O

Note that if we follow the algorithnB in Lemma 3.4 by a measurement of the middlgubits in the
standard basis, we get the original inputvith probability 1.

The following lemma shows how to deal with the general case and its proasésliiman the treatment by
[CVDNT99] of the bounded-error quantum communication complexity of theriproduct function.

Lemma 3.5. Let f : D — o whereD C @, and X is a finite set. If there exists a quantum query
algorithm A that computes’ar,, usingr(n) queries and with error probability,.(n) on inputz € Q,, and

S.t.
1

o > pag(n) £1/2—q(n) ()

Sc{0,1}»
(for some functiory : N — R), then there exists a quantum query algoritGrthat computeg using2r(n)
queries and with success probability at leagt(n).

Proof. Let A be an algorithm that computd3ar,, usingr(n) queries and that satisfies Equation 2. Then,
A can be transformed into an algorithnthat takes as inputs € @Q,, (to which it has oracle access) and
S C [n] and outputs the parity aof|s with error probability equal tg,;(n). Moreover,A can be assumed
to measure one qubit and output the obtained value as the (Boolean)afi$wee two assumptions are
due to the fact thaB can use additional qubits (not used Hy to store any new garbage. Thus, on inputs
x € Q, andS C [n], B takes the statgr)|xs)|2)|0)|0)®* to the state

Y1) = aa,s|7)|x5)|2) | Parn(2]5))| Ja,s) + ba,s|2)|x5)|2)| Pary, (x]5)) | Kz.5)
where|b, s|* = py(4(n), lac,s* + |be,s|* = 1 and|J, s) and| K, s) are arbitrary unit vectors. Applying a
CNOT operation (controlled by the answer register) o) gives:
[¥2) =aq,s|2)|xs)|z + Parn(z|s))| Parn(z|$))|Jz.s) + ba,sl2)xs)|2 + Pary,(zls))| Pary, (2]s))| Kz,s)
= a,5|7)|xs)|2 + Parn(@|s)) | Parn(@|s))|Jo,s) + ba,sl2)x8)|2 + Parn(z]s))| Pary, (z]5))| Ka,s)
= byslz)|xs)|2 + Paryp(zls)) |Pary(2]s)) | Kz,s) + bas|2)|xs)|2 + Pary(@]s))| Pary (2]s)) | Ka,s)

4



Running the algorithn$ in reverse ory2) yields the state
[h3) = |2)|xs)|z + Para(2]s))[0)*“ ) + V2b, 5| M, 5..)

where|M,.s..) = B~ |z)|xs) (5|2 + Pary,(a]s)) — 5z + Parn(]s)) | Pary, (x]5)) | Ka.s).
Moreover, the sef| M, s.) }», s, Satisfies the followin@ properties:

1. Foreveryr € Q, and everyS C [n], |[M, s .) isoddinzi.e. |M; so) = —|Mz 51).

2. The set{| M, so) }= s is an orthonormal set because the algoritioes not modify the contents of the
registergz) and|xs) (and thus the same is true f8r1).

By Lemma 3.4, we can see thals) is the sum of the output of a coherent parity algorithm (when rum on
andS) and a residual “garbage” term (namei){ébx,s|Mx7S,z>) and which is not necessarily orthogonal to
the first term. Having transformed any parity algorithm to the form above withafactor of2 increase in
the number of queries, we now show how the reduction works for gigmeity algorithms. More precisely,
given an inputc € @,,, we will show how we can, usingcall to the algorithimB above, recover the input
with probabilty at leastq?(n). The algorithnC starts with the statgr)|0)*"|1)|0)®* and first Hadamards
the middlen + 1 qubits, which gives the state

1
lo1) = Z (—=1)%|z)|xs)|2)]0)®"
n+1
V2T xs)eto

Then,C runs the algorithnB described above ofp;) which gives the state:

p2) = —— S (1Bl xs) )0

n+1
VI o xsrelayn
1
= 2 CD(as)le+ Para(els)) 07 4+ Vab sl Mes )
(z,xs)€{0,1}n+1
1 z w 1 z
T Jontt Yo (CVfa)lxs)lz + Parg(als))|0)= D + Vo > (F1)V2bu s M)

(Z9XS)€{071}7L+1 (szs)e{ovl}n-'—l

Applying a Hadamard operation to the middie- 1 qubits of|p2), we get the state
1
[os) = [R)RDIOH 4V D (~1)bsIMass) (ByLemma3d)
(2,xs)€{0,1}n+1
= |a)[)[1)[0)*+D + U|A)

where|A) = \/127 (—=1)%b, 5|M, s.) and whereU' = I®" @ H,,; @ I®®@*) is a uni-
(vas)e{ovl}TH_l

tary operation. The next step 6fis to measure the second setrofjubits in the standard basis. Since

|z)|2)[1)|0)2(w+1D) andU|A) are not necessarily orthogonal, the outcome of the measurement might be dif

ferent froma with some non-zero probability. In order to find the cosine of the afdletween|y3) and




|2)|)[1)]0)2(w+1)  we first upper bound the squared magnitudépf):

|UIAY]3 = |||AY]|3 (sinceU is a unitary matrix)

1 z
= H Z (_1) bz,S|Mz,S,z>H%

2n (z,xs)€{0,1}n+1

ﬂ

2 .
= ”\/? > besIMeso)l3 (since| M, s0) = —| My g1) forall S C [n] and allz € Q)
Xs€{0,1}"

4 . .
= Z be.s|?  (since{|M, s0)}z.s is an orthonormal set)
XSE{Ozl}n

=Y pa) <40 —aw)

XSE{Ozl}n

But, |||3) |13 + [[|z)|z)|1)[0)2@H+D |2 — 2cos§ = ||U|A)||3 which implies thatos 6 > 2¢(n). Therefore,
Pr[Obtainingz] = (cosf)? > 4¢*(n). Thus, with probability at leastq?(n) and using at mostr(n)
queries, we can compute the valfier) of any functionf : D — ¥ whereD C @Q,, andX is a finite
set. O

Theorem 3.6. Lett = ¢- n for some constarit < ¢ < 1/(4e) and letg(n) = Q(e~*/16). If Ais a quantum
query algorithm that compute3ar,, with error probabilityp, (n) on inputz € @,, and s.t.

o O pes(n) < 1/2- g(n) @)

Sc{0,1}»
for all x of Hamming weight, then.4 should maké(n) queries.

Proof. We apply Lemma 3.5 with the functiohset to thet-fold search functiorbearch; ,, and we get that,
givenz € B; (whereB, is the set of all strings i),, of Hamming weight), we can comput&earchy ,(x)
with probability at leastiq?(n) and by making twice as many queries.dsloes. Sincg(n) = Q(e ¥/16),
Theorem 2.2 gives a lower bound 9fn) on the(1 — Q(¢?(n)))-error quantum query complexity of the
t-fold search problem. Thus, the parity algoritbtdrcannot have query complexityn). O

Note that the reason why the required conditions on the error probabilitieguation 3 treat strings of
low weights differently than those of large weights, is that our reduction inrha 3.5 is not “symmetric”.
However, knowing that the parity function is symmetric, one can “symmetrizettmditions in Theorem
3.6.

As a special case of Theorem 3.6, the next corollary shows a lowedbau the quantum query com-
plexity of the parity function.
Corollary 3.7. For any constant < 1/(64e), Q%,efd»n(Parn) = Q(n).
Proof. First, note that if for alke € @y, pz(n) < 1/2 — q(n), then for everyr € Q:
1

5 D pas(m) £ 1/2—q(n)
Sc{0,1}»
Applying Theorem 3.6 witlt = 1/(4e), we get the desired claim as long@s< ¢/16 = 1/(64e). O



4 Some consequences of the XOR lemma

Recently, [LR12] proved a XOR lemma for the quantum query complexityselypthe XOR lemma says
that if one is to compute the parity @fvalues of a Boolean-valued functigh then at leask times the
number of queries required to compyten 1 instance are needed, even if the error probability is allowed to
be exponentially close tb/2. The proof of [LR12] uses the recent result of[AMRR11] who mdvhat the
multiplicative adversary is stronger than the general additive adveesawyell as recent work on quantum
state generation and conversion by [AMRR11] and [LMR].

Lemma 4.1. (The XOR lemma [LR12])
Let f be a Boolean-valued functiof,< § < 1andk € N. ThenQ ; _gi/2) o (& © FR) > B AduE(f).

Note that in the statement of the XOR lemnjias a general partial function and need not be total. Given
the XOR lemma, we can deduce the following corollary:

Corollary 4.2. Let§ > 0. Any algorithm computing the parity function ervariables with error probability
at most(1 — §%/2) /2 should make(n) queries to the oracle.

Proof. Follows from Lemma 4.1 by letting = n and the “base functionf be the identity function on
bit, which gives thatddv®(f) > 1. O

Lemma 4.3. Let A C @,. If A contains a subcube of dimensid(n), then the query complexity of any
algorithm that computes the parity of every stringdrwith error probability at most1 — §%(")/2) /2 (where
0 < ¢ < 1is any constant) must perforfd(d(n)) queries.

Proof. Assume thatd C @,, contains a subcube of dimensiéfn). Then, there exist indices, io, .., iq(n) €
[n] s.t. ify € Q, satisfiegy; = z;, for all j € [d(n)], theny € A. Letting the “base function” in Lemma
4.1 be the parity function o bit (i.e. the identity) and letting = d(n), we see that every algorithm that
computes the parity of every string.iwith error probability at mostl — §4(")/2) /2 can compute the value
of the functiond o ) : {0,1}4™ — {0, 1} on every input with error probability at mogt — §9(")/2) /2.
By Lemma 4.1, such an algorithm should mékgi(n)) queries. O

The previous lemma raises the following combinatorial question, which ddeseem to have been
addressed:

Question 4.4.Letn € N and letl < d(n) < n. What is the number of subsets(®f that contain at least
one subcube of dimensiaitn) ?

One would be tempted to try to prove that if the cardinalitydos sufficiently large, thetd should con-
tain a subcube of non-negligible dimension. However, such an appveadd be limited by the following
result of Alon et. al.

Theorem 4.5. [AKSO07] For every constant € N, there exists a subset of ),, of size> 2" — 2" /d and
that does not contain a subcube of dimension

For instance, fod = 2, Theorem 4.5 says that there exists a subsé,06f cardinality at Ieas§2” and
that does not contain any hypercube of dimengibn
We now further use the XOR lemma to prove a lower bound oritpg— ¢(n))- quantum query complexity
of algorithms computind’ar,, on certain types of subsets @f, and withg(n) exponentially small.



Definition 4.6. (Product subsets a@,,)
Lett € N. A subset4 of O, is said to be a product subset of ordef .4 = D! for someD C Q% s.t. there
EXiStxo, x1 € D with Par% (CU()) =0and PCLT% (ml) = 1.

Loosely, product subsets are cartesian products of “partial naattsubsets”, where “partial” means
that they are not necessarily subcubes and “non-trivial” means thalintheir elements have the same
parity.

We now use the XOR lemma to show a lower bound on the quantum query complieai@yorithms that are
only required to succeed on a product subseppfand with error probability at mosgt /2 — ¢(n)), where
q(n) is exponentially small. Note that this implies a lower bound for algorithms that dyerequired to
succeed on a set that contains such a product subset.

Lemma4.7.Letg : N - Ns.t. 1 < g(n) < nforall n € N. For everyA C @, containing a product
subset of ordeg(n), any algorithm succeeding on all the binary stringsdrwith error probability at most
(1 — 09(M/2) /2 (where0 < § < 1 is any constant) must perforfd(g(n)) queries.

Proof. Any such algorithm3 should succeed on the product subBét”) of orderg(n). Thus, if we let
the “base function” in Lemma 4.1 be the functign: D — {0,1} given by f(z) = Parﬁ(ac) for all
r € D, then Adv*(f) > 1 sinceParﬁ is not constant orD. Letting k = g(n), we see that every

algorithm that computes the parity of every stringlirwith error probability at mostl — §9(")/2) /2 must
be computing the value of the functiano f(*) : {0,1}"* — {0, 1} on every input with error probability at
most(1 — §9("/2) /2. By Lemma 4.1, such an algorithm should m&kg(n)) queries. O

As a sidenote, we note the following lemma:

Lemma 4.8. (Number of product subsets)
For everyn,t € Nwith1 < ¢t < n, the number of product subsets@f of ordert is exactly22t —2v/22 1.

Proof. First, note that the number of stringsdh of even parity is exactl%i. Thus, the number of subsets

of @, consisting only of strings having even parity (or only of strings havingmatity) is exactly22t71 -1,
where the “1" is to exclude the empty set. Thus, the claim follows. O

Finally, we conclude with the following question:

Question 4.9.1f for some subset C [n], the bounded error quantum query complexit@ig Parity|4) =
Q(r(n)) for some functionr. Is it true that the quantum query complexity will still Dér(n)), even if the
error probability is allowed to be as large d52 — ¢(n) for someg(n) = o(1) ?
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