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1 Introduction

In [3] it is conjectured that every bounded real polynomial has a ”highly influential” variable. The
conjecture is known as Aaronson-Ambainis conjecture. In this survey we describe recent results
that resolves some special cases of the conjecture. We also describe some consequences in quantum
computing assuming the conjecture.

2 Aaronson-Ambainis Conjecture

Let p : Rn → R.

Definition 1
Var(p) := Ex,y∈{−1,1}n

[
(p(x)− p(y))2

]
.

Definition 2 The influence of the ith variable is

Infi(p) := Ex∈{−1,1}n
[
(p(x)− p(xi))2

]
,

where xi is x with the ith bit flipped.

Now we state Aaronson-Ambainis conjecture:

Conjecture 1 Suppose that p is degree-d polynomial and |p(x)| ≤ 1 for all x ∈ {−1, 1}n. Then
there exists an i ∈ [n] such that Infi(p) ≥ (Var(p)/d)O(1).

3 The Boolean case

In [4] the Boolean case p : {−1, 1}n → {−1, 1} of the conjecture is solved. First we define decision
tree as in [5]:

Definition 3 A decision tree is a binary tree T. Each internal node of T is labeled with a variable
xi and each leaf is labeled with a value −1 or 1. Given an input x ∈ {−1, 1}n, the tree is evaluated
as follows. Start at the root; if this is a leaf then stop. Otherwise, query the value of the variable
xi. If xi = −1 then recursively evaluate the left subtree, if xi = 1 then recursively evaluate the right
subtree. The output of the tree is the value (−1 or 1) of the leaf that is reached eventually. Note
that an input x deterministically determines the leaf, and thus the output, that the procedure ends
up in.

We say a decision tree computes p if its output equals p(x), for all x ∈ {−1, 1}n. We define
D(p), the decision tree complexity of p, as the depth of an optimal (= minimal-depth) decision tree
that computes p.
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Theorem 1 [4] Let T be a decision tree computing a function p : {−1, 1}n → {−1, 1}. Then

Var(f) ≤
n∑
i=1

δi(T ) Infi(f),

where
δi(T ) = Pr

x∈{−1,1}n
[T queries xi] .

Corollary 1 [4] For every p : {−1, 1}n → {−1, 1} we have

Infmax(p) ≥ Var(p)

D(p)
.

Proof: Let T be the optimal decision tree computing p. From Theorem 1,

Var(f) ≤
n∑
i=1

δi(T ) Infi(f)

≤ Infmax(p)
n∑
i=1

δi(T ) ≤ Infmax(p)D(p),

where the last inequality follows from

n∑
i=1

δi(T ) = Ex∈{−1,1}n [number of coordinates T queries on x] .

Since D(p) ≤ O(deg(p)4) (by a result of Nisan and Smolensky [5]), Corollary 1 implies that the
maximum influence satisfies Infmax(p) ≥ Ω(Var[p]/ deg(p)4).

4 The case of symmetric function

Let p : Rn → R be a symmetric polynomial (p(x) depends only on the Hamming weight of x) of
degree d and |p(x)| ≤ 1 for all x ∈ {−1, 1}n. Let Var(p) = ε, where ε = o(1) (proofs are similar in
the case ε = Ω(1)).

We write p(x) =
∑

S⊆[n] p̂(S)χS(x), where χS(x) =
∏
i∈S xi. This is called the Fourier expansion

of p. We define ‖p‖2 :=
√∑

S⊆[n] p̂(S)2. It can be verified that ‖p‖22 = Ex[p2(x)] and p̂(S1) = p̂(S2)

if |S1| = |S2| for symmetric p.

Theorem 2 For all i,

Infi(p) = Ω

(
ε3

deg4(p) ln(1/ε)

)
.

Proof: It can be shown that Infi(p) = 4
∑

S:i∈S p̂
2(S). Thus∑

i

Infi(p) = 4
∑
S⊆[n]

|S|p̂2(S) ≥ 4
∑
S:S 6=∅

p̂2(S) = 4
(
‖p‖22 − p̂2(∅)

)
= 2 Var(p) = 2ε,

where the second to last equality follows from 2
(
‖p‖22 − p̂2(∅)

)
= Var(p). Now it suffices to prove

1
n = Ω

(
ε2

deg4(p) ln(1/ε)

)
.
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From inequality 2 Ex,y[|p(x)− p(y)|] ≥ Var(p) we get Ex,y[|p(x)− p(y)|] ≥ ε/2.
We choose An such that

Pr
x

[||x| − n/2| > An] = ε/16,

which gives
Ex:||x|−n/2|≤An
y:||y|−n/2|≤An

[|p(x)− p(y)|] = Ω(ε).

By Chernoff bound, An = O
(√

ln(1/ε)n
)
.

Let g(k) = Ex:|x|=k[p(x)]. Now

max
x

[|g′(x)|] = Ω

(
ε√

ln(1/ε)n

)
.

By Markov brothers’ inequality,

deg(p) ≥

√
nmaxx∈[0,n][|g′(x)|]
2 maxx∈[0,n][|g(x)|]

= Ω

(
min

(
√
n,
√
ε

(
n

ln(1/ε)

)1/4
))

= Ω

(
√
ε

(
n

ln(1/ε)

)1/4
)
.

5 Exponential lower bound

First we define junta of boolean function:

Definition 4 A function p : {−1, 1}n → R is called an (δ, j)-junta if there exists a function g :
{−1, 1}n → R depending on at most j coordinates such that ‖p− g‖22 ≤ δ.

In [6] the following result is given:

Theorem 3 [6] Let p : {−1, 1}n → [−1, 1], k ≥ 1, and δ > 0. Suppose∑
|S|>k

p̂(S)2 ≤ exp(−O(k2 log k)/δ).

Then p is an (δ, 2O(k)/δ2)-junta.

Now we prove exponential version of Aaronson-Ambainis conjecture:

Theorem 4 Suppose that p is degree-d polynomial and |p(x)| ≤ 1 for all x ∈ {−1, 1}n. Then there
exists an i ∈ [n] such that Infi(p) ≥ (Var(p)/2d)O(1).

Proof: In the proof of Theorem 3, the junta of p is constructed as

g =
∑

|S|≤k,S⊆J

p̂(S)χS ,

where J is a set of variables that g depends on. Because the influence of a variable is a sum of squares
of Fourier coefficients, it suffices to prove a lower bound on Infmax(g). From [4] (Corollary 3.4) we

get that Infmax(g) ≥ Var(g)
|J |2 . We apply Theorem 3 with k = deg p. Because

∑
|S|>deg p p̂(S)2 = 0, we

can choose δ arbitrarily small. Choosing δ = cVar(p)2 for sufficiently small c gives the result.
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6 Proof sketch for Theorem 3

We give a sketch of the proof from [6].
In the proof of Theorem 3 the following two lemmas are used:

Lemma 1 [2] There is a universal constant K such that the following holds: Let l(x) =
∑n

i=1 aixi,
where the ai’s satisfy

∑
a2i = 1 and the xi’s are independent and uniform random variables taking

value from {−1, 1}. Let t ≥ 1 and suppose that |ai| < 1
Kt for all i. Then

Pr[|l(x)| > t] ≥ exp(−Kt2).

Lemma 2 [6] There is a universal constant K ′ such that the following holds: Suppose p : {−1, 1}n →
R has degree at most k and

∑n
i=1 p̂(i)

2 ≥ 1. Let t ≥ 1 and suppose that |p̂(i)| < 1
K′tk for all i. Then

Pr[|p| ≥ t] ≥ exp(−K ′t2k2).

Lemma 1 shows a supergaussian estimate for linear functions whose coefficients are all small. Lemma
2 shows that the supergaussian behaviour is maintained even if terms of degree at most k are added
to the function.

The proof of Lemma 2 first considers the linear part of p. According to Lemma 1, when
evaluated on a random point x0, the linear part has a non-negligible probability of obtaining a
large value. It may be that p(x0) is still small because of cancellations contributed by the non-
linear part. To evade this cancellation random noise with rate ρ is introduced and the value
of Tρp(x0) =

∑
S⊆[n] ρ

|S|p̂(S)χS(x0) is considered. Some extremal properties of the Chebyshev
polynomials are used to show the existence of successfull noise rate.

In the proof of Theorem 3 slightly modified version of Lemma 2 is used.

Lemma 3 [6] There is a universal constant K such that the following holds: Suppose p : {−1, 1}n →
R has degree at most k. Let T ⊆ [n], and let t ≥ 1. Suppose that

∑
i∈T p̂(i)

2 ≥ 1 and that |p̂(i)| < 1
Ktk

for all i ∈ T . Then
Pr[|p| ≥ t] ≥ exp(−Kt2k2).

The proof of Lemma 3 is almost the same as of Lemma 2.
Now Lemma 3 is used to prove the following Theorem.

Theorem 5 [6] There is a universal constant C such that the following holds: Suppose p : {−1, 1}n →
R has degree at most k and assume

∑
S 6=∅ p̂(S)2 = 1. Let t ≥ 1 and suppose that Infi(p) ≤ t−2C−k

for all i. Then
Pr[|p| ≥ t] ≥ exp(−Ct2k2 log k).

In the proof of Theorem 5 s is chosen such that the weight of the Fourier transform of p on levels
between 2s−1 and 2s is at least 1/ log k. By performing an appropriate random restriction which
fixes many of the coordinates of p, a function is obtained where much of this weight is brought down
to the first level (with non-negligible probability). Since p has very small influences, the restricted
function has to have small first level Fourier coefficients (hypercontractive of [1] is used to control
the amount by which the coefficients deviate from their expectation). When it happens, Lemma 3
is applied to the restricted function.

In the proof of Theorem 3 the following modified version of Theorem 5 is used.

Theorem 6 [6] There is a universal constant C such that the following holds: Suppose p : {−1, 1}n →
R has degree at most k, j ⊆ [n], and assume

∑
S\J 6=∅ p̂(S)2 ≥ ε. Let t ≥

√
ε and suppose that

Infi(p) ≤ ε2t−2C−k for all i /∈ J . Then

Pr[|p| ≥ t] ≥ exp(−(Ct2k2 log k)/ε).
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In the proof of 3 function p is approximated by truncating its Fourier expansion, thus getting
a low degree polynomial. Now there are two possibilities: either this polynomial depends on few
coordinates or it has a significant component contributed by all coordinates with small influence.
In the later case we use 6 and show that the initial polynomial is not bounded by −1 and 1.

7 Consequences of Aaronson-Ambainis conjecture

We will use the fact that the acceptance probability of the quantum query algorithm is 2T -degree
multilinear polynomial in input variable, where T is the number of queries made by quantum
algorithm.

Theorem 7 Suppose Conjecture 1 holds. Let Q be a quantum algorithm that makes T queries to a
Boolean input X = (x1, ..., xN ), and let ε > 0. Then there exists a deterministic classical algorithm
C that makes poly(T, 1/ε, 1/δ) queries to the xi’s, and that approximates Q’s acceptance probability
to within an additive arror ε on a 1− δ fraction of inputs.

Classical algorithm C is as follows. We query additional variable with highest influence (that exists
assuming Conjecture 1) as long as the polynomial of the acceptance probability has large variance.
After querying each additional variable we update polynomial with the polynomial induced by the
answer.

Let Dε(f) be the minimum number of queries made by a deterministic algorithm that evaluates
f on at least 1− ε fraction of inputs. Similarly define Qε(f).

Theorem 8 Suppose Conjecture 1 holds. Then Dε+δ(f) ≤ (Qε(f)/δ)O(1) for all Boolean functions
f and all ε, δ > 0.

We run C from Theorem 7 on the polynomial p (which is the acceptance probability of Qε) until
we obtain estimate p̃ of p such that

Pr
x∈{−1,1}n

[
|p̃(x)− p(x)| ≤ 1

10

]
≥ 1− δ.

Output f(x) = 1 if p̃(x) ≥ 1/2 and f(x) = −1 otherwise. By Theorem 7, this requires poly(T, 1/δ)
queries to x, and by the union bound it successfully computes f on at least 1 − ε − δ fraction of
inputs.

AvgP is the class of languages for which there exists a polynomial-time algorithm that solves a
1− o(1) fraction of instances.

Theorem 9 Suppose Conjecture 1 holds. Then P = P#P implies BQPA ⊂ AvgPA with probability
1 for a random oracle A.

It follows that separating BQP from AvgP relative to a random oracle would as hard as separating
complexity classes in the unrelativized world. In the proof of Theorem 9 it is shown that there
exists a deterministic polynomial-time classical algorithm such that for all quantum algorithms and
x ∈ {−1, 1}n,

Pr
A

[
|p̃x(A)− px(A)| > 1

10

]
<

1

n3
,

where p̃x(A) is the output of the classical algorithm given input x and oracle A. px(A) is the
probability of acceptance of x of the quantum algorithm given oracle A. Suppose we had an
extremely strong variant of Aaronson-Ambainis conjecture, one that implied something like

Pr
A

[
|p̃x(A)− px(A)| > 1

10

]
<

1

exp(n)
.
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Then we could eliminate the neet for AvgP in Theorem 9, and show that P = P#P implies PA =
BQPA with probability 1 for a random oracle A.

Theorem 3 have the following corollaries.

Corollary 2 Suppose a quantum algorithm makes T queries to a Boolean input x ∈ {0, 1}n. Then
for all α, δ > 0, we can approximate the acceptance probability to within an additive constant α, on

a 1− δ fraction of inputs, by making 2O(T )

α4δ4
deterministic classical queries.

Corollary 3 Dε+δ (f) ≤ 2O(Qε(f))/δ4 for all Boolean functions f and all ε, δ > 0.
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