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1 Introduction

Quantum linear optics provides a promising candidate for the realization of quantum computation. The
computational power of quantum optics varies with what input states, gate sets, and measurements are
present in the model. Quantum linear optics with single photon input states and adaptive measurements
is universal for quantum computation [6]. Using non-adaptive measurements reduces the computational
power of linear optics, but there is evidence that this model is still impossible to efficiently simulate using
a classical computer [1]. If Gaussian states are used as inputs, and measurements are taken in the Gaussian
basis only, then the model is efficiently classically simulable [2].

The above authors have considered what happens to the power of quantum optics when the available input
states or measurements are restricted. In this work, we consider what happens when we restrict the gate set
used in the computation. In the circuit model of quantum computation, there are restricted gate sets such
as the Clifford group which generate classically simulable quantum circuits [4]. A priori, it seems there
could be an analogous subset of linear optical elements, a “linear optical Clifford group”, that is efficiently
classically simulable for a certain set of measurements.

In order to create a linear optical Clifford group, we would need to find a gate set which is not universal
for linear optical state evolution. Reck et al. [7] showed that the collection of all phase shifters and all
beam splitters is universal for linear quantum optics. Therefore it is natural to ask: is there any set of
beamsplitters and phase shifters which gives rise to a nontrivial set of unitary transformations, yet still falls
short of universality?

We provide evidence that there is no such set. In particular, we show that any single beam splitter which
mixes modes generates a continuous group on 3 or more modes. This shows that it is not possible to create
a set of nontrivial beamsplitters which generate a discrete subgroup of the unitaries; any set which mixes
modes will always generate a continuous subgroup.

We further conjecture that any beam splitter which mixes modes generates SU(m) or SO(m) on m ≥ 3
modes, i.e. that any beamsplitter is universal for quantum linear optics. This conjecture would strengthen
our result to imply that any set of beamsplitters is either universal or obviously not universal. In separate
work, we have shown this conjecture holds in the case of real beamsplitters. We believe this holds in the
complex case as well, and we are actively working to prove this result.

∗Based on joint work with Scott Aaronson
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2 Formal statement of theorem

A two-mode lossless beamsplitter is a two-by-two unitary matrix. We will assume it does not apply a phase
to the modes it acts upon, i.e. it has determinant 1. Suppose also that we can permute modes in our system.
Permuting two modes is equivalent to applying the matrix

(
0 1
1 0

)
to the modes, so combining this with the

beamsplitter we can assume WLOG the beamsplitter has determinant −1. Therefore any beam splitter (plus
a mode swap) has the form

( α β
β∗ −α∗

)
where |α|2 + |β|2 = 1. A beamsplitter is called non-trivial if |α| 6= 0

and |β| 6= 0.

Consider three distinct modes 1,2 and 3 of our optical system. We can apply our beamsplitter to any two
of these modes i, j. Let bij denote the matrix action of applying the beamsplitter to modes i and j. For
example for the beamsplitter

( α β
β∗ −α∗

)
we have that

b12 =

α β∗ 0
β −α∗ 0
0 0 1


If a beam splitter is trivial, then on m modes the matrices bij generates a subgroup of Pm, the set of m by
m unitary matrices with all entries having norm zero or one. This is an obviously non-universal model of
linear optics. Our main result is that any non-trivial beam splitter densely generates a continuous subgroup
of the unitary group on 3 or more modes.
Theorem 2.1. Consider any non-trivial beam splitter. Then the set {b12, b13, b23} obtained by applying the
above beamsplitter to 2 out of 3 total photon modes densely generates a continuous subgroup of SU(3).

We further conjecture that this set is actually universal, that is it generates SU(m) or SO(m) on m modes
so long as m ≥ 3. However the current proof falls short of showing this. We now proceed to a proof of our
main theorem.

3 Proof of main theorem:

Throughout this section, we will say that a matrixA ∈ U(n) approximates matrixB ∈ U(n) within a factor
of ε > 0 if and only if max

u∈Cn:|u|=1
|(A−B)u| ≤ ε where |u| denotes the L2 norm of u.

Consider applying our beamsplitter to a 3 mode system. Let R1, R2, R3 be defined as the pairwise products
of the beamsplitter actions below:

R1 = b12b13 =

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

 R2 = b23b13 =

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2

 R3 = b12b23 =

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗


Since {R1, R2, R3} are products of matrices of determinant -1, they are all elements of SU(3). Let G be
the subgroup of SU(3) generated by taking finite products from the set {R1, R2, R3}, and then taking the
closure of this set under the operator norm. First we will show that these matrices generate an irreducible
representation (denoted irrep) of G.
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Claim 3.1. The set {R1, R2, R3} densely generates an irreducible 3-dimensional representation of G.

Proof. Suppose that some matrix

U =

A D G
B E H
C F I


commutes with R1, R2, and R3. We will show that U is a constant multiple of the identity, i.e. A = E = I
and D = G = H = B = C = F = 0. This suffices to show that our representation is irreducible. Indeed,
suppose our representation is reducible. Then by a change of basis, our representation can be made block
diagonal. In this basis, the matrix consisting of 1’s on the diagonal in the first block, and 2’s in the diagonal
of the second block commutes with all elements of G, and in particular R1, R2 and R3. Written in our
original basis, this matrix will not be a constant multiple of the identity. Hence if only constant multiples of
the identity commute with R1, R2, and R3, the representation must be irreducible. This is the converse of
Schur’s first lemma.

First, suppose U commutes with R1, i.e. thatA D G
B E H
C F I

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

 =

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

A D G
B E H
C F I


This imposes a series of 9 equations. Below we give the equations coming from the (1,1),(1,2),(2,2),(2,3),
and (3,2) entries of the above matrices, in that order.

(Dα+G)β = (Cα+B)β∗ (1)

(A− E − Fα)β∗ = D(α2 + α∗) (2)

Bβ∗ = Dαβ + Fββ∗ (3)

Bαβ∗ + Eββ∗ −Hα∗ = Gαβ −Hα∗ + Iββ∗ (4)

Cβ∗ = Dβ (5)

Note that equations (5) and (1) imply that
Gβ = Bβ∗ (6)

So by equation (4) we have
Eββ∗ = Iββ∗ (7)

So since 0 < |β| < 1, we have that I = E.

In total so far we have I = E, Gβ = Bβ∗ and Cβ∗ = Dβ.

Next suppose that U commutes with R2, i.e. thatA D G
B E H
C F E

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2

 =

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2

A D G
B E H
C F E


This imposes another series of nine equations. We have kept only the equations from the (1,1), (2,1) and
(2,2) entries of the above matrices, respectively. Here we have simplified using I = E, Gβ = Bβ∗ and
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Cβ∗ = Dβ.

Dβ = Dββ∗ −Gα∗β (8)

Eββ∗ −Hα∗β = Aββ∗ − Cα∗β∗ (9)

Hβ = Dββ∗ − Fα∗β∗ (10)

Note that (8) and (10), combined with the fact that Gβ = Bβ∗, imply that Dβ = Hβ, and hence D = H .

Plugging this in to (9), we see that Eββ∗ − Dα∗β = Aββ∗ − Cα∗β∗. Using Cβ∗ = Dβ these last two
terms cancel, so Eββ∗ = Aββ∗, and hence E = A.

So overall we have established that A = E = I , D = H , B = F , Gβ = Bβ∗ and Cβ∗ = Dβ.

We now break into two cases. If B = 0, we have from above that B = F = G = 0. By (8) we also have
that Dβ = Dββ∗ ⇒ D = 0 since 0 < |β| < 1. Hence we have C = 0 as well by the fact that Cβ∗ = Dβ.
Therefore our matrix U is diagonal and constant, as desired.

Now it suffices to show that any other case (B 6= 0) cannot happen by drawing a contradiction.

In this case, we furthermore have that U commutes with R3. Using our currently established facts, this
means A D G

B A D
C B A

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗

 =

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗

A D G
B A D
C B A


This imposes another series of 9 equations; we will only need the one coming from the (2,2) entry of the
matrices above to complete the proof

Bαβ∗ = −Bα∗β∗ (11)

Since we are in the case B 6= 0, equation (11) give that α = −α∗, i.e. α is pure imaginary.

Furthermore since Gβ = Bβ∗, G 6= 0 as well.

Using this new knowledge, we now write out equations (2) and (3)

(−Bα)β∗ = D(α2 − α) ⇒Gβ = D(1− α) (12)

Bβ∗ = Dαβ + Fββ∗ ⇒G = Dα+Gβ (13)

Summing these equations, we see that G = D. Plugging this back into (13) we see that

β = 1− α

Since α is pure imaginary this contradicts |α|2 + |β|2 = 1.

Hence if U commutes with all elements of G, then it is a constant matrix. Hence these matrices generate an
irreducible representation of G of dimension 3.

If G is finite, then these matrices precisely generate an irreducible representation of G. We can use this fact
to rule out the possibility that G is finite using the classification of all irreducible representations of finite
subgroups of SU(3).
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Claim 3.2. G is not finite

Proof. The finite subgroups of SU(3) consist of the finite subgroups of SU(2), six exceptional finite sub-
groups, and two infinite families of “dihedral-like” groups [3].

First we eliminate the possibility that G is an exceptional finite subgroup of SU(3). These are labelled
Σ(60), Σ(168), Σ(360), Σ(36), Σ(72) and Σ(216). Of these only three of them have three-dimensional
irreducible representations: Σ(60), Σ(168) and Σ(216). Therefore by Claim 3.1 we know G is not Σ(360),
Σ(36), or Σ(72).

The character tables of these groups is provided in [3]. Recall that the character of an element of a represen-
tation is the trace of its representative matrix. The traces of the matrices {R1, R2, R3}, denoted {T1, T2, T3}
are given by

T1 = α2 − 2α∗ (14)

T2 = (α∗)2 + 2α (15)

T3 = −|α|2 + α− α∗ = −|α|2 + 2Im(α) (16)

We will show that these cannot be the characters of elements of a 3-dimensional irrep of Σ(60), Σ(168) and
Σ(216).

There are two irreps of Σ(60) up to conjugation [3]. The characters of the elements in the representation
all lie in the set

{
0,−1, 3, 1+

√
5

2 , 1−
√
5

2

}
. Note that since 0 < |α|2 < 1, T3 cannot be in this set unless

T3 = 1−
√
5

2 , which implies Im(α) = 0. But then this implies α = ±
√√

5−1
2 . Plugging this into T1 and T2,

we see they are not in the set of allowed values. Hence G is not Σ(60).

There are two 3-dimensional irreps of Σ(168) up to conjugation. The characters of this representation are
in the set S =

{
0,±1, 3, 12(−1± i

√
7)
}

. Since 0 < |α|2 < 1, if T3 is in this set it must have value
1
2(−1 ± i

√
7). Therefore we must have α = ±3

4 ±
√
7
4 i. This implies that α2 = 2

16 ±
3
√
7

16 i and 2α∗ =

±3
4 ±

√
7
4 i. Irregardless of the signs chosen this means that T1 is not in the set S of allowed values. Hence

G is not Σ(168).

There is one 3-dimensional irrep of Σ(216) up to conjugation. The characters of this represenation are in
the set {0,−1, 3}. Since T3 cannot be in this set, G is not Σ(216). We have therefore shownt that G is not
an irrep of an exceptional finite subgroup of SU(3).

Next we will show that G is not in one of the two infinite families of “dihedral-like” subgroups of SU(3),
which are called ∆(3n2) and ∆(6n2) and are indexed by n ∈ N. The three-dimensional irreps of ∆(3n2) are
labelled by integers m1,m2 ∈ {0, . . . , n−1} and have conjugacy classes labelled by p, q ∈ {0, . . . , n−1}.
The respective characters are either zero or

e
2πi
n

(m1p+m2q) + e
2πi
n

(m1q−m2(p+q)) + e
2πi
n

(−m1(p+q)+m2p) (17)

First we show that none of the traces Ti can be zero. Obviously T3 cannot be zero as 0 < |α|2 < 1. We
know that in order for T1 to be zero, we need α2 = 2α∗, which implies |α| = 2 which is not possible, and
likewise with T2. Hence for G to be an irrep of ∆(3n2) for some n, we would need each Ti to have the form
of equation 17. However looking at the group table for this group, this conjugacy class does not generate all
of ∆(3n2) for any n. Therefore G is not ∆(3n2) for any n.

Next we turn our attention to the second family of dihedral-like subgroups of SU(3), labelled ∆(6n2). This
group contains six families of conjugacy classes labelledA,B,C,D,E, F and by integers p, q as above. The
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three-dimensional irreps of Σ(6n2) are again labelled by (m1,m2), which now their values in (m, 0), (0,m)
or (m,m), as well as t ∈ {0, 1}. The character of each element is

Tr(A(p, q)) = e
2πi
n

(m1p+m2q) + e
2πi
n

(m1q−m2(p+q)) + e
2πi
n

(−m1(p+q)+m2p) (18)

Tr(B(p, q)) = (−1)te
2πi
n

(m1p+m2q) (19)

Tr(D(p, q)) = (−1)te
2πi
n (m1(

n
2
−p−q)+m2p) (20)

Tr(F (p, q)) = (−1)te
2πi
n (m1q+m2(

n
2
−p−q)) (21)

Tr(C(p, q)) = Tr(E(p, q)) = 0 (22)

As noted previously each Ti cannot be zero. Note that the traces of the elements in conjugacy classes B, D
and F have norm 1, and are equal to eiθ where θ is a rational multiple of 2π.

Next we show that at most one of the Ti’s can have norm 1. This implies that at least two of the matrices
R1, R2, R3 must be of conjugacy class A, and at most one can be in conjugacy classes B, D, or F. But by
examining the multiplication table for this group provided in [3], one can see that elements from conjugacy
class A plus an element from either class B, D, or F does not generate the entire group. Therefore this will
suffice to show that G is not ∆(6n2).

Let α = a+ bi. If Ti has norm one, this imposes the following equations on a and b:

|T1|2 = 1⇒ (a2 + b2)2 + 4[a2(1− a) + b2(3 + a)] = 1 (23)

|T2|2 = 1⇒ (a2 + b2)2 + 4[a2(1 + a) + b2(1− 3a)] = 1 (24)

|T3|2 = 1⇒ (a2 + b2)2 + 4b2 = 1 (25)

If |T1| = |T2| = 1, then the only solutions to this pair of equations in which 0 < |α|2 = a2 + b2 < 1 is are

a = 0 and b = ±
√√

5− 2 and a = ±1
2

√
3(
√

5− 2) and b = ±1
2

√√
5− 2.

In the first case, we see that T2 = −(
√

5 − 2) ± 2i
√√

5− 2. Therefore if T2 = eiθ we have cos(θ) =
−(
√

5 − 2). We now show that θ is an irrational multiple of π, which eliminates the possiblity that T2 and
T3 are simultaneously traces of elements of classes B,D or E. Indeed, it can be easily shown that if θ is a
rational multiple of π, then 2 cos θ is an algebraic integer, and furthermore all conjugates of 2 cos(θ) are of
norm less than two [5]. The minimal polynomial for 2

√
5 − 4 is x4 + 8x − 4, which has another root of

norm greater than 2. Therefore θ is not a rational multiple of π, which eliminates this possibility.

In the second case, if T1 = eiθ we see that cos(θ) = −1 +
√
5
2 ±

√
3(
√

5− 2) . The minimal polynomial
for 2 cos(θ) is x4 + 8x3 + 62x2− 56x− 191, which has roots of norm greater than two. Hence by the same
arguments as above θ is an irrational multiple of π, which eliminates this possibility.

If |T2| = |T3| = 1, then the only solution to this pair of equations in which 0 < |α|2 = a2 + b2 < 1 is
a = 0 and b = ±

√√
5− 2, or two other solutions with closed form. The first possibility was previously

eliminated since it implies T2 = eiθ where θ is an irrational multiple of π. The second two solutions can
be eliminated using the same techniques as above. In this case if T3 = eiθ the minimal polynomial for
2 sin(θ) = 2 cos(θ − π

2 ) is x6 + 10x4 + 41x2 − 288, which has roots of norm more than two.

If |T1| = |T3| = 1, then the only solution to this pair of equations in which 0 < |α|2 = a2 + b2 < 1 is
a = 0 and b = ±

√√
5− 2. In this case if T1 = eiθ, then cos(θ) = 2−

√
5. This possibility was previously

eliminated in the case |T1| = |T2| = 1.

Hence at most one of these traces can have norm 1, which eliminates subgroup ∆(6n2) as described above.
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Finally we will show that G is not a finite subgroup of SU(2). Since SU(2) is a double cover of SO(3), in
this case G must either be a subgroup of SO(3) or a double cover of such a group. We first eliminate the
subgroups of SO(3). The dihedral and cyclic groups have no three-dimensional irreducible representations,
hence G cannot be one of these. The icosahedral group is isomorphic to Σ(60) so has already been elim-
inated. The octahedral group and tetrahedral groups do have 3 dimensional irreps. The characters of their
elements all lie in the set {0,±1,±3} so can be eliminated just as the exceptional groups of SU(3) were
eliminated.

Now all that remains are double covers of the subgroups of SO(3), i.e. the binary versions of the above
groups. The binary dihedral groups, also known as the dicyclic groups, have no three-dimensional irreps.
The binary tetrahedral group has one three-dimensional irrep, with character values in the set {0,±1,±3}.
T3 cannot be in this set as noted above.

The binary octahedral group has two three-dimensional irreps, with character values also in {0,±1,±3}, so
is likewise eliminated. The binary icosahedral group has two three-dimensional irreps, with all characters
in the set {0,−1, 3,

√
5±1
2 }. As discussed in the elimination of Σ(60), our traces cannot take these values.

Therefore, by enumeration of the finite subgroups of SU(3), we have shown that G is not finite.

Corollary 3.3. G is a continuous subgroup of SU(3)

4 Conclusion

At the moment our proof requires that the beamsplitters are have phase ±1. An open question is whether
or not this theorem can be extended to cover beam splitters which apply a phase, or if it can be extended to
multi-mode beam splitters. A positive answer to either of these questions would provide stronger evidence
against the existence of a “linear optical Clifford group”.

More broadly, we hope that this research will help to address the question of whether or not it is possible to
construct a complexity class intermediate between BPP and BQP by restricting gates in the circuit model.
We conjecture that this is not possible: that any quantum gate set on a finite number of qubits is either BQP-
complete or efficiently classically simulable in some appropriately chosen basis. A proof of this conjecture
would require more sophisticated techniques than those employed in this work, since the tensor product
structure of quantum circuits is more complex than the direct sum structure of linear optics. We hope that
our work will serve as a stepping stone for proving this more general conjecture.
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