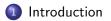
Quantum Weak Parity Problem

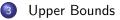
Mohammad Bavarian (joint with S. Aaronson) bavarian@mit.edu

Quantum Complexity Project Dec 12th 2012

Mohammad Bavarian (joint with S. Aaronson Quantum V

Quantum Weak Parity Problem





4 The Gap and the Case $k \ll \sqrt{n}$

æ

Dec 12tl

11

Origin of the Problem

Only thing I will for sure remember from this course in two years: PARITY needs $\Omega(n)$ queries in a black box-model ! Is this end of PARITY's story? NO!

Question

Imagine given access to a black-box $X = (x_1, x_2, ..., x_n)$ and still want to compute $PARITY(x_1, x_2, ..., x_n)$.

Problem? allowed to make only k queries.

Maybe box becomes untrustable after k queries or explodes or something ! Can you do something intelligent regarding PARITY when $k \ll n$?

Hope: we compute PARITY on large number of inputs ?!

Mohammad Bavarian (joint with S. Aaronson

Definition of Weak Parity Problem

Problem (Weak PARITY Problem)

What is the maximum size of a subset $A \subseteq \{0,1\}^n$ such that there exists a (bounded error) quantum algorithm U that makes at most k queries to $X = (x_1, x_2, ..., x_n)$ and satisfies for all $x \in A$

$$\Pr[U(x) = PARITY(x)] \ge \frac{2}{3} \quad \forall x \in A$$

Observation

A Classical randomized machine restricted to make k < n queries might as well not bother to query the box at all and just output zero !

Quantum Complexity Project

Classical Machines seem too weak for this problem. What about quantum? Quantum, this work.

Mohammad Bavarian (joint with S. Aaronson Quantum Weak Parity Problem

Weak PARITY Recast

We defined Weak Parity as a maximization problem on the size of good set, i.e. where we can compute PARITY.

But our lower bound techniques work in the framework of minimizing query complexity.

A new definition:

```
Problem (Weak PARITY Recast)
```

What is the minimum query complexity of a quantum algorithm U that outputs PARITY with bounded error on a set of fractional size $\frac{1}{2} + \epsilon$ of $Q_n = \{0, 1\}^n$.

Lower Bound Using Polynomial Method

Theorem

Any quantum algorithm U computing PARITY on a set A of size $(\frac{1}{2} + \epsilon)2^n$ requires at least $\Omega(\frac{n}{\log(1/\epsilon)})$.

Sketch of Proof

- Create an algorithm U' that uses U to compute PARITY on every input w.p > 1/2.
- Polynomial Method $\longrightarrow U'$ needs $\Omega(n)$ queries \longrightarrow Lower bound on U.

The key is self-reducibility of PARITY.

- Pick a random vector $Y = (y_1, y_2, ..., y_n)$. Computes PARITY of Z = X + Y. We know *PARITY*(Y) because we generated it.
- Compute PARITY of Z: Run U on Z for O(log(1/\epsilon)) times. Take majority of answer. Will succeed w.p. > 1/2.

An Upper Bound

Theorem

There exist an algorithm U that makes only $O(\frac{n}{\sqrt{\log(1/\epsilon)}})$ queries to $X = (x_1, x_2, \dots, x_n)$ and computes PARITY on A a set of size $(\frac{1}{2} + \epsilon)2^n$.

Sketch of Proof

- The key is the case $\epsilon = 2^{-n}$. Observation: $OR_n = PARITY_n$ for $2^{n-1} + 1$ inputs.
- Conclude the general case: Partition the coordinates {x_i}ⁿ_{i=1} into m ≈ log(1/ε) groups of size roughly n/m.
- Output $OR_m(y_1, y_2, ..., y_m)$ where each y_i is the PARITY of the corresponding *i*-th group out of total *m* groups.

How About This Gap?

The gap looks small. Actually it is not so. Back to original formulation of problem

Corollary (Gap Recast)

A quantum machine restricted to make only k queries to a black box can decide PARITY on a set A of size

$$\frac{1}{2} + 2^{-O(n^{2(1-c)})} \le \frac{|A|}{2^n} \le \frac{1}{2} + 2^{-\Omega(n^{1-c})}$$

Important Case

- Our lowest complexity algorithm required $\Omega(\sqrt{n})$ queries.
- Don't know any non-trivial algorithm for $k \ll \sqrt{n}$. However, we cannot rule out algorithms succeeding on $\frac{1}{2} + 2^{-n^{0.4}}$ fraction say.
- So a big gap in some sense.

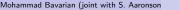
Dec 12

The Gap and the Case $k \ll \sqrt{n}$

Weak Parity With Constant Queries?

Question

Can we do anything non-trivial using only O(1) queries to the box?



Quantum Complexity Project

Dec 12

Weak Parity With Constant Queries?

Question

Can we do anything non-trivial using only O(1) queries to the box?

The answer is No.

Theorem

We at least need $\sqrt{\alpha(n)}$ queries to compute PARITY on a set of size $2^{n-1} + 1$

$$\alpha(n) = \frac{1}{2}\log n - \frac{1}{2}\log\log(n) + \frac{1}{2}$$

Proof Idea Extremal Graph theory over the hypercube. Lower Bound follows by showing *sensitivity* is at least $\alpha(n)$.

Mohammad Bavarian (joint with S. Aaronson

The Gap and the Case $k \ll \sqrt{n}$

Last Words: Improvements and Conjectures

Conjecture

We need $\Omega(\sqrt{n})$ queries for Weak Parity for $2^{n-1} + 1$ size.

More generally we expect that the algorithm presented to be optimal. Improving the lower bound to $\Omega(n^{\delta})$ might be hard. How do I know?



Last Words: Improvements and Conjectures

Conjecture

We need $\Omega(\sqrt{n})$ queries for Weak Parity for $2^{n-1} + 1$ size.

More generally we expect that the algorithm presented to be optimal. Improving the lower bound to $\Omega(n^{\delta})$ might be hard. How do I know? Relations to sensitivity conjecture.

Hence we restrict to logarithmic regime. We get some improvements. As corollary we have,

Theorem

For any $\delta > 0$ there exist $\beta > 0$ such that for $f: \{0,1\}^n \to \{0,1\}$,

 $2^{s(f)} \ge \beta \deg(f)^{1-\delta}$

This might be be the best upper bound known on deg(f) in terms of s(f).

Summary

- Introduced Weak Parity problem.
- Upper bound of $O(\frac{n}{\sqrt{\log(1/\epsilon)}})$ and lower bound of $\Omega(\frac{n}{\log(1/\epsilon)})$ for query complexity *PARITY_n* on a set of fractional size $\frac{1}{2} + \epsilon$.

Quantum Complexity Project

• Briefly mentioned the conjectures and theorems regarding the case $k \ll \sqrt{n}$.