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QFT: Marriage of QM and Special Relativity

Special Relativity: F = m(c?).
Infinitely Many Degrees of Freedom
= QFT
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Describing a QFT

Many different pictures of QM.

@ Hamiltonian:
U= efitfd%:?-i

This picks out a time coordinate — doesn’t manifestly
respect Lorentz symmetry

@ Lagrangian:
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Loen =B — 3(F)? — miby



Approaches to QFT

@ Perturbative — Taylor expand exponential. Asymptotic,
not convergent. Requires small coupling

@ Non-perturbative, exact — Only known for a few special
cases, mostly in 2 spacetime dimensions

@ Non-perturbative, numerical — Lattice. Gives static
quantities (e.g., mass ratios), but not scattering
amplitudes

No known efficient classical algorithm for scattering
amplitudes, in general!
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Non-Relativistic vs. Relativistic Computation

Classically, believed that special relativity gives no change in
computation power. (Aaronson)

@ Same degrees of freedom — positions, momenta

e Time dilation — relativity has more power?

@ Cosmic speed limit — relativity has less power?
Is the same true, once we add in QM?

@ QFT is more fundamental, so it should be able to simulate
non-relativistic quantum computers in polynomial time

@ Is the converse true?



Difficulties in Simulating a QFT with a Quantum

Computer

@ Initial state does not determine final state — probabilistic

@ Depending on incoming momentum, could have arbitrarily
many output particles

@ Field can take on infinitely many values — can we impose
max field cutoff and discretize without introducing too
much error?

@ Infinitely many degrees of freedom — can we impose UV
and IR cutoffs without introducing too much error?



Outline

© Algorithm Overview




A Simple QFT - ¢* theory
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Future study: gauge theories, higher-spin fields, zero mass.



Spatial dimension d. Hamiltonian — easier to use quantum
simulation. Put theory on spatial lattice 2 = aZdﬁ (with

periodic bc); V = L7 lattice sites

@ Input: List of incoming momenta

@ Output: List of outgoing momenta. ¢ mass non-zero =
# outoing particles is at most linear in incoming particles’
center-of-mass energy. Repeated runs sample from
probability distribution for possible results of scattering
experiment

@ Precision: Probability of an outcome, according to
simulation, differs from true probability by no more than
+e



Representing the Field — Single Lattice Site

ny = (log(¢max/5¢)) How to choose ¢pax, 047 Note:
Tmax ~ ad5 . Say in |¢), where (¢|H ) < E. Unlikely for

|¢()| to be much larger than O(VE).
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Suzuki-Trotter
© Prepare the free vacuum (Kitaev and Webb)
© Excite wavepackets.
© Adiabatically turn on interaction.
@ Simulate Hamiltonian time evolution.
© Adiabatically turn off interaction.

© Measure occupation numbers of momentum modes.



Excite wavepackets
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Adiabatically turn on interaction — How slowly do

we go?

@ Rate at which we turn on )y depends on the physical
mass.

@ Weak coupling: can calculate perturbatively

@ Strong coupling: slowly increase )\, estimating the mass
at each value. Measure energy using phase estimation

@ Route in parameter space may be circuitous — avoid
“phase transition” where mass goes to 0



Representing the Field — IR Cutoff

Want V' infinite — non-interacting, at first. Non-zero mass, so
errors shrink exponentially with distance ¢:

€~ e %™ =V ~ ni,log(1/€). Similarly, non-interacting at
end, so V' ~ ngylog(1l/e). p < 1/a, so

d+1
V ~ nout



Representing the Field — UV Cutoff

Legg =L 0)+ ¢6+ ¢382¢+ Cbs

Dimensional analysis: Iater terms get Iarger power of a



Performance: Strong Coupling, d =1, 2
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Table: f(n) = O(g(n)) means f(n) = O(g(n)log®(n)) for some ¢



Performance: Weak Coupling
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