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QFT: Marriage of QM and Special Relativity

Special Relativity: E = m(c2).
Infinitely Many Degrees of Freedom
⇒ QFT



Standard Model



Describing a QFT

Many different pictures of QM.

Hamiltonian:
U = e−it

∫
d3xH.

This picks out a time coordinate – doesn’t manifestly
respect Lorentz symmetry

Lagrangian:

Z =

∫
Dφei

∫
d4xL

LQCD = ψ(i /D)ψ − 1

4
(F i

µν)
2 −mψψ



Approaches to QFT

Perturbative – Taylor expand exponential. Asymptotic,
not convergent. Requires small coupling

Non-perturbative, exact – Only known for a few special
cases, mostly in 2 spacetime dimensions

Non-perturbative, numerical – Lattice. Gives static
quantities (e.g., mass ratios), but not scattering
amplitudes

No known efficient classical algorithm for scattering
amplitudes, in general!
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Non-Relativistic vs. Relativistic Computation

Classically, believed that special relativity gives no change in
computation power. (Aaronson)

Same degrees of freedom – positions, momenta

Time dilation – relativity has more power?

Cosmic speed limit – relativity has less power?

Is the same true, once we add in QM?

QFT is more fundamental, so it should be able to simulate
non-relativistic quantum computers in polynomial time

Is the converse true?



Difficulties in Simulating a QFT with a Quantum

Computer

Initial state does not determine final state – probabilistic

Depending on incoming momentum, could have arbitrarily
many output particles

Field can take on infinitely many values – can we impose
max field cutoff and discretize without introducing too
much error?

Infinitely many degrees of freedom – can we impose UV
and IR cutoffs without introducing too much error?
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A Simple QFT – φ4 theory

L =
1

2
(∂φ)2 − 1

2
m2

0φ
2 − λ0

4!
φ4

H =
1

2
π2 +

1

2
(∇φ)2 +

1

2
m2

0φ
2 +

λ0

4!
φ4, π = φ̇

Future study: gauge theories, higher-spin fields, zero mass.



Algorithm

Spatial dimension d. Hamiltonian – easier to use quantum
simulation. Put theory on spatial lattice Ω = aZd

L̂
(with

periodic bc); V = L̂d lattice sites

Input: List of incoming momenta

Output: List of outgoing momenta. φ mass non-zero ⇒
# outoing particles is at most linear in incoming particles’
center-of-mass energy. Repeated runs sample from
probability distribution for possible results of scattering
experiment

Precision: Probability of an outcome, according to
simulation, differs from true probability by no more than
±ε



Representing the Field – Single Lattice Site

nb = O(log(φmax/δφ)). How to choose φmax, δφ? Note:
πmax ∼ 1

adδφ
. Say in |ψ〉, where 〈ψ|H|ψ〉 ≤ E. Unlikely for

|φ(x)| to be much larger than O(
√
E).

φmax = O

(√
VE
adm2

0ε

)
, πmax = O

(√
VE
εad

)

nb = O

(
log

(
VE
m0ε

))



Algorithm

Suzuki-Trotter

1 Prepare the free vacuum (Kitaev and Webb)

2 Excite wavepackets.

3 Adiabatically turn on interaction.

4 Simulate Hamiltonian time evolution.

5 Adiabatically turn off interaction.

6 Measure occupation numbers of momentum modes.



Excite wavepackets

Γ =
2π

L̂a
Zd
L̂

ω(p) =

√√√√m2
0 +

4

a2

d∑
j=1

sin2
(apj

2

)

a†x =
∑
p∈Γ

L−de−ip·x

√
1

2ω(p)
a†p

a†ψ = η(ψ)
∑
x∈Ω

adψ(x)a†x

Hψ = a†ψ ⊗ |1〉〈0|+ aψ ⊗ |0〉〈1|

e−iHψπ/2|0〉|0〉 = −ia†ψ|0〉|1〉



Adiabatically turn on interaction – How slowly do

we go?

Rate at which we turn on λ0 depends on the physical
mass.

Weak coupling: can calculate perturbatively

Strong coupling: slowly increase λ0, estimating the mass
at each value. Measure energy using phase estimation

Route in parameter space may be circuitous – avoid
“phase transition” where mass goes to 0



Representing the Field – IR Cutoff

Want V infinite – non-interacting, at first. Non-zero mass, so
errors shrink exponentially with distance δ:
ε ∼ e−δ/m ⇒ V ∼ nin log(1/ε). Similarly, non-interacting at
end, so V ∼ nout log(1/ε). p� 1/a, so

V ∼ nd+1
out



Representing the Field – UV Cutoff

Leff = L(0) +
c

6!
φ6 + c′φ3∂2φ+

c′′

8!
φ8 + . . .

Dimensional analysis: later terms get larger power of a



Performance: Strong Coupling, d = 1, 2

λc − λ0 p nout

d = 1
(

1
λc−λ0

)8+o(1)

p4+o(1) Õ(n5
out)

d = 2
(

1
λc−λ0

)5.04+o(1)

p6+o(1) Õ(n7.128
out )

Table: f(n) = Õ(g(n)) means f(n) = O(g(n) logc(n)) for some c



Performance: Weak Coupling

Gweak ∼


(

1
ε

)1.5+o(1)
: d = 1(

1
ε

)2.376+o(1)
: d = 2(

1
ε

)3.564+o(1)
: d = 3
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