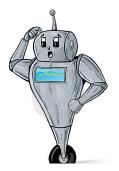
QUANTUM POMDPS

Jenny Barry

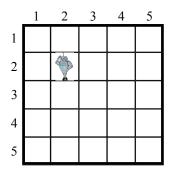
6.845 Final Project Presentation December 12, 2012

POMDPs



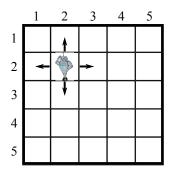
ROBOTS...

- Don't know where they are.
- Don't know what they are doing.
- Don't understand what they are seeing.



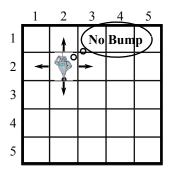
States: (i, j)

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)



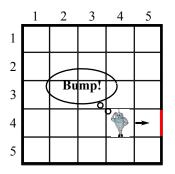
States: (i, j) Actions: (L, R, U, D, S)

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)



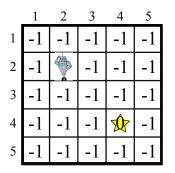
States: (i, j) Actions: (L, R, U, D, S) Observations: No Bump, Bump

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)



States: (i, j) Actions: (L, R, U, D, S) Observations: No Bump, Bump

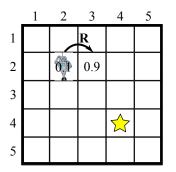
PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)



States: (i, j) Actions: (L, R, U, D, S) Observations: No Bump, Bump Rewards: 0 at ☆, -1 else

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)

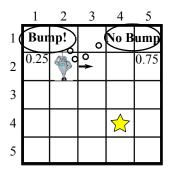
- *S*, *A*, Ω: Possible states, actions, observations
- $R(s_i, a_j)$: Reward for taking action a_j in state s_i



States: (i, j) Actions: (L, R, U, D, S) Observations: No Bump, Bump Rewards: 0 at ☆, -1 else

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)

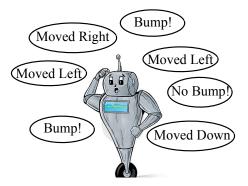
- *S*, *A*, Ω: Possible states, actions, observations
- $R(s_i, a_j)$: Reward for taking action a_j in state s_i
- $T(s_i|a_j, s_k)$: Probability of transitioning to s_i starting in s_j taking action a_j



States: (i, j) Actions: (L, R, U, D, S) Observations: No Bump, Bump Rewards: 0 at ☆, -1 else

PARTIALLY OBSERVABLE MARKOV DECISION PROCESS (POMDP)

- *S*, *A*, Ω: Possible states, actions, observations
- $R(s_i, a_j)$: Reward for taking action a_j in state s_i
- $T(s_i|a_j, s_k)$: Probability of transitioning to s_i starting in s_j taking action a_j
- $O(o_i|a_j, s_k)$: Probability of observing o_i given that action a_j ended in s_k



DEFINITION: BELIEF STATE

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

•
$$\vec{b}_i = \Pr(s_i)$$

• $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$

	1 2		3	4	5
1	0.04	0.04	0.04	0.04	0.04
2	0.04	0.04	0.04	0.04	0.04
3	0.04	0.04	0.04	0.04	0.04
4	0.04	0.04	0.04	0.04	0.04
5	0.04	0.04	0.04	0.04	0.04

DEFINITION: BELIEF STATE

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

•
$$\vec{b}_i = \Pr(s_i)$$

• $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$

	1	2	3	4	5		1	2	3	4	5
1	0.04	0.04	0.04	0.04	0.04	1	0	0.07	0.07	0.07	0
2	0.04	0.04	0.04	0.04	0.04	Move Right ₂	0	0.07	0.07	0.07	0
3	0.04	0.04	0.04	0.04			0	0.07	0.07	0.07	0
4	0.04	0.04	0.04	0.04	0.04	See No Bump ₄	0	0.07	0.07	0.07	0
5	0.04	0.04	0.04	0.04	0.04	5	0	0.07	0.07	0.07	0

DEFINITION: BELIEF STATE

POMDP $P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$ Belief space $B \subset \mathbb{R}^{|S|}$:

•
$$\vec{b}_i = \Pr(s_i)$$

• $\sum_i \vec{b}_i = |\vec{b}|_1 =$

QOMDPs

DEFINITION: BELIEF STATE

POMDP
$$P = \langle S, A, \Omega, R, T, O \rangle \Rightarrow$$
 Belief space $B \subset \mathbb{R}^{|S|}$:
• $\vec{b}_i = \Pr(s_i)$

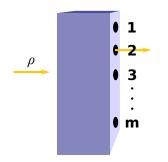
• $\sum_i \vec{b}_i = |\vec{b}|_1 = 1$

BELIEF MARKOV DECISION PROCESS

- *B*: Belief space (continuous)
- A: Robot's actions
- $\tau(\vec{b}'|a_i,\vec{b})$: Probability of \vec{b}' after taking action a_i in state \vec{b} .
- $\rho(\vec{b}, a_i) = \sum_i \vec{b}_i R(s_i, a_i)$: Reward for taking action a_i in state \vec{b}
- *b*₀: Starting belief state

I know that I know nothing. - Socrates

QOMDPs



DEFINITION: SUPEROPERATOR

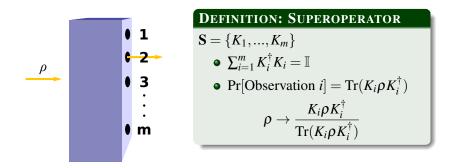
$$\mathbf{S} = \{K_1, \dots, K_m\}$$

•
$$\sum_{i=1}^m K_i^{\dagger} K_i = \mathbb{I}$$

•
$$\Pr[\text{Observation } i] = \operatorname{Tr}(K_i \rho K_i^{\dagger})$$

$$ho
ightarrow rac{K_i
ho K_i^{\dagger}}{\operatorname{Tr}(K_i
ho K_i^{\dagger})}$$

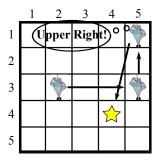
QOMDPs



QUANTUM OBSERVABLE MARKOV DECISION PROCESS (QOMDP)

- S: Hilbert space
- Ω: Set of observations
- A: Set of quantum superoperators
- R: Reward function
- *ρ*₀: Starting state

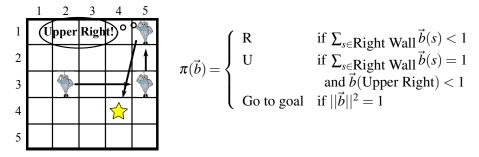
JENNY BARRY



Strategy:

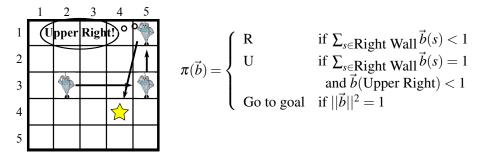
- Localize: go right until wall, then up
- O Go to goal

POMDPS ARE HARD...



POLICY: $\pi(\vec{b},t) = a$ specifies action to take in belief \vec{b} at time t

POMDPS ARE HARD...



POLICY: $\pi(\vec{b},t) = a$ specifies action to take in belief \vec{b} at time t

POLICY EXISTENCE PROBLEM (PEP)

Given POMDP $P = \langle S, A, \Omega, R, T, O \rangle$, decide if there is some policy π that has expected future reward at least *V* over the next *h* timesteps.

If *h* =poly(*S*), PEP is in PSPACE and PSPACE-COMPLETE.
If *h* = ∞, PEP is UNDECIDABLE.

JENNY BARRY

QOMDPs

...BUT QOMDPS ARE HARDER

$\textbf{POMDPs} \subseteq \textbf{QOMDPs}$

- PEP with h = poly(d) is at least PSPACE-Complete
- ✓ PEP with $h = \infty$ is UNDECIDABLE

... BUT QOMDPS ARE HARDER

$\textbf{POMDPs} \subseteq \textbf{QOMDPs}$

- ✓ PEP with h = poly(d) is **PSPACE-COMPLETE**
- ✓ PEP with $h = \infty$ is UNDECIDABLE

THEOREM

PEP for QOMDPs with h = poly(d) is in PSPACE.

PROOF SKETCH: There are only $O((|A||\Omega|)^h)$ policies. Try them all.

... BUT QOMDPS ARE HARDER

$\textbf{POMDPs} \subseteq \textbf{QOMDPs}$

- ✓ PEP with h = poly(d) is **PSPACE-COMPLETE**
- ✓ PEP with $h = \infty$ is UNDECIDABLE

GOAL-STATE REACHABILITY PROBLEM (GRP)

Assume the Q(P)OMDP has an absorbing goal state. Decide if there is a policy that reaches this goal state with probability 1.

$$\rho_{g}$$

$$\rho_{g}$$

$$\rho_{g}$$

$$\rho_{g}$$

$$\rho_{g}$$

$\textbf{POMDPs} \subseteq \textbf{QOMDPs}$

- ✓ PEP with h = poly(d) is **PSPACE-COMPLETE**
- ✓ PEP with $h = \infty$ is UNDECIDABLE
- GRP is DECIDABLE for POMDPs
- GRP is UNDECIDABLE for QOMDPs

GOAL-STATE REACHABILITY PROBLEM (GRP)

Assume the Q(P)OMDP has an absorbing goal state. Decide if there is a policy that reaches this goal state with probability 1.

$$\rho_{g}$$

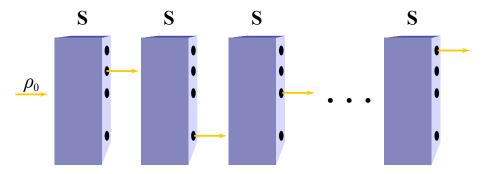
$$\rho_{g}$$

$$\rho_{g}$$

$$\rho_{g}$$

$$\rho_{g}$$

GRP FOR QOMDPS: QMOP

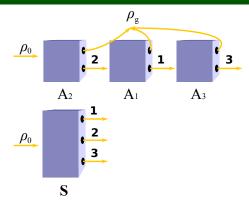


QUANTUM MEASUREMENT OCCURRENCE PROBLEM (QMOP)

Given a superoperator $\mathbf{S} = \{K_1, ..., K_m\}$ and starting state ρ_0 , decide if there is some finite sequence of measurements that can never be observed if ρ_0 is continually fed back into \mathbf{S} .

QMOP is UNDECIDABLE [Eisert12]

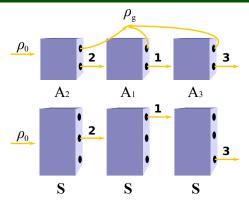
JENNY BARRY



Given QMOP **S** = { $K_1, ..., K_m$ }:

- *m* actions. Action *i* either:
 - Transitions according to *K_i*
 - Transitions to goal state

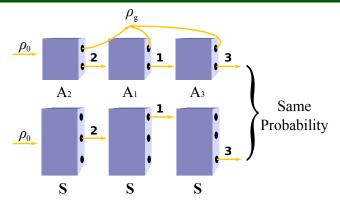
- m+1 observations:
 - At-Goal
 - Observation *i* from QMOP



Given QMOP **S** = { $K_1, ..., K_m$ }:

- *m* actions. Action *i* either:
 - Transitions according to *K_i*
 - Transitions to goal state

- m+1 observations:
 - At-Goal
 - Observation *i* from QMOP



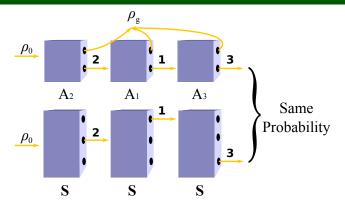
Given QMOP **S** = { $K_1, ..., K_m$ }:

- *m* actions. Action *i* either:
 - Transitions according to *K_i*
 - Transitions to goal state

- m+1 observations:
 - At-Goal
 - **2** Observation *i* from QMOP

8/10

- $\Pr(\rho_n \neq \text{goal} | \text{ actions } j_1, ..., j_n) = \Pr(\text{Observing sequence } j_1, ..., j_n).$
- $\Rightarrow Path to goal of probability 1 if and only some sequence unobservable.$



THEOREM

GRP for QOMDPs is undecidable.

GOAL-STATE REACHABILITY FOR POMDPS

CONVERSION TO PLUS/ZERO LAND

$$\begin{bmatrix} 0.2 & 0 & 0.8 \\ 0.3 & 0.1 & 0.6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} + & 0 & + \\ + & + & + \\ 0 & 0 & + \end{bmatrix} \begin{bmatrix} + \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} + \\ + \\ 0 \end{bmatrix}$$

GOAL-STATE REACHABILITY FOR POMDPS

CONVERSION TO PLUS/ZERO LAND

$$\begin{bmatrix} 0.2 & 0 & 0.8 \\ 0.3 & 0.1 & 0.6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} + & 0 & + \\ + & + & + \\ 0 & 0 & + \end{bmatrix} \begin{bmatrix} + \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} + \\ + \\ 0 \end{bmatrix}$$

- Convert POMDP probabilities to plus/zero
- Finitely many $(2^{|S|} 1)$ states
- Finitely many policies
- \Rightarrow We find the goal state or repeat a previously seen state in finite time.

CONVERSION TO PLUS/ZERO LAND

$$\begin{bmatrix} 0.2 & 0 & 0.8 \\ 0.3 & 0.1 & 0.6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} + & 0 & + \\ + & + & + \\ 0 & 0 & + \end{bmatrix} \begin{bmatrix} + \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} + \\ + \\ 0 \end{bmatrix}$$

- Convert POMDP probabilities to plus/zero
- Finitely many $(2^{|S|} 1)$ states
- Finitely many policies
- \Rightarrow We find the goal state or repeat a previously seen state in finite time.

THEOREM

GRP for POMDPs is decidable.

COMPLEXITY PROBLEMS

- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don't know the starting state in a QOMDP?

COMPLEXITY PROBLEMS

- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don't know the starting state in a QOMDP?

ALGORITHMS

- Algorithms for solving QOMDPs
- Algorithms for approximating QOMDPs

COMPLEXITY PROBLEMS

- Complexity separations using non-negative properties of POMDPs
- Complexity separations using value function structure of POMDPs
- What if we don't know the starting state in a QOMDP?

ALGORITHMS

- Algorithms for solving QOMDPs
- Algorithms for approximating QOMDPs

APPLICATIONS

- Reward structure for QOMDPs
- Practical applications of QOMDPs