Blind Quantum Computation

Charles Herder

December 12, 2012

Charles Herder Blind Quantum Computation

・ロト ・回ト ・ヨト ・ヨト

æ

Table of contents

- 2 Pauli Operations and Blindness
- Blind Quantum Computation with MBQC
- Other Blind Models

Image: A matrix

→ E → < E →</p>

Motivation

Pauli Operations and Blindness Blind Quantum Computation with MBQC Other Blind Models

Blind Computation

Client

- Circuit description D_C and input $|\psi\rangle_n$
- 2 Send D_C and $|\psi\rangle_n$ to Server.

3 Receive output $C|\psi\rangle_n$.

Server

• Receive encoded D_C and $|\psi\rangle_n$.

イロン イヨン イヨン イヨン

- Perform computation
- **3** Return $C|\psi\rangle_n$.

Server doesn't know:

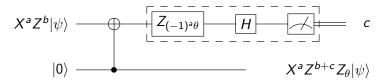
- Input, Output, or Intermediate states $(|\psi\rangle_n)$
- What computation is performed (C)

Random Local Paulis

Claim:

For random $a,b\in 0,1,$ $X^{a}Z^{b}|\psi\rangle$ is indiscernable from the completely mixed state.

Idea: (Ahornov, Ben-Orr, Eban, 2008) Use the above to "Encrypt" a quantum state.


Problem:

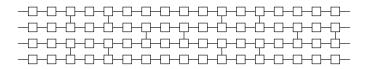
Hard to compute on an encrypted state.

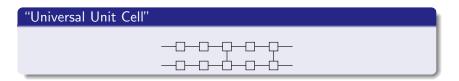
A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MBQC - Blindness

Key Recognition: MBQC already deals with Random Local Pauli matrices!

Intuition:

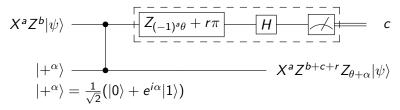

- Client knows a, b. Server does not.
- Rotations are basic operation X and Z commute easily


イロト イヨト イヨト イヨト

MBQC - Blindness Pt 2

Problem:

"Shape" of the computation reveals where qubits are interacting! **Solution:** "Brickwork State"



イロト イヨト イヨト イヨト

æ

MBQC - Blindness Pt. 3

Problem: Hiding operations from server.

Intuition:

- The client knows α , server does not.
- α decorrelates server info from performed operation.

イロン イヨン イヨン イヨン

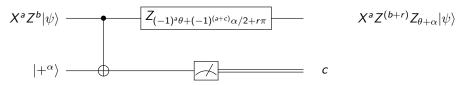
Blind MBQC - Putting it together

Protocol:

- Client prepares input with randomized Pauli operators for each qubit.
- ② Client prepares all brickwork qubits with random phase.
- 3 Client sends all qubits to server.
- Server performs brickwork state entanglement.
- Sor each qubit:
 - Client calculates measurement basis. Sends to server
 - 2 Server measures, sends to Client.
 - S Client updates Pauli matrices based on result.

・ロト ・同ト ・ヨト ・ヨト

Sufficient Properties for Blindness


Properties Sufficient for Blindness

- "Universal Unit Cell"
- Pauli-encrypted quantum state
- Hidden operations using random phase

Key Recognition: *Not unique to MBQC* Idea: Use Phase Kickback instead of Quantum Teleportation!

Ancilla-Driven Blind Quantum Computation

New rotation circuit:

Data stays on the first qubit - follows circuit model.

イロン イヨン イヨン イヨン